Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-07T23:13:25.208Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2012

Peter West
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1.1] P., Dirac, Lectures in Quantum Mechanics (1964) Belfer Graduate School of Science, Yeshiva University, New York.Google Scholar
[1.2] C., Becchi, A., Rouet and R., Stora, Renormalization of gauge theories, Ann. Phys. NY., 98 (1976) 287.Google Scholar
[1.3] E., Fradkin, and G., Vilkovisky, Quantization of relativistic systems with constraints, Phys. Lett., 55B (1975) 224;Google Scholar
I., Batalin and G., Vilkovisky, Relativistic S matrix of dynamical systems with boson and fermion constraints, Phys. Lett., 69B (1977) 309;Google Scholar
E., Fradkin and T., Fradkina, Quantization of relativistic systems with boson and fermion first and second class constraints, Phys. Lett., 72B (1978) 343.Google Scholar
[1.4] T., Kugo and I., Ojima, Local covariant operator formalism of nonabelian gauge theories and quark confinement problem, Suppl. Progr. Theoret. Phys., 66 (1979) 1.Google Scholar
[1.5] F. A., Berezin and M. S., Marinov, Classical spin and Grassmann algebra, Pisma Zh. Eksp. Teor. Fiz., 21 (1975) 678;Google Scholar
Particle spin dynamics as the Grassmann variant of classical mechanics, Ann. Phys., 104 (1977) 336.
[1.6] R., Casalbuoni, Relativity and supersymmetries, Phys. Lett., 62B (1976) 49.Google Scholar
[1.7] L., Brink, S., Deser, B., Zumino, P. Di, Vecchia and P., Howe, Local supersymmetry for spinning particles, Phys. Lett., 64B (1976) 435.Google Scholar
[1.8] L., Brink, P.Di, Vecchia, and P., Howe, A Lagrangian formulation of the classical and quantum dynamics of spinning particles, Nucl. Phys., B118 (1976) 76.Google Scholar
[1.9] L., Brink and J., Schwarz, Quantum superspace, Phys. Lett., 100B (1981) 310.Google Scholar
[1.10] A., Salam and J., Strathdee, On superfields and Fermi–Bose symmetry, Phys.Rev., DII (1975) 1521;Google Scholar
Feynman rules for superfields, Nucl. Phys., B86 (1975) 142.
[1.11] P., West, Introduction to Supersymmetry and Supergravity (1986, 1990) World Scientific. (There are two editions of this reference and some material can only be found in the second edition.)Google Scholar
[1.12] W., Siegel, Hidden local supersymmetry in the supersymmetric particle action, Phys. Lett., 128B (1983) 397.Google Scholar
[1.13] I., Bengtsson and M., Cederwall, unpublished.
[1.14] D., Sorokin, V., Tkach and D., Volkov, Superparticles, twistors and Siegel symmetry, Mod. Phys. Lett., A4 (1989) 901;Google Scholar
D., Sorokin, V., Tkach, D., Volkov and A., Zheltuken, From the superparticle Siegel symmetry to the spinning particle proper time supersymmetry, Phys. Lett., 216B (1989) 302.Google Scholar
[1.15] R., Penrose, Twistor algebra, J. Math. Phys., 8 (1967) 345;Google Scholar
R., Penrose and M., MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rep., 6C (1973) 243;Google Scholar
R., Penrose and W., Rindler, Spinors and Spacetime (1986) Cambridge University Press.Google Scholar
[1.16] T., Shirafuji, Lagrangian mechanics of massless particles with spin, Progr. Theor. Phys., 70 (1983) 18.Google Scholar
[1.17] A., Ferber, Supertwistors and conformal supersymmetry, Nucl. Phys., B132 (1977) 55.Google Scholar
[1.18] A., Bengtsson, I., Bengtsson, M, Cederwall and N., Linden, Particles, superparticles and twistors, Phys.Rev., D36 (1987) 1766;Google Scholar
I., Bengtsson and M, Cederwall, Particles, twistors and the division algebras, Nucl. Phys., B302 (1988) 104.Google Scholar
[1.19] Y., Eisenberg and S., Solomon, The twistor geometry of the covariantly quantized Brink–Schwarz superparticle, Nucl. Phys., B309 (1988) 709;Google Scholar
(Super)field theories from (super)twistors, Phys. Lett., B220 (1989) 562.
[1.20] A., Gumenchuk and D., Sorokin, Relativistic superparticle dynamics and twistor correspondence, Sov J. Nucl. Phys., 51 (1990) 350;Google Scholar
D., Sorokin, Double supersymmetric particle theories, Fortshr. Phys., 38 (1990) 923.Google Scholar
[1.21] I. A., Bandos, Relativistic superparticle dynamics and twistor correspondence, Sov J. Nucl. Phys., 51 (1990) 906;Google Scholar
Multivalued action functionals, Lorentz harmonics, and spin, JETP., Lett, 52 (1990) 205.
[1.22] F., Delduc, E., Ivanov and E., Sokatchev, Twistor like superstrings with D = 3, D = 4, D = 6 target superspace and N=(1,0), N=(2,0), N=(4,0) world sheet supersymmetry, Nucl. Phys., B384 (1992) 334.Google Scholar
[1.23] F., Delduc and E., Sokatchev, Superparticle with extended worldline supersymmetry, Class. Quantum Grav., 9 (1991) 361.Google Scholar
[1.24] A., Galperin and and E., Sokatchev, A twistor like D = 10 superparticle action with manifest N=8 worldline supersymmetry, Phys. Rev., D46 (1992) 714.Google Scholar
[1.25] A., Galperin and and E., Sokatchev, A twistor formulation of the nonheterotic superstring with manifest world sheet supersymmetry, Phys. Rev., D48 (1993) 4810.Google Scholar
[1.26] P. S., Howe and P. K., Townsend, The massless superparticle as Chern–Simons mechanics, Phys. Lett., 259B (1991) 285.Google Scholar
[1.27] N., Berkovits, A supertwistor description of the massless superparticle in ten-dimensional superspace, Phys. Lett., 247B (1990) 45.Google Scholar
[1.28] P., Howe and P., West, The conformal group, point particles and twistors, IJMP, A7 (1992) 6639.Google Scholar
[1.29] N., Berkovits, Super-poincaré invariant superstring field theory, Nucl. Phys., B450 (1995) 90.Google Scholar
[1.30] C., Teitelboim, Quantum mechanics of the gravitational field, Phys. Rev., D25 (1982) 3159.Google Scholar
[1.31] S., Monaghan, BRST Hamiltonian quantization of the supersymmetric particle in relativistic gauges, Phys. Lett., 181B (1986) 101.Google Scholar
[1.32] A., Neveu, and P., West, Unification of the Poincaré group with BRST and Parisi–Sourlas supersymmetries, Phys. Lett., 182B (1986) 343.Google Scholar
[2.1] Y., Nambu, Proceedings of the Int. Conf. on Symmetries and Quark Modes, Detroit 1969 (1970) Gordon and Breach.Google Scholar
[2.2] T., Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Progr. Theor. Phys., 46 (1971) 1560.Google Scholar
[2.3] P., Dirac, An extensible model of the electron, Proc. Roy. Soc. Lond., A268 (1962) 57.Google Scholar
[2.4] P., Goddard, J., Goldstone, C., Rebbi and C., Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys., B56 (1973) 109.Google Scholar
[2.5] L., Brink, P. Di, Vecchia, and P., Howe, A locally supersymmetric and reparametrization invariant action for the spinning string, Phys. Lett., 65B (1976) 471.Google Scholar
[2.6] S., Deser and B., Zumino, A complete action for the spinning string, Phys. Lett., 65B (1976) 369.Google Scholar
[2.7] M., Schiffer and D., Spencer, Functionals of Finite Riemann surfaces (1954) Princeton University Press.Google Scholar
[2.8] B., Zumino, Relativistic strings and supergauges, in Renormalization and Invariance in Quantum Field Theory, ed. E., Caianiello (1974) Plenum Press.Google Scholar
[3.1] A., Neveu and J., Scherk, Gauge invariance and uniqueness of the renormalisation of dual models with unit intercept, Nucl. Phys., B36 (1972) 155.Google Scholar
[3.2] T., Yoneya, Connection of dual models to electrodynamics and gravidynamics, Progr. Theor. Phys., 51 (1974) 1907;Google Scholar
J., Scherk and J., Schwarz, Dual models for nonhadrons, Nucl. Phys., B81 (1974) 118.Google Scholar
[3.3] M., Kato and K., Ogawa, Covariant quantization of string based on BRS invariance, Nucl. Phys., B212 (1983) 443;Google Scholar
S., Hwang, Covariant quantization of the string in dimensions D = 26 using a BRS formulation, Phys. Rev., D28 (1983) 2614.Google Scholar
[3.4] E. Del, Giudice and P. Di, Vecchia, Factorization and operator formalism in the generalized virasoro model, Nuov. Cim., 5A (1971) 90.Google Scholar
[3.5] S., Fubini and G., Veneziano, Level structure of dual-resonance models, Nuov. Cim., 64A (1969) 81.Google Scholar
[3.6] S., Fubini, D., Gordon and G., Veneziano, A general treatment of factorization in dual resonance models, Phys. Lett., 29B (1969) 679.Google Scholar
[3.7] S., Fubini, and G., Veneziano, Duality in operator formalism, Nuov. Cim., 67A (1970) 29.Google Scholar
[3.8] S., Fubini and G., Veneziano, Algebraic treatment of subsidiary conditions in dual resonance models, Ann. Phys., 63 (1971) 12.Google Scholar
[3.9] K., Bardakçi, and S., Mandelstam, Analytic solution of the linear-trajectory bootstrap, Phys. Rev., 184 (1969) 1640.Google Scholar
[3.10] F., Gliozzi, Ward-like identities and the twisting operator in dual resonance models, Nuovo Cim. Lett., 2 (1969) 846.Google Scholar
[3.11] G., Virasoro, Subsidiary conditions and ghosts in dual resonance models, Phys. Rev., D1 (1970) 2933.Google Scholar
[3.12] J., Weis, unpublished.
[3.13] R., Brower, Specturm-generating algebra and the no-ghost theorem for the dual model, Phys. Rev., D6 (1972) 1655. 2933.Google Scholar
[3.14] P., Goddard, P., and C., Thorn, Compatibility of the dual pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett., 40B (1972) 235.Google Scholar
[3.15] C., Lovelace, Pomeron form-factors and dual Regge cuts, Phys. Lett., 34B (1971) 500.Google Scholar
[3.16] B., Lee, Gauge theories, Methods in Field Theories, Les Houches Lectures, 1975, eds. R., Balian and Z. Jinn–Justin (1975) North-Holland and World Scientific Publishing Company.Google Scholar
[3.17] A., Neveu, and P., West, String lengths in covariant string field theory and OSp (26,2/2), Nucl. Phys., B293 (1987) 266.Google Scholar
[4.1] M., Kaku and K., Kikkawa, Field theory of relativistic strings, I Trees, Phys. Rev., D10, no 4, (1974) 1100 (1974);Google Scholar
Field theory of relativistic strings, I Loops, Phys. Rev., D10, no 6, (1974) 1823.
[5.1] F., Gliozzi, D., Olive and J., Scherk, supersymmetry, supergravity theories and the dual spinor model, Nucl. Phys., B122 (1977) 253.Google Scholar
[5.2] P. van, Niewenhuizen, Six lectures on supergravity, in Supergravity '81, eds. by S., Ferrara and J., Taylor (1982) Cambridge University Press.Google Scholar
[5.3] T., Kugo and P., Townsend, Supersymmetry and the division algebras, Nucl. Phys., B221, (1983) 357.Google Scholar
[5.4] M., Naimark and A., Stern, Theory of Group Representations (1982) Springer-Verlag.Google Scholar
[5.5] A., Barut and R., Racka, Theory of Group Representations and Applications (1986) World Scientific Publishing.Google Scholar
[5.6] R., Haag, J., Lopuszanski and M., Sohnius, All possible generators of supersymmetries of the S matrix, Nucl. Phys., B88 (1975) 81.Google Scholar
[5.7] J., Van Holten and A., Van Proeyen, N = 1 supersymmetry algebras in D = 2, D=3, D = 4 mod 8, J. Phys. Gen., A15 (1982) 3763.Google Scholar
[5.8] P., Howe, N., Lambert and P., West, The threebrane soliton of the M-fivebrane, Phys. Lett., 419B (1998) 79, arXiv:hep-th/9710033.Google Scholar
[6.1] P., Ramond, Dual theory for free fermions, Phys.Rev., D3 (1971) 2415.Google Scholar
[6.2] A., Neveu and J. H., Schwarz, Factorizable dual model of pions, Nucl. Phys., B31 (1971) 86.Google Scholar
[6.3] A., Neveu and J. H., Schwarz, Quark model of dual pions, Phys. Rev., D4 (1971) 1109.Google Scholar
[6.4] J. L., Gervais and B., Sakita, Field theory interpretation of supergauges in dual models, Nucl. Phys., B34 (1971) 632.Google Scholar
[6.5] M., Green and J., Schwarz, Covariant description of superstrings, Phys. Lett., 136B (1984) 367.Google Scholar
[6.6] L., Brink, P. Di, Vecchia and P., Howe, A locally supersymmetric and reparametrization invariant action for the spinning string, Phys. Lett., 65B (1976) 471.Google Scholar
[6.7] S., Desser and B., Zumino, A complete action for the spinning string, Phys. Lett., 65B (1976) 369.Google Scholar
[7.1] J. H., Schwarz, Physical states and pomeron poles in the dual pion model, Nucl. Phys., B46 (1972) 62.Google Scholar
[7.2] R. C., Brower and K. A., Friedman, Spectrum generating algebra and no ghost theorem for the Neveu–Schwarz model, Phys. Rev., D7 (1973) 535.Google Scholar
[7.3] P., Goddard and C. B., Thorn, Compatibility of the dual pomeron with unitarity and the absence of ghosts in the dual resonance model, Phys. Lett., 40B (1972) 235;Google Scholar
P., Goddard, C., Rebbi and C. B., Thorn, Lorentz covariance and the physical states in dual resonance models, Nuov. Cim., 12A (1972) 425.Google Scholar
[7.4] E., Corrigan and P., Goddard, The absence of ghosts in the dual fermion model, Nucl. Phys., B68 (1974) 189Google Scholar
[7.5] C., Thorn, Embryonic dual model for pions and fermions, Phys.Rev., D4 (1971) 1112;Google Scholar
J., Schwarz, Dual quark-gluon model of hadrons, Phys. Lett., 37B (1971) 315.Google Scholar
[7.6] E., Corrigan and D., Olive, Fermion meson vertices in dual theories, Nuov. Cim., 11A (1972) 749;Google Scholar
E., Corrigan, The scattering amplitude for four dual fermions, Nucl. Phys., B69 (1974) 325.Google Scholar
[7.7] L., Brink, D., Olive, C., Rebbi and J., Scherk, The missing gauge conditions for the dual fermion emission vertex and their consequences, Phys. Lett., 45B (1973) 379.Google Scholar
[7.8] S., Mandelstam, Manifestly dual formulation of the ramond model, Phys. Lett., 46B (1973) 447.Google Scholar
[7.9] E., Corrigan, P., GoddardR. A., Smith and D., Olive, Evaluation of the scattering amplitude for four dual fermions, Nucl. Phys., B67 (1973) 477;Google Scholar
J, Schwarz and C. C., Wu, Functions occurring in dual fermion amplitudes, Nucl. Phys., B73 (1974) 77;Google Scholar
Evaluation of dual fermion amplitudes, Phys. Lett., 47B (1973) 453.
[7.10] D., Bruce, E., Corrigan and D., Olive, Group theoretical calculation of traces and determinants occurring in dual theories, Nucl. Phys., B95 (1975) 427.Google Scholar
[7.11] N., Berkovits, Perturbative finiteness of superstring theory, 4th International Winter Conference on Mathematical Methods in Physics (WC 2004), Rio de Janeiro, Brazil, published in PoS WC2004 (2004) 9.Google Scholar
[7.12] L., Alvarez-Gaume, P., Ginsparg, G., Moore and C., Vafa, An O (16) × O (16) heterotic string, Phys. Lett., 171B (1986) 155;Google Scholar
L., Dixon and J., Harvey, String theories in ten dimensions without space-time supersymmetry, Nucl. Phys., B274 (1986) 93.Google Scholar
[7.13] M., Green and J., Schwarz, Supersymmetrical dual string theory. 2. Vertices and trees, Nucl. Phys., B198 (1982) 252;Google Scholar
Supersymmetrical dual string theory. 3. Loops and renormalization, Nucl. Phys., B198 (1982) 441.
[8.1] A., Belavin, A., Polyakov and A., Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys., B241 (1984) 333.Google Scholar
[8.2] K.Wilson, Nonlagrangian models of current algebra, Phys. Rev., 179 (1969) 1499;CrossRef
W., Zimmerman, Lectures on Elementary Particles and Quantum Field Theory, Brandeis Summer School (1970) MIT Press;Google Scholar
A., Polyakov, Conformal symmetry of critical fluctuations, JETP Lett., 12 (1970) 381.Google Scholar
For more references see I., Todorov, M., Minctchev and V., Petkova, Conformal Invariance in Quantum Field Theory (1978) Publicazone della classe di scienze della scuola normale superiore.Google Scholar
[8.3] H., Blote, J., Cardy and M., Nightingale, Conformal Invariance, the Central charge, and universal finite size amplitudes at criticality, Phys. Rev. Lett., 56 (1986) 742;Google Scholar
I., Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett., 56 (1986) 746;Google Scholar
J., Cardy, Conformal Invariance and Statistical Physics, in Les Houches Lectures 1988 eds. E., Brezin and J, Zinn-Justin, (1989) Elsevier Publishers.Google Scholar
[8.4] C., Callan Jr, Methods in Field Theory, in Methods in Field Theories, Les Houches Lectures, 1975, eds. R., Balian and Z., Jinn-Justin (1975) North-Holland and World Scientific Publishing Company.Google Scholar
[8.5] V., Kac, Highest weight representations of infinite dimensional Lie algebras, Proc. ICM, Helsinki, (1978) 299;Google Scholar
Contravariant Form for the Infinite-Demensional Lie Algebras and SuperalgebrasSpringer lecture notes in Physics, 94 (1979) 441.CrossRef
[8.6] V., Kac and A., Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Mathematics Series, Vol. 2 (1987) World Scientific Publishing.Google Scholar
[8.7] D., Friedan, E., Martinec and S., Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys., B271 (1986) 93.Google Scholar
[8.8] C., Itzykson and J., Zuber, Two-dimensional conformal invariant theories on a torus, Nucl. Phys., B275 (1986) 580;Google Scholar
The ADE classification of minimal and A1(1) conformal invariant theories, Comm. Math. Phys., 113 (1987) 1;CrossRef
A., Kato, Classification of modular invariant partition functions in two-dimensions, Mod. Phys. Lett., A2 (1987) 585.Google Scholar
For a review see C., Itzykson and J., Drouffe, Statistical Physics Vols. 1 and 2, (1989) Cambridge University Press.Google Scholar
[9.1] C., Itzykson and J., Zuber, Quantum Field Theory (1985) McGraw Hill.Google Scholar
[9.2] V., Dotsenko and V., Fateev, Conformal algebra and multipoint correlation functions in two-dimensional statistical models, Nucl. Phys., B240 (1984) 312.Google Scholar
[9.3] V., Dotsenko and V., Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge c < 1, Nucl. Phys., B251 (1985) 691.Google Scholar
[9.4] B., Feigen and D., Fuchs, Topology, Proceedings of Leningrad Conference 1982, eds. L., Faddeev and A., Mal'tsev, (1982) Springer.Google Scholar
[9.5] G., Felder, BRST approach to minimal models, Nucl. Phys., B317 (1989) 215.Google Scholar
[9.6] A., Schellekens and N., Warner, Anomalies, characters and strings, Nucl. Phys., B287 (1987) 317.Google Scholar
[10.1] E., Cremmer and J., Scherk, Dual models in four-dimensions with internal symmetries, Nucl. Phys., B103 (1976) 399.Google Scholar
[10.2] K., Kikkawa and M., Yamasaki, Casimir effects in superstring theories, Phys. Lett., 149B (1984) 357.Google Scholar
[10.3] N., Sakai and I., Senda, Vacuum energies of string compactified on torus, Prog. Theor. Phys., 75 (1986) 692.Google Scholar
[10.4] F., Englert and A., Neveu, Nonabelian compactification of the interacting bosonic string, Phys. Lett., 163B (1985) 349.Google Scholar
[10.5] K., Narain, New heterotic string theories in uncompactified dimensions < 10, Phys. Lett., 169B (1986) 41.Google Scholar
[10.6] K., Narain, H., Sarmardi and E., Witten, A note on toroidal compactification of heterotic string theory, Nucl. Phys., B279 (1987) 369.Google Scholar
[10.7] A., Giveon, E., Rabinovici and G., Veneziano, Duality in string background space, Nucl. Phys., B322 (1989) 167.Google Scholar
[10.8] A., Shapere and F., Wilczek, Selfdual models with theta terms, Nucl. Phys., B320 (1989) 669.Google Scholar
[10.9] A., Giveon, E., Malkin and E., Rabinovici, The Riemann surface in the target space and vice versa, Phys. Lett., B220 (1989) 551;Google Scholar
On discrete symmetries and fundamental domains of target space, Phys. Lett., B238 (1990) 57.
[10.10] W., Nahm, Supersymmetries and their representations, Nucl. Phys., B135 (1978) 149.Google Scholar
[10.11] C., Campbell and P., West, N = 2 D = 10 nonchiral supergravity and its spontaneous compactification. Nucl. Phys., B243 (1984) 112.Google Scholar
[10.12] M., Huq and M., Namazie, Kaluza–Klein supergravity in ten dimensions, Class. Q. Grav., 2 (1985) 293.Google Scholar
[10.13] F., Giani and M., Pernici, N = 2 supergravity in ten dimensions, Phys. Rev., D30 (1984) 325.Google Scholar
[10.14] J, Schwarz and P., West, Symmetries and transformation of chiralN = 2D = 10 supergravity, Phys. Lett., 126B (1983) 301.Google Scholar
[10.15] P., Howe and P., West, The complete N = 2 D = 10 supergravity, Nucl. Phys., B238 (1984) 181.Google Scholar
[10.16] J., Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys., B226 (1983) 269.Google Scholar
[10.17] A. H., Chamseddine, Interacting supergravity in ten dimensions: the role of the six-index gauge field, Phys. Rev., D24 (1981) 3065.Google Scholar
[10.18] E., Bergshoeff, M., de Roo, B., de Wit and P., van Nieuwenhuizen, Ten-dimensional Maxwell–Einstein supergravity, its currents, and the issue of its auxiliary fields, Nucl. Phys., B195 (1982) 97.Google Scholar
[10.19] L., Brink, J., Scherk and J. H., Schwarz, Supersymmetric Yang–Mills theories, Nucl. Phys., B121 (1977) 77.Google Scholar
[10.20] G., Chapline and N. S., Manton, Unification of Yang–Mills theory and supergravity in ten dimensions, Phys. Lett., 120B (1983) 105.Google Scholar
[10.21] N., Marcus and A., Sagnotti, Tree level constraints on gauge groups for type I superstrings, Phys. Lett., 119B (1982) 97.Google Scholar
[10.22] L., Alvarez-Gaume and E., Witten, Gravitational anomalies, Nucl. Phys., B234 (1984) 269.Google Scholar
[10.23] M., Green and J., Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory, Phys. Lett., 149B (1984) 117.Google Scholar
[10.24] J., Thierry-Mieg, Remarks concerning the E8 × E8 and D16 string theories, Phys. Lett., 156B (1985) 199.Google Scholar
[10.25] G., Segal, Unitarity representations of some infinite dimensional groups, Comm. Math. Phys., 80 (1981) 301.Google Scholar
[10.26] I. B., Frenkel and V. G., Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62 (1980) 23.Google Scholar
[10.27] P., Goddard and D., Olive, Algebras, lattices and strings,in Vertex Operators in Mathematics and Physics, eds J., Lepowsky, S., Mandelstam, I., Singer, (1985) Springer-Verlag.Google Scholar
[10.28] P., Freund, Superstrings from twenty six-dimensions?, Phys. Lett., 151B (1985) 387.Google Scholar
[10.29] D., Gross, J., Harvey, E., Martinec and R., Rohm, The heterotic string, Phys Rev. Lett., 54 (1985) 502;Google Scholar
Heterotic string theory. 1. The free heterotic string, Nucl. Phys., B256, 253 (1985);
Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys., B267, 75 (1986).
[10.30] A., Tseytlin, Duality and dilaton, Mod. Phys. Lett., A6 (1991) 1721.Google Scholar
M., Rocek and E., Verlinde, Duality, quotients, and currents, Nucl. Phys., B373 (1992) 630;Google Scholar
S., Schwarz and A., Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys., B399 (1993) 691.Google Scholar
[11.1] C., Thorn, A detailed study of the physical state conditions in the covariantly quantised string, Nucl. Phys., B286 (1987) 61.Google Scholar
[11.2] E. Del, Giudice, P., Di Vecchia and S., Fubini, General properties of the dual resonance model, Ann. Phys., 70 (1972) 378.Google Scholar
[11.3] L., Brink and D., Olive, The physical state projection operator in dual resonance models for the critical dimension of space-time, Nucl. Phys., B56, (1973) 253;Google Scholar
Recalculation of the the unitary single planar dual loop in the critical dimension of space time, Nucl. Phys., B58 (1973) 237.
[11.4] M., Freedman and D., Olive, The calculation of planar one loop diagrams in string theory using the BRS formalism, Phys. Lett., 175B (1986) 155.Google Scholar
[12.1] L., Singh and C., Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev., D9 (1974) 898.Google Scholar
[12.2] A., Neveu, A., and P., West, Gauge covariant local formulation of bosonic strings, Nucl. Phys., B268 (1986) 125.Google Scholar
[12.3] A., Neveu, H., Nicolai and P., West, New symmetries and ghost structure of covariant string theories, Phys. Lett., 167B (1986) 307.Google Scholar
[12.4] E., Witten, Noncommutative geometry and string field theory, Nucl. Phys., B268 (1986) 253.Google Scholar
[12.5] W., Siegel, Covariantly second quantized string, Phys. Lett., 142B (1984) 276;Google Scholar
Covariantly second quantized string 2, Phys. Lett., 149B (1984) 157;
Covariantly Second Quantized String 3, Phys. Lett., 149B (1984) 162.
[12.6] A., Neveu, H., Nicholai and P., West, Gauge covariant local formulation of free strings and superstrings, Nucl. Phys., B264 (1986) 573.Google Scholar
[12.7] A., Neveu, J., Schwarz and P., West, Gauge symmetries of the free bosonic string field theory, Phys. Lett., 164B (1985) 51.Google Scholar
[12.8] T., Banks and M., Peskin, Gauge invariance of string fields, Nucl. Phys., B264 (1986) 513.Google Scholar
[12.9] W., Siegel and B., Zweibach, Gauge string fields, Nucl. Phys., B263 (1986) 105.Google Scholar
[12.10] A., Neveu and P., West, The interacting gauge covariant bosonic string, Phys. Lett., B168 (1986) 192;Google Scholar
Symmetries of the interacting gauge covariant bosonic string, Nucl. Phys., B278 (1986) 601.
[12.11] T., Banks, M., Peskin, C., Preitschopf, D., Friedan and E., Martinec, All free string theories are theories of forms, Nucl. Phys., B274 (1986) 71.Google Scholar
[12.12] A., Ballestrero and E., Maina, Ramond–Ramond closed string field theory, Phys. Lett., 182B (1986) 317.Google Scholar
[12.13] Y., Kazama, A., Neveu, H., Nicolai, H., and P., West, Symmetry structures of superstring field theories, Nucl. Phys., B276 (1986) 366.Google Scholar
[12.14] Y., Kazama, A., Neveu, H., Nicolai, and P., West, Space-time supersymmetry of the covariant superstring, Nucl. Phys., B278 (1986) 833.Google Scholar
[12.15] J., Araytn and A., Zimerman, Ghosts and the physical modes in the covariant free string field theories, Int. J. Mod. Phys., A1 (1986) 421;Google Scholar
On covariant formulation of the free Neveu–Schwarz and Ramond string models, Phys. Lett., 166B (1986) 130.
[12.16] H., Terao and S., Uehara, Gauge invariant actions and gauge fixed actions of free superstring field theory, Phys. Lett., 173 (1986) 134.Google Scholar
[13.1] E., Cremmer, B., Julia and J., Scherk, Supergravity theory in eleven-dimensions, Phys. Lett., 76B (1978) 409.Google Scholar
[13.2] D., Freedman, P., van Nieuwenhuizen and S., Ferrara, Progress toward a theory of supergravity, Phys. Rev., D13 (1976) 3214;Google Scholar
Phys. Rev., D14 (1976) 912.
[13.3] S., Deser and B., Zumino, Consistent supergravity, Phys. Lett., 62B (1976) 335.Google Scholar
[13.4] K., Stelle and P., West, Minimal auxiliary fields for supergravity, Phys. Lett., B74 (1978) 330.Google Scholar
[13.5] S., Ferrara and P., van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett., B74 (1978) 333.Google Scholar
[13.6] P., West, Representations of Supersymmetry, in Supergravity 81, eds. S., Ferrara and J., Taylor (1982) Cambridge University Press.Google Scholar
[13.7] J., Wess and B., Zumino, Superspace formulation of supergravity, Phys. Lett., 66B (1977) 361;Google Scholar
Superfield Lagrangian for supergravity, Phys. Lett., 74B (1978) 51.
[13.8] A., Chamseddine and P., West, Supergravity as a gauge theory of supersymmetry, Nucl. Phys., B129 (1977) 39.Google Scholar
[13.9] S., MacDowell and F., Mansouri, Unified geometric theory of gravity and supergravity, Phys. Rev. Lett., 38 (1977) 739.Google Scholar
[13.10] M., Kaku, P., van Niewenhuizen and P. K., Townsend, Properties of conformal supergravity, Phys. Rev., D17 (1978) 3179.Google Scholar
[13.11] R., Kraichnan, Special-relativistic derivation of generally covariant gravitation theory, Phys. Rev., 98 (1955) 1118;Google Scholar
A., Papapetrou, Einstein's theory of gravitation and flat space, Proc. Roy. Irish Acad., 52A (1948) 11;Google Scholar
S., Gupta, Quantization of Einstein's gravitational field: general treatment, Proc. Phys. Soc. London, A65 (1952) 608;Google Scholar
R., Feynman, contribution in Chapel Hill conference (1956);Google Scholar
R., Feynman, F., Morinigo, W., Wagner and B., Hatfield, contribution in ‘Feynman lectures on gravitation,’ Addison-Wesley (1995) 232 (this article can be found at http://www.slac.stanford.edu/spires/?nd/hep/www?irn=3475700);Google Scholar
W., Thirring, Forschritte der Physik, 7 (1959) 79;
S., Desser, Self-interaction and gauge invariance, Gen. Rel. Grav., 1 (1970) 9.Google Scholar
[13.12] P. K., Townsend and P., van Nieuwenhuizen, Geometrical interpretation of extended supergravity, Phys. Lett., 67B (1977) 439.Google Scholar
[13.13] S., Ferrara and P., van Nieuwenhuizen, Tensor calculus for supergravity, Phys. Lett., 76B (1978) 404;Google Scholar
K. S., Stelle and P., West, Tensor calculus for the vector multiplet coupled to supergravity, Phys. Lett., 77B (1978) 376;Google Scholar
S., Ferrara and P., van Nieuwenhuizen, Structure of supergravity, Phys. Lett., 78B (1978) 573;Google Scholar
K. S., Stelle and P., West, Relation between vector and scalar multiplets and invariance in supergravity, Nucl. Phys., B145 (1978) 175.Google Scholar
[13.14] J., Wess and B., Zumino, Supergauge transformations in four dimensions, Nucl. Phys., B70 (1974) 139;Google Scholar
A Lagrangian model invariant under supergauge transformations, Phys. Lett., 49B (1974) 52.
[13.15] J., Wess and B., Zumino, Supergauge invariant extension of quantum electrodynamics, Nucl. Phys., B78 (1974) 1;Google Scholar
S., Ferrara and B., Zumino, Supergauge invariant Yang–Mills theories, Nucl. Phys., B79 (1974) 413;Google Scholar
A., Salam and J., Strathdee, Supersymmetry and nonabelian gauges, Phys. Lett., 51B (1974) 353.Google Scholar
[13.16] V., Akulov, D., Volkov and V., Soroka, Gauge fields on superspaces with different holonomy groups, JETP Lett., 22 (1975) 187.Google Scholar
[13.17] R., Arnowitt, P., Nath and B., Zumino, Superfield densities and action principle in curved superspace, Phys. Lett., 56B (1975) 81;Google Scholar
P., Nath and R., Arnowitt, Generalized supergauge symmetry as a new framework for unified gauge theories, Phys. Lett., 56B (1975) 177;Google Scholar
Superspace formulation of supergravity, Phys. Lett., 78B (1978) 581.
[13.18] N., Dragon, Torsion and curvature in extended supergravity, Z. Phys., C2 (1979) 29;Google Scholar
E., Ivanov and A., Sorin, Superfield formulation of Osp(1, 4) supersymmetry, J. Phys. A. Math. Gen., 13 (1980) 1159.Google Scholar
[13.19] T., Kibble, Lorentz invariance and the gravitational field, J. Maths. Phys., 2 (1961) 212.Google Scholar
[13.20] K. S., Stelle and P., West, Spontaneously broken de sitter symmetry and the gravitational holonomy group, Phys. Rev., D21, (1980) 1466.Google Scholar
[13.21] Th., Kaluza, On the problem of unity in physics, Sitzungdber. Berl. Akad. (1921) 966;Google Scholar
O., Klein, Quantum theory and five-dimensional theory of relativity, Z. Phys., 37 (1926) 895.Google Scholar
[13.22] N., Lambert and P., West, Enhanced coset Symmetries and higher derivative corrections, Phys. Rev., D74 (2006) 065002, arXiv:hep-th/0603255.Google Scholar
[13.23] J., Goldstone, Field theories with superconductor solutions, Nuov. Cim., 19 (1961) 154.Google Scholar
J., Goldstone, A., Salam and S., Weinberg, Broken symmetries, Phys. Rev., 127 (1962) 965.Google Scholar
[13.24] S., Coleman, J., Wess and B., Zumino, Structure of phenomenological Lagrangians 1, Phys. Rev., 177 (1969) 2239;Google Scholar
C., Callan, S., Coleman, J., Wess and B., Zumino, Structure of phenomenological Lagrangians 2, Phys.Rev., 177 (1969) 2247.Google Scholar
[13.25] E., Ivanov and V., Ogievetsky, Gauge theories as theories of spontaneous breakdown, Lett. Math. Phys., 1 (1976) 309;Google Scholar
Gauge theories as theories of spontaneous breakdown, JETP Lett., 23 (1976) 606.
[13.26] D. V., Volkov, Phenomological Lagrangians, Sov. J. Part. Nucl., 4 (1973) 3,Google Scholar
D. V., Volkov and V. P., Akulov, Possible universal neutrino interaction, JETP Lett., 16 (1972) 438;Google Scholar
Is the Neutrino a Goldstone Particle?, Phys. Lett., 46B (1973) 109.
[13.27] A., Salam and J., Strathdee, Nonlinear realizations. 1: The role of Goldstone bosons, Phys. Rev., 184 (1969) 1750,Google Scholar
C., Isham, A., Salam and J., Strathdee, Spontaneous, breakdown of conformal symmetry, Phys. Lett., 31B (1970) 300;Google Scholar
Non-linear realisations of space-time symmetries. scalar and tensor gravity, Ann. Phys., 62 no 1 (1971) 98.CrossRef
[13.28] C., Lovelace, Strings in curved space, Phys. Lett., 135B (1984) 75;Google Scholar
K., Callan, D., Friedan, E., Martinec and M., Perry, Strings in background fields, Nucl. Phys., B262 (1985) 593.Google Scholar
For a review see A., Tseytlin, Sigma model approach to string theory, Int. J. Mod. Phys., A4 (1989) 1257.Google Scholar
[13.29] E., Witten, Some properties of O(32) superstrings, Phys. Lett., 149B (1984) 351;Google Scholar
E., Fradkin and A., Tseytlin, Effective field theory from quantized strings, Phys. Lett., 158B (1985) 316.Google Scholar
[13.30] P., Townsend, The eleven dimensional supermembrane revisited, Phys. Lett., 350B (1995) 184, arXiv:hep-th/9501068.Google Scholar
[13.31] E., Witten, String theory dynamics in various dimensions, Nucl. Phys., B443 (1995) 85, arXiv:hep-th/9503124.Google Scholar
[13.32] N., Marcus and J., Schwarz, Field theories that have no manifestly Lorentz invariant formulation, Phys. Lett., 115B (1982) 111.Google Scholar
[13.33] M., Green and J., Schwarz, Superstring interactions, Phys. Lett., 122B (1983) 143.Google Scholar
[13.34] S., Ferrara, J., Scherk and B., Zumino, Algebraic properties of extended supersymmetry, Nucl. Phys., B121 (1977) 393;Google Scholar
E., Cremmer, J., Scherk and S., Ferrara, SU(4) invariant supergravity theory, Phys. Lett., 74B (1978) 61.Google Scholar
[13.35] E., Cremmer and B., Julia, The N = 8 supergravity theory. I. The Lagrangian, Phys. Lett., 80B (1978) 48.Google Scholar
[13.36] B., Julia, in Group disintegrations,in Superspace Supergravity, eds. S.W., Hawking and M., Roçek (1981) Cambridge University Press;Google Scholar
E., Cremmer, Dimensional Reduction In Field Theory And Hidden Symmetries In Extended Supergravity, in Trieste Supergravity School 1981, p. 313;Google Scholar
Supergravities in 5 dimensions,in Superspace Supergravity, eds. S.W., Hawking and M., Roçek (1981) Cambridge University Press.
[13.37] N., Marcus and J., Schwarz, Three-dimensional supergravity theories, Nucl. Phys., B228 (1983) 301.Google Scholar
[13.38] H., Nicolai, The integrability of N = 16 supergravity, Phys. Lett., 194B (1987) 402; On M-theory, arXiv:hep-th/9801090;Google Scholar
B., Julia nd H., Nicolai, Conformal internal symmetry of 2-d sigma models coupled to gravity and a dilaton, Nucl. Phys., B482 (1996) 431, arXiv:hep-th/9608082.Google Scholar
[13.39] C. Pope unpublished notes, which can be found at faculty.physics.tamu.edu/pope/ihplec.pdf.
[13.40] E., Cremmer, B., Julia, H., Lu and C., Pope, Higher dimensional origin of D = 3 coset symmetries, arXiv:hep-th/9909099.
[13.41] N., Lambert and P., West, Coset symmetries in dimensionally reduced bosonic string theory, Nucl. Phys., B615 (2001) 117, arXiv:hep-th/0107209.Google Scholar
[13.42] R., Geroch, A method for generating solutions of Einstein's equations, J. Math. Phys., 12 (1971) 918, 13 (1972) 394;Google Scholar
J., Ehlers, Disertation, Hamburg University (1957).Google Scholar
[13.43] J., Maharana and J., Schwarz, Noncompact symmetries in string theory, Nucl. Phys., B390 (1993) 3, arXiv:hep-th/9207016.Google Scholar
[13.44] G., Gibbons and K., Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys., B298 (1988) 741.Google Scholar
[13.45] G., Horowitz and A., Strominger, Black strings and branes, Nucl. Phys., B360 (1991) 197.Google Scholar
[13.46] M., Duff and K., Stelle, Multimembrane solutions of d = 11 supergravity, Phys. Lett., B253 (1991) 113.Google Scholar
[13.47] R., Guven, Black p-brane solutions of 11-dimensional supergravity, Phys. Lett., B276 (1992) 49.Google Scholar
[13.48] M., Duff and J., Lu, Black and super p-branes in diverse dimensions, Nucl. Phys., B416 (1994) 301.Google Scholar
[13.49] M., Duff and J., Lu, The selfdual type IIB superthreebrane, Phys. Lett., 273B (1991) 409.Google Scholar
[13.50] M., Duff and J., Lu, Elementary five-brane solutions of D = 10 supergravity, Nucl. Phys., B354 (1991) 141.Google Scholar
[13.51] C., Callan, J., Harvey and A., Strominger, Supersymmetric string solitons, hep-th/9112030.
[13.52] A., Dabholkar, G., Gibbons, J., Harvey and F., Ruiz-Ruiz, Superstrings and solitons, Nucl. Phys., B340 (1990) 33.Google Scholar
[13.53] H., Lu and C., Pope, p-brane taxonomy, arXiv:hep-th/9702086.
[13.54] M. J., Duff, R. R., Khuri, R., Minasian and J., Rahmfeld, New black hole, string and membrane solutions of the four dimensional heterotic string, Nucl. Phys., B418 (1994) 195.Google Scholar
[13.55] M., Duff and J., Lu, The black branes of M theory, arXiv:hep-th/9604052.
[13.56] G., Gibbons, Antigravitating black hole solitons with scalar hair in N = 4 supergravity, Nucl. Phys., B207 (1982) 337.Google Scholar
[13.57] P., Dobiasch and D., Maison, Stationary, spherically symmetric solutions of Jordan's unified theory of gravity and electromagnetism, Gen. Rel. Grav., 14 (1982) 231.Google Scholar
[13.58] A., Chodos and S., Detweiler, Spherically symmetric solutions in FIve-dimensional general relativity, Gen. Rel. Grav., 14 (1982) 879.Google Scholar
[13.59] D., Pollard, Antigravity and classical solutions of five-dimensional Kaluza–Klein theory, J. Phys., A16 (1983) 565.Google Scholar
[13.60] G., Papadopoulos and P., Townsend, Intersecting M branes, Phys., B380 (1996) 80.Google Scholar
[13.61] A., Tseytlin, Composite BPS con?gurations of p-branes in 10 and 11 dimensions, Class. Quant. Grav., 14 (1997) 2085, arXiv:hep-th/9702163.Google Scholar
[13.62] M., Brinkman, Proc. Natl. Acad. Sci., USA, 9 (1923) 1.Google Scholar
[13.63] C., Hull, Exact pp wave solutions of eleven dimensional supergravity, Phys. Lett., B139 (1984) 39.Google Scholar
[13.64] S., Han and I., Koh, N = 4 supersymmetry remaining in Kaluza–Klein monopole background in D = 11 supergravity, Phys.Rev., D31 (1985) 2503.Google Scholar
[13.65] P., Freund and M., Rubin, Dynamics of dimensional reduction, Phys. Lett., B97 (1980) 233.Google Scholar
[13.66] J., Kowalski-Glikman, Vacuum states in supersymmetric Kaluza–Klein theory, Phys. Lett., B134 (1984) 194.Google Scholar
[13.67] J., Gauntlett, D., Kastor and J., Traschen, Overlapping branes in M theory, Nucl. Phys., B478 (1996) 544.Google Scholar
[13.68] M., Duff, G., Gibbons and P., Townsend, Macroscopic superstrings as interpolating solitons, Phys. Lett., B332 (1994) 321.Google Scholar
[13.69] G., Gibbons, G., Horowitz and P., Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav., 12 (1995) 297.Google Scholar
[13.70] E., Bergshoeff, M., de Roo, M., Green, G., Papadopoulos and P., Townsend, Duality of type II 7-branes and 8-branes, Nucl. Phys., B470 (1996) 113, arXiv:hep-th/9601150.Google Scholar
[13.71] L., Romans, Massive N = 2a supergravity in ten dimensions, Phys. Lett., B169 (1986) 374.Google Scholar
[13.72] J., Polchinski and E., Witten, Evidence for heterotic type I string duality, Nucl. Phys., B460 (1996) 525, hep-th/9510169.Google Scholar
[13.73] G., Gibbons, M., Green and M., Perry, Instantons and seven-branes in type IIB superstring theory, hep-th/9511080. Duality of type II 7-branes and 8-branes, hep-th/9601150.
[13.74] J., Polchinski, Dirichlet branes and Ramond–Ramond charges, Phys. Rev Lett., 75 (1995) 4724.Google Scholar
[13.75] J., Schwarz, Covariant field equations of chiral N = 2D = 10 supergravity, Nucl. Phys., B226 (1983) 269.Google Scholar
[13.76] M., Blau, J., Figueroa-O'Farrill, C., Hull and G., Papadopoulos, A new maximally supersymmetric background of IIB supers tring theory, JHEP, 0201(2002)047, arXiv:hep-th/0110242.
[13.77] A, de Azcarraga, J., Gauntlett, J., Izquierdo and P.K., Townsend, Topological extensions of the supersymmetry algebra for extended objects, Phys. Rev. Lett., 63 (1989) 2443.Google Scholar
[13.78] E., Witten and D., Olive, Supersymmetry algebras t hat include topological charges, Phys. Lett., 78B (1978) 97.Google Scholar
[13.79] C., Teitelboim, Monopoles of higher rank, Phys. Lett., 167B (1986) 69.Google Scholar
[13.80] R., Nepomechie, Magnetic monopoles from antisymmetric tensor gauge fields, Phys. Rev., D31 (1984) 1921.Google Scholar
[13.81] A., Borisov and V., Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory of the gravitational field, Theor. Math. Phys., 21 (1975) 1179.Google Scholar
[13.82] V., Ogievetsky, Infinite-dimensional algebra of general covariance group as the closure of the finite dimensional algebras of conformal and linear groups, Nuov. Cim., 8 (1973) 988.Google Scholar
[13.83] S., de Haro, A., Sinkovics and K., Skenderis, On a supersymmetric completion of the R4 term in the IIB supergravity, Phys. Rev., D67 (2003) 084010, arXiv:hep-th/0210080.Google Scholar
[14.1] M., Atiyah and N., Hitchen, The Geometry and Dynamics of Magnetic Monopoles, (1988) Princeton University Press.Google Scholar
[14.2] N., Manton, A remark on the scattering of BPS monopoles, Phys. Lett., 110B (1982) 54.Google Scholar
[14.3] N., Manton and P., Sutcliffe, Topological Solitons, (2007) Cambridge University Press.Google Scholar
[14.4] E., Bergshoeff, E., Sezgin and P., Townsend, Properties of eleven dimensional supermembrane theory, Ann. Phys., 185 (1988) 330.Google Scholar
[14.5] E., Bergshoeff, E., Sezgin and P., Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett., 189 (1987) 75.Google Scholar
[14.6] A., Achucarro, J., Evans, P., Townsend and D. L., Wiltshire, Super p-branes, Phys. Lett., 198B (1987) 441;Google Scholar
J., Azcarraga and P., Townsend, Topological extensions of the superymmetry algebra for extended objects, Phys. Rev., 62 (1989) 1579.Google Scholar
[14.7] E., Bergshoff and E., Sezgin, Twistor-like formulation of super p-branes, Nucl. Phys., B422 (1994) 329. Hep-th/9312168, E. Sezgin, Space-time and worldvolume Supersymmetric Super p-brane actions, hep-th/9312168.Google Scholar
[14.8] I., Bandos, D., Sorokin and and D., Volkov, On the generalized action principle for superstrings and superbranes, Phys. Lett., 352B (1995) 269, arXiv:hep-th/9502141.Google Scholar
I., Bandos, P., Pasti, D., Sorokin, M., Tonin and D., Volkov, Superstrings and supermembranes in the doubly supersymmetric geometrical approach, Nucl. Phys., B446 (1995) 79, arXiv:hep-th/9501113.Google Scholar
[14.9] P., Howe and E., Sezgin, Superbranes, Phys. Lett., 390B (1997) 133, arXiv:hep-th/9607227.Google Scholar
[14.10] P., Howe and E., Sezgin, D = 11, p = 5, Phys. Lett., 394B (1997) 62, arXiv:00hep-th/9611008.Google Scholar
[14.11] P., Howe, E., Sezgin and P., West, Covariant fieldequations of the M theory five-brane, Phys. Lett., 399B (1997) 49, hep-th/9702008.Google Scholar
[14.12] P., Howe, E., Sezgin and P., West, The six-dimensional self-dual tensor, Phys. Lett., B400 (1997) 255, hep-th/9702111.Google Scholar
[14.13] P., Howe, E., Sezgin, and P., West, Aspects of superembeddings, Contribution to the D. V. Volkov Memorial Volume, Lecture Notes in Physics, Vol. 509 (1998) Springer-Verlag; arXiv:hep-th/9705093Google Scholar
[14.14] A., Tseytlin, Self-duallity of the Born–Infeld action and the Dirichlet 3-brane of type IIB superstring theory, Nucl. Phys., B469 (1996) 51;Google Scholar
M. B., Green and M., Gutperle, Comment on three-branes, Phys. Lett., 377B (1996) 28.Google Scholar
[14.15] M., Cederwall, A., Von Gussich, B., Nilsson and A., Westerberg, The Dirichlet super-three-brane in ten-dimensional Type IIB supergravity, Nucl Phys., B490 (1997) 163, hep-th/9610148;Google Scholar
E., Bershoeff and P., Townsend, Super branes, NuclPhys., B490 (1997) 145, hep-th/9611173.Google Scholar
[14.16] M., Aganagic, C., Popescu and J. H., Schwarz, D-brane actions with local kappa symmetry, Phys. Lett., 393B (1997) 311, hep-th/9610249.Google Scholar
[14.17] M., Cederwall, A., Von Gussich, B., NilssonP., Sundell and A., Westerberg, The Dirichlet super p-branes in ten-dimensional Type IIA and IIB supergravity, Nucl. Phys., B490 (1997) 179, hep-th/9611159.Google Scholar
[14.18] M., Aganagic, C., Popescu and J., Schwarz, Gauge-invariant and gauge-fixed D-brane actions, Nucl. Phys., B495 (1997) 99, arXiv: hep-th/9612080.Google Scholar
[14.19] P., West, Brane dynamics, central charges and E11, JHEP, 0503 (2005) 077, arXiv:hep-th/0412336.Google Scholar
[14.20] P., Howe and P., Townsend, The massless superparticle as Chern–Simons mechanics, Phys. Lett., B259 (1991) 285;Google Scholar
F., Delduc and E., Sokatchev, Superparticle with extended worldline supersymmetry, Class. Quant. Grav., 9 (1992) 361;Google Scholar
A., Galperin, P., Howe and K., Stelle, The superparticle and the Lorentz group, Nucl. Phys., B368 (1992) 248;Google Scholar
A., Galperin and E., Sokatchev, A twistor-like D = 10 superparticle action with manifest N = 8 world-line supersymmetry, Phys.Rev., D46 (1992) 714, arXiv:hep-th/9203051.Google Scholar
[14.21] F., Delduc, A., Galperin, P. S., Howe and E., Sokatchev, A twistor formulation of the heterotic D = 10 supers tring with manifest (8,0) worldsheet supersymmetry, Phys. Rev., D47 (1993) 578, hep-th/9207050;Google Scholar
F., Delduc, E., Ivanov and E., Sokatchev, Twistor-like superstrings with D = 3, 4, 6 target-superspace and N = (1, 0), (2, 0), (4, 0) world-sheet supersymmetry, Nucl. Phys., B384 (1992) 334, arXiv:hep-th/9204071.Google Scholar
[14.22] P., Pasti and M., Tonin, Twistor- like formulation of the supermembrane in D = 11, Nucl. Phys., B418 (1994) 337, arXiv:hep-th/9303156.Google Scholar
[14.23] I., Bandos, K., Lechner, A., Nurmagambetov, et al., Covariant action for the super fivebrane of M-theory, Phys. Rev. Lett., 78 (1997) 4332, arXiv:hep-th/9701149.Google Scholar
[14.24] I., Bandos, Generalized action principle and geometricalapproach for superstrings and super p-branes, Mod. Phys. Lett., A12 (1997) 799; arXiv:hep-th/9608094;Google Scholar
I., Bandos, P., Pasti, D., Sorokin and M., Tonin, Superbrane actions and geometrical approach, in Supersymmetry and Quantum Field Theory, Kharkar Conference (1997); arXiv:hep-th/9705064;Google Scholar
I., Bandos, D., Sorokin and M., Tonin, Generalized action principle and superfield equations of motion for D = 10 D p-branes, Nucl. Phys., B497 (1997) 275, arXiv:hep-th/9701127.Google Scholar
[14.25] E., Cremmer and S., Ferrara, Formulation of eleven-dimensional supergravity in superspace, Phys. Lett., 91B (1980) 61.Google Scholar
[14.26] L., Brink and P., Howe, Eleven-dimensional supergravity on the mass-shell in superspace, Phys. Lett., 91B (1980) 384.Google Scholar
[14.27] M., Perry and J., Schwarz, Interacting chiral gauge fields in six-dimensions and Born–Infeld theory, Nucl. Phys., B489 (1997) 47, hep-th/9611065;Google Scholar
M., Aganagic, J., Park, C., Popescu, and J., Schwarz, Worldvolume action of t he M-theory fivebrane, Nucl. Phys., B496, 191; arXiv:hep-th/9701166.
[14.28] E., Witten, The five-brane effective action in M theory, J. Geom. Phys., 22 (1997) 103, arXiv:hep-th/9610234.Google Scholar
[14.29] P., Howe, N., Lambert and P., West, The selfdual string soliton, Nucl. Phys., B515 (1998) 203, hep-th/9709014.Google Scholar
[14.30] A., Strominger, Open P-branes, Phys. Lett., 383B (1996) 44, arXiv:hep-th/9512059.Google Scholar
[14.31] G., Gibbons, Born–Infeld particles and Dirichlet p-branes, Nucl. Phys., B514 (1998) 603.Google Scholar
[14.32] P., Howe, N., Lambert and P., West, Classical M-fivebrane dynamics and quantum N = 2 Yang–Mills, Phys. Lett., 419 (1998) 79, arXiv:hep-th/9710034.Google Scholar
[14.33] N., Seiberg and E., Witten, Electric–magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang–Mills theory, Nucl. Phys., B426 (1994) 19, hep-th/9407087;Google Scholar
Monopoles, Duality and Chiral Symmetry Breaking in N = 2 Supersymmetric QCD, Nucl. Phys., B431 (1994) 484, arXiv:hep-th/9408099.
[14.34] P., Howe, K., Stelle and P., West, A class of finite four-dimensional supersymmetric field theories, Phys. Lett., 124B (1983) 55.Google Scholar
For a review of perturbative results in rigid supersymmetric theories, see P., West, Supersymmety and finiteness, in Proceedings of the 1983 Shelter Island II Conference on Qunatum Field Theory and Fundamental Problems of Physics, eds. R., Jackiw, N., Kuri, S., Weinberg and E., Witten (1985) MIT Press.Google Scholar
[14.35] N., Seiberg, Naturalness versus supersymmetric nonrenormalization theorems, Phys. Lett., 318B (1993) 469.Google Scholar
[14.36] C., Montonen and D., Olive, Magnetic monopoles as gauge particles?, Phys. Lett., 72B (1977) 117.Google Scholar
[14.37] P., Argyres and A., Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(N) gauge theory, Phys. Rev. Lett., 74 (1995) 3931, hep-th/9411057;Google Scholar
S., Klemm, W., Lerche, S., Theisen and S., Yankielowicz, Simple singularities and N = 2 supersymmetric Yang–Mills theory, Phys. Lett., 344B (1995) 169, arXiv:hep-th/9411048Google Scholar
[14.38] E., Witten, Solutions of four-dimensional field theories via M theory, Nucl. Phys., B500 (1997) 3, arXiv:hep-th/9703166.Google Scholar
[14.39] N., Lambert and P., West, Gauge fields and M-fivebrane dynamics, Nucl. Phys., B524 (1998) 141, arXiv:hep-th/9712040.Google Scholar
[15.1] E., Corrigan and D., Fairlie, Off-shell states in dual resonance theory, Nucl. Phys., B91 (1975) 527.Google Scholar
[15.2] J., Dai, R., Leigh and J., Polchinski, New connections between string theories, Mod. Phys. Lett., A4 (1989) 2073.Google Scholar
[15.3] R., Leigh, Dirac–Born–Infeld action f rom Dirichlet sigma model, Mod. Phys. Lett., A4 (1989) 2767.Google Scholar
[15.4] J., Polchinski, Dirichlet branes and Ramond–Ramond charges, Phys. Rev. Lett., 75 (1995) 4724.Google Scholar
[15.5] J., Maldecena, The large N limit of superconformal field theories, Adv. Theor. Math. Phys., 2 (1997) 231, arXiv:hep-th/9711200.Google Scholar
[15.6] E., Witten, Anti de Sitter sapce and holography, Adv. Theor. Math. Phys., 2 (1998) 253, arXiv:hep-th/9802150.Google Scholar
[15.7] S., Gubser, I., Klebanov and A., Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett., 428B (1998) 105, arXiv:hep-th/9802109Google Scholar
[15.8] E., Witten, Bound states of strings and p-branes, Nucl. Phys., B460 (1996) 335, hep-th/9510135.Google Scholar
[15.9] L., Brink and H., Nielson, As imple physical interpretation of the critical dimension of space-time in dual models, Phys. Lett., 45B (1973) 332.Google Scholar
[15.10] E., Whittaker and G., Watson, A Course of Modern Analysis, foruth edition (1927) page 267, Cambridge University Press.Google Scholar
[15.11] N., Lambert and P., West, D-branes in the Green–Schwarz formalism, Phys. Lett., 459B (1999) 515, arXiv:hep-th/9905031Google Scholar
[15.12] M., Green, Point-like states for type 2b superstrings, Phys. Lett., 329B (1994) 435, arXiv:hep-th/9403040.Google Scholar
[15.13] M., Bershadsky, V., Sadov and C., Vafa, D-strings on D-manifolds, Nucl. Phys., 463B (1996) 398, arXiv:hep-th/9510225.Google Scholar
[15.14] J., Polchinski and E., Witten, Evidence for heterotic type I string duality, Nucl. Phys., 460B (1996) 525, arXiv:hep-th/9510169.Google Scholar
[15.15] A., Hanany and E., Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys., 492B (1997) 152, arXiv:hep-th/9611230.Google Scholar
[16.1] B., Weybourne, Classical Groups for Physicists (1974) Wiley;Google Scholar
R., Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (2006) Dover;Google Scholar
H., Georgi, Lie algebras in Particle Physics (1982) Benjamin Cummings;Google Scholar
R., Cahn, Semi-simple Lie Algebras and Their Representations (1984) Benjamin Cummings.Google Scholar
[16.2] J.-P., Serre, Complex Semisimple Lie Algebras (1987) Springer Verlag:Google Scholar
J., Humphries, Introduction to Lie Algebras and Representation Theory (1972) Springer-Verlag.Google Scholar
[16.3] R., Carter, Lie Algebras of Finite and Affine Type (2005) Cambridge University Press.Google Scholar
[16.4] V., Kac, Graded Lie algebras and symmetric spaces, Funct. Anal. Appl., 2 (1968) 183.Google Scholar
[16.5] R., Moody, A new class of lie algebras, J. Algebra, 10 (1968) 211.Google Scholar
[16.6] V., Kac, Infinite Dimensional Lie Algebras (1983) Birkhauser.Google Scholar
[16.8] S., Krass, R., Moody, J., Patera and S., Slansky, Affine Lie A lgebras, Weight Multiplicities and Branching Rules (1990) University of California Press.Google Scholar
[16.9] M., Gaberdiel, D., Olive and P., West, A class of Lorentzian Kac–Moody algebras, Nucl. Phys., B645 (2002) 403, arXiv:hep-th/0205068.Google Scholar
[16.10] P., West, E11 and M Theory, Class. Quant. Grav., 18 (2001) 4443, hep-th/0104081.Google Scholar
[16.11] F., Englert, L., Houart, A., Taormina and P., West, The symmetry of M-theories, JHEP, 0309 (2003) 020, arXiv:hep-th/0304206.Google Scholar
[16.12] J. H., Conway, N. J. A., Sloane, Sphere Packings, Lattices and Groups (1988) Springer-Verlag.Google Scholar
[16.13] P., West, E11 origin of Brane charges and U-duality multiplets, JHEP, 0408 (2004) 052, arXiv:hep-th/0406150.Google Scholar
[16.14] T., Damour, M., Henneaux and H., Nicolai, E(10) and a ‘small tension expansion’ of M theory, Phys. Rev. Lett., 89 (2002) 221601, arXiv:hep-th/0207267.Google Scholar
[16.15] P., West, Very extended E8 and A8 at low levels, gravity and supergravity, Class. Quant. Grav., 20 (2003) 2393, arXiv:hep-th/0212291.Google Scholar
[16.16] P., West and A., Kleinschmidt, Representations of G+++ and the role of space-time, JHEP, 0402 (2004) 033, arXiv:hep-th/0312247.Google Scholar
[16.17] P., West, E11, SL(32) and central charges, Phys. Lett., 575B (2003) 333, arXiv:hep-th/0307098.Google Scholar
[16.18] I. B., Frenkel and V. G., Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 62 (1980) 23.Google Scholar
[16.19] G., Segal, Unitarity representations of some infinite dimensional groups, Comm. Math. Phys., 80 (1981) 301.Google Scholar
[16.20] P., Goddard, D., Olive and A., Schwimmer, Vertex operators for non-simply-laced algebras, Commun. Math. Phys., 107 (1986) 179.Google Scholar
[16.21] R., Gebert and H., Nicolai, On E10 and the DDF construction, Commun. Math. Phys., 172 (1995) 571, arXiv:hep-th/9406175Google Scholar
[16.22] R., Gebert, H., Nicolai and P., West, Multistring vertices and hyperbolic Kac Moody Algebras, Int. J. Mod. Phys., A11 (1996) 429. arXiv:hep-th/9505106.Google Scholar
[16.23] O., Barwald, R., Gebert, M., Gunaydin and H., Nicolai, Missing modules, the gnome Lie algebra, and E(10), Commun. Math. Phys., 195 (1998) 29, arXiv:hep-th/9703084Google Scholar
[16.24] J., Conway and J., Algebra, 80 (1983) 159;
J., Conway and N., Sloane, Bull. Am. Math. Soc., 6(2) (1982) 215.
[16.25] G., Moore, Finite in all directions, arXiv:hep-th/9305139.
[16.26] P., West, Physical states and string symmetries, Int. J. Mod. Phys., A10 (1995) 761. arXiv:hep-th/9411029.Google Scholar
[16.27] R., Gilbert, Introduction to vertex algebras, Borcherds algebras and the monster Lie algebra, Int. J. Mod. Phys., 8 (1993) 5441.Google Scholar
[16.28] G., Segal and A., Pressley, Loop Groups (1986) Oxford University Press.Google Scholar
[17.1] T., Buscher, A symmetry of the string background field equations, Phys. Lett., B194 (1987) 59, B201 (1988) 466.Google Scholar
[17.2] P., Horava, Background duality of open string models, Phys. Lett., B231 (1989) 251.Google Scholar
[17.3] P. A. M., Dirac, Quantized singularities in the electromagnetic field, Proc. R. Soc. Lond., A133 (1931) 60.Google Scholar
[17.4] T. T., Wu and C. N., Yang, Concept of nonintegrable phase factors and global formulation of gauge fields, Phys. Rev., D12 (1975) 3845.Google Scholar
[17.5] D., Zwanziger, Quantum field theory of particles with both electric and magnetic charges, Phys. Rev., 176 (1968) 1489.Google Scholar
[17.6] J., Schwinger, A magnetic model of matter, Science, 165 (1969) 757.Google Scholar
[17.7] G., 't Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys., B79 (1974) 276.Google Scholar
[17.8] A. M., Polyakov, Particle spectrum in the quantum field theory, JETP Lett., 20 (1974) 194.Google Scholar
[17.9] E., Bogomol'nyi, Stability of classical solutions, Sov J. Nucl. Phys., 24 (1975) 449.Google Scholar
[17.10] M., Prasad and C., Sommerfeld, An exact classical solution for the 't Hooft monopole and the Julia–Zee dyon, Phys. Rev. Lett., 35 (1975) 760.Google Scholar
[17.11] S., Coleman, A., Neveu, S., Parke and C. M., Sommerfeld, Can one dent a dyon?, Phys. Rev., D15 (1977) 544.Google Scholar
[17.12] B., Julia and A., Zee, Poles with both magnetic and electric charges in nonabelian gauge theory, Phys. Rev., D11 (1975) 2227.Google Scholar
[17.13] E., Weinberg, Parameter counting for multi-monopole solutions, Phys. Rev., D20 (1979) 936.Google Scholar
[17.14] C., Montonen and D., Olive, Magnetic monopoles as gauge particlesfi, Phys. Lett., 72B (1977) 117.Google Scholar
[17.15] E., Witten, Dyons of charge e theta/2 pi, Phys. Lett., 86B (1979) 283.Google Scholar
[17.16] P., West, Supersymmetric effective potential, Nucl. Phys., B106 (1976) 219.Google Scholar
[17.17] M., Sohnius and P., West, Conformal invariance in N = 4 supersymmetric Yang–Mills theory, Phys. Lett., 100B (1981) 245;Google Scholar
S., Mandelstam, Light cone supers pace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys., B213 (1983) 149.Google Scholar
[17.18] H., Osborn, Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1, Phys. Lett., 83B (1979) 321.Google Scholar
[17.19] A., Sen, Dyon – monopole bound states, selfdual harmonic forms on the multi – monopole modulis pace, and SL(2,Z) invariance in string theory, Phys. Lett., 329B (1994) 217.Google Scholar
[17.20] D., Olive, Introduction to dualing in Duality and Supersymmetric Theories, eds., by D., Olive and P., West (1999) Cambridge University Press.Google Scholar
[17.21] J., Gauntlett, Supersymmetric monopoles and duality in Duality and Supersymmetric Theories, eds. D., Olive and P., West (1999) Cambridge University Press.Google Scholar
[17.22] A., Font, L., Ibanez, D., Lust and F. D., Quevedo, Strong–weak coupling duality and nonperturbative effects in string theory, Phys. Lett., 249B (1990) 35.Google Scholar
[17.23] S. J., Rey, The confining phase of superstrings and axionic strings, Phys. Rev., D43 (1991) 526.Google Scholar
[17.24] A., Sen, Quantization of dyon charge and electric magnetic duality in string theory, Phys. Lett., 303B (1993) 22;Google Scholar
Strong–weak coupling duality in four-dimensional string theory, Int. J. Mod. Phys., A9 (1994) 3707.
[17.25] J., Schwarz and A., Sen, Duality symmetric actions, Nucl. Phys., B411 (1994) 35.Google Scholar
[17.26] C. M., Hull and P. K., Townsend, Unity of superstring dualities, Nucl. Phys., B438 (1995) 109, hep-th/9410167.Google Scholar
[17.27] M., Dine, P., Huet and N., Seiberg, Large and small radius in string theory, Nucl. Phys., B322 (1989) 301.Google Scholar
[17.28] E., Bergshoeff, C., Hull and T., Ortin, Duality in the type-II superstring effective action, Nucl. Phys., B451 (1995) 547, hep-th/9504081.Google Scholar
[17.29] S., Sethi and M., Stern, D-brane bound states redux, Commun. Math. Phys., 194 (1998) 675, hep-th/9705046.Google Scholar
[17.30] A., Sen, An Introduction to Non-Perturbative String Theory,in Duality and Supersymmetric Theories, eds., D., Olive and P., West (1999) Cambridge University Press.Google Scholar
[17.31] M. J., Duff, P. S., Howe, T., Inami and K. S., Stelle, Superstrings in D = 10 from supermembranes in D = 11., Phys. Lett., 191B (1987) 70.Google Scholar
[17.32] M., Duff, J., Lu, and R., Minasian, Eleven-dimensional origin of string-string duality: A one loop test, Nucl. Phys., B452 (1995) 261.Google Scholar
[17.33] H., Nicolai and T., Fischbacher, Low level representations of E10 and E11,in Kac-Moody Lie Algebras and Related Topics, the Proceedings of the Ramanujan International Symposium on Kac–Moody Algebras and Applications, ISKMAA-2002, Chennai, India (2002); arXiv:hep-th/0301017.Google Scholar
[17.34] P., West, Hidden superconformal symmetry in M theory, JHEP, 08 (2000) 007, arXiv:hep-th/0005270.Google Scholar
[17.35] I., Schnakenburg and P., West, Kac–Moody symmetries of IIB supergravity, Phys. Lett., 517B (2001) 421, arXiv:hep-th/0107181.Google Scholar
[17.36] A., Kleinschmidt, I., Schnakenburg and P., West, Very-extended Kac–Moody algebras and their interpretation at low levels, Class. Quant. Grav, 21 (2004) 2493; arXiv: hep-th/0309198.Google Scholar
[17.37] I., Schnakenburg and P., West, Massive IIA supergravity as a non-linear realisation, Phys. Lett., 540B (2002) 137, arXiv:hep-th/0204207.Google Scholar
[17.38] E. A., Bergshoeff, M., de Roo, S. F., Kerstan, T., Ortin and F., Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP, 0607 (2006) 018, arXiv:hep-th/0602280.Google Scholar
[17.39] P., West, E11, ten forms and supergravity, JHEP, 0603 (2006) 072, arXiv:hep-th/0511153.Google Scholar
[17.40] P., West, The IIA, IIB and eleven dimensional theories and their common E11 origin, Nucl. Phys., B693 (2004) 76-102, arXiv:hep-th/0402140.Google Scholar
[17.41] F., Riccioni and P., West, The E11 origin of all maximal supergravities, JHEP, 0707 (2007) 063; arXiv:0705.0752.Google Scholar
[17.42] E. A., Bergshoeff, I., De Baetselier and T. A., Nutma, E(11) and the embedding tensor, JHEP, 0709 (2007) 047, arXiv: arXiv:hep-th/0705.1304.Google Scholar
[17.43] P., Townsend, Cosmological constant in supergravity, Phys. Rev., D15 (1977) 2802.Google Scholar
[17.44] B., de Wit and H., Nicolai, N = 8 supergravity with local SO (8) × SU (8) invariance, Phys. Lett., 108B (1982) 285;Google Scholar
N = 8 supergravity, Nucl. Phys., 208B (1982) 323.
[17.45] H., Samtleben and M., Weidner, The maximal D = 7 supergravities, Nucl. Phys., 725B (2005) 383, arXiv:hep-th/0506237.Google Scholar
[17.46] B., de Wit, H., Samtleben and M., Trigiante, On Lagrangians and gaugings of maximal supergravities, Nucl. Phys., 655B (2003) 93, arXiv:hep-th/0212239.Google Scholar
[17.47] B., de Wit, H., Samtleben and M., Trigiante, Magnetic charges in local field theory, JHEP, 0509 (2005) 016, arXiv:hep-th/0507289.Google Scholar
[17.48] H., Nicolai and H., Samtleben, Maximal gauged supergravity in three dimensions, Phys. Rev. Lett., 86 (2001) 1686, arXiv:hep-th/0010076.Google Scholar
[17.49] B., de Wit, H., Samtleben and M., Trigiante, The maximal D = 5 supergravities, Nucl. Phys., 716B (2005) 215, arXiv:hep-th/0412173.Google Scholar
[17.50] F., Riccioni and P., West, E(11)-extended spacetime and gauged supergravities, JHEP, 0802 (2008) 039, arXiv:0712.1795Google Scholar
[17.51] F., Riccioni and P., West, Local E(11), JHEP, 0904 (2009) 051. arXiv:0902.4678.Google Scholar
[17.52] F., Riccioni, D., Steele and P., West, The E(11) origin of all maximal supergravities – the hierarchy of field-strengths, JHEP, 0909 (2009) 095, arXiv:0906.1177.Google Scholar
[17.53] E., Cremmer, B., Julia, H., Lu and C. N., Pope, Dualisation of dualities, Nucl. Phys., B523 (1998) 73, hep-th/9710119;Google Scholar
Dualisation of dualities, II: Twisted self-duality of doubled fields and superdualities, Nucl. Phys., B535 (1998) 242, arXiv:hep-th/9806106.
[17.54] F., Riccioni and P., West, Dual fields and E11, Phys. Lett., 645B (2007) 286–292, arXiv:hep-th/0612001.Google Scholar
[17.55] P., West, Brane dynamics, central charges and E11, JHEP, 0503 (2005) 077, hep-th/0412336.Google Scholar
[17.56] P., Cook and P., West, Charge multiplets and masses for E(11), JHEP, 11 (2008) 091, arXiv:0805.4451.Google Scholar
[17.57] S., Elitzur, A., Giveon, D., Kutasov and E., Rabinovici, Algebraic aspects of matrix theory on Td, Nucl. Phys., 509B (1998) 122, hep-th/9707217.Google Scholar
[17.58] N., Obers, B., Pioline and E., Rabinovici, M-theory and U-duality on Td with gauge backgrounds, Nucl. Phys., 525B (1998) 163, arXiv: hep-th/9712084.Google Scholar
[17.59] N., Obers and B., Pioline, U-duality and M-theory, an algebraic approach, hep-th/9812139;
N., Obers and B., Pioline, U-duality and M-theory, Phys. Rep., 318 (1999) 113, arXiv: hep-th/9809039.Google Scholar
[17.60] F., Riccioni and P., West, Local E(11), JHEP, 0904 (2009) 051, arXiv:hep-th/0902.4678.Google Scholar
[17.61] P., West, E11, Generalised space-time and IIA string theory, Phys. Lett. B to be published, arXiv:1009.2624
[17.62] P., West, Generalised space-time and duality, Phys. Lett., 693B (2010) 373, arXiv:1006.0893.Google Scholar
[17.63] P., West, Some simple predictions from E11 symmetry, Phys. Lett., 603B (2004) 63, arXiv:hep-th/0407088.Google Scholar
[18.1] R., Dolan, D., Horn and C., Schmid, Prediction of Regge parameters of rho poles from low-energy pi N data, Phys. Rev. Lett., 19 (1967) 402;Google Scholar
Phys. Rev., 166 (1968) 1968.
[18.2] M., Ademollo, H. R., Rubinstein, G., Veneziano and M. A., Virasoro, Bootstraplike conditions from superconvergence, Phys. Rev. Lett., 14 (1967) 1402;Google Scholar
Phys. Rev. 176 (1968) 1904.
[18.3] S., Mandelstam, Dynamics based on rising Regge trajectories, Phys. Rev., 166 (1968) 1539.Google Scholar
[18.4] C., Schmid, Meson bootstrap with finite-energy sum rules, Phys. Rev. Lett., 20 (1968) 628.Google Scholar
[18.5] C., Schmid and J., Yellin, Finite-energy sum rules and the process 0-minus + 0-minus — ¿ 0-minus + 0-minus, Phys. Rev., 182 (1969) 1449.Google Scholar
[18.6] G., Veneziano, Construction of a crossing – symmetric, Regge behaved amplitude for linearly rising trajectories, Nuov. Cim., 57A (1968) 190.Google Scholar
[18.7] A., Erdelyi, Higher Transcendental Functions, The Bateman manuscript project, vds I–III 1953 McGraw-Hill.Google Scholar
[18.8] J., Eden, P., Landshoff, D., Olive and J., Polkinghorn, Analytic S Matrix (1966) Cambridge University Press.Google Scholar
[18.9] K., Bardakci and H., Ruegg, Reggeized resonance model for the production amplitude, Phys. Lett., 28B (1968) 342.Google Scholar
[18.10] M. A., Virasoro, Generalization of veneziano's formula for the five-point function, Phys. Rev. Lett., 22 (1969) 37.Google Scholar
[18.11] K., Bardakci and H., Ruegg, Reggeized resonance model for arbitrary production processes, Phys. Rev., 181 (1969) 1884.Google Scholar
[18.12] H. M., Chan and S. T., Tsou, Explicit construction of the n-point function in the generalized veneziano model, Phys. Lett., 28B (1969) 485.Google Scholar
[18.13] C. G., Goebel and B., Sakita, Extension of the Veneziano form to N-particle amplitudes, Phys. Rev. Lett., 22 (1969) 257.Google Scholar
[18.14] Z., Koba and H. B., Nielsen, Reaction amplitude for n mesons: A generalization of the Veneziano–Bardakci–Ruegg–Virasora model, Nucl. Phys., B10 (1969) 633.Google Scholar
[18.15] H. B., Nielsen, An almost physical interpretation of the dual N point function, Proc. 15th International Conference on High Energy Physics, Kiev (1970). Preprint (1969) Nordita.Google Scholar
[18.16] D., Farlie and H. B., Nielsen, An analog model for ksv theory, Nucl. Phys., B20 (1969) 637.Google Scholar
[18.17] L., Susskind, Dual-symmetric theory of hadrons. 1, Nuov. Cim., 69A (1970) 457;Google Scholar
Structure of hadrons implied by duality, Phys. Rev., D1 (1970) 1182.
[18.18] D., Fairlie, The analogue model for string amplitudes, to be published in The Birth of String Theory, eds. A., Cappelli, E., Castellani, F., Colomo and P., Di Vecchia, Cambridge University Press and other articles in this volume.
[18.19] S., Sciuto, The general vertex function in dual resonance models, Nuov. Cim., 2 (1969) 411.Google Scholar
[18.20] L., Caneschi, A., Schwimmer and G., Veneziano, Twisted propagator in the operatorial duality formalism, Phys. Lett., 30B (1969) 351.Google Scholar
[18.21] V., Alessandrini, A general approach to dual multiloop diagrams, Nuov. Cim., 2A (1971) 321;Google Scholar
V., Allessendrini and D., Amati, Properties of dual multiloop amplitudes, Nuov. Cim., 4A (1971) 793;Google Scholar
C., Lovelace, M-loop generalized veneziano formula, Phys. Lett., 32 (1970) 703.Google Scholar
[18.22] V., Alessandrini, D., Amati, M., LeBellac and D. I., Olive, The operator approach to dual multiparticle theory, Phys. Rep., 1C (1971) 170; as well as the s upplement by D. Olive which appears i mmeadiately after this article.Google Scholar
[18.23] P., Frampton, Dual Resonance Models, (1974) Benjamin.Google Scholar
[18.24] S., Mandelstam, Structural Analysis of Collision Amplitudes, ed. Tran Than Van, , Les, Houches, June 1975, 593.Google Scholar
[18.25] C., Rebbi, Dual models and relativistic quantum strings, Phys. Rep., 12C (1974) 1;Google Scholar
J., Scherk, An introduction to the theory of dual models and strings, Rev. Mod. Phys., 47 (1975) 123.Google Scholar
[18.26] J. H., Schwarz, Dual resonance theory, Phys. Rep., 8C (1973) 269.Google Scholar
[18.27] G., Veneziano, An introduction to dual models of strong interactions and their physical motivations, Phys. Rep., 9C (1974) 199.Google Scholar
[18.28] J., Schwarz, Superstring theory, Phys. Rep., 89 (1982) 223.Google Scholar
[18.29] M., Green, Supersymmetrical dual string theories and their field theory limits: A review, Surv. High Energy Phys., 3 (1983) 127.
[18.30] C., Hsue, B., Sakita and M., Virasoro, Formulation of dual theory in terms of functional integrations, Phys. Rev., D2 (1970) 2857.Google Scholar
[18.31] J., Gervais and B., Sakita, Functional integral approach to dual resonance theory, Phys. Rev., D4 (1971) 2291.Google Scholar
[18.32] A., Polyakov, Quantum geometry of fermionic strings, Phys. Lett., 103B (1981) 207, 211.Google Scholar
[18.33] O., Alvarez, Theory of strings with boundaries: Fluctuations, topology, and quantum geometry, Nucl. Phys., B216 (1983) 125.Google Scholar
[18.34] P., Candelas, Lectures on Complex Manifolds, Superstrings, eds. L., Alvarez-Gaume, M. B., Green, M. T., Grisaru, R., Iengo and E., Sezgin (1987) World Scientific.Google Scholar
[18.35] J., Polchinski, Evaluation of the one loop string path integral, Comm. Math. Phys., 104 (1986) 37.Google Scholar
[18.36] G., Moore and P., Nelson, Absence of nonlocal anomalies in the polyakov string, Nucl. Phys., B266 (1986) 58.Google Scholar
[18.37] E., D'Hoker and D., Phong, Multiloop amplitudes f or the bosonic polyakov string, Nucl. Phys., B269 (1986) 205.Google Scholar
[18.38] A., Neveu and P. C., West, Conformal mappings and the three string bosonic vertex; Phys. Lett., 179B (1986) 235;Google Scholar
Group theoretic approach to the perturbative string S matrix, Phys. Lett., 193B (1987) 187;
Cycling, twisting and sewing in the group theoretic approach to strings, Commun. Math. Phys., 119 (1988) 585.CrossRef
[18.39] A., Neveu and P. C., West, A group theoretic method for string loop diagram, Phys. Lett., 194B (1987) 200;Google Scholar
Group theoretic approach to the open bosonic string multiloop S matrix, Commun. Math. Phys., 114 (1988) 613;CrossRef
String vertices and induced representations; Nucl. Phys., B320 (1989) 103.
[18.40] P., West and M., Freeman, Ghost vertices for the bosonic string using the group theoretical approach to string theory, Phys. Lett., B205 (1988) 30.Google Scholar
[18.41] P., West, Multiloop ghost vertices and the determination of the multiloop measure, Phys. Lett., 205B (1988) 38.Google Scholar
[18.42] A., Neveu and P., West, The cyclic symmetric vertex for three arbitrary Neveu–Schwartz strings, Phys. Lett., 180B 34 (1986);Google Scholar
Neveu–Schwarz excited string scattering: As uperconformal group computation, Phys. Lett., 200B (1988) 275;
Group theoretic approach to the superstring and its supermoduli, Nucl. Phys., 311B (1988) 79.
[18.43] M. D., Freeman and P., West, Ramond string scattering in the group theoretic approach to string theory, Phys. Lett., 217B (1989) 259.Google Scholar
[18.44] N., Moeller and P., West, Arbitrary four string scattering at high energy and fixed angle, Nucl. Phys., B729 (2005) 1, hep-th/0507152.Google Scholar
[18.45] P., West, A brief review of the group theoretic approach to string theory, in Conformal Field Theories and Related Topics, Proceedings of Third Annecy Meeting on Theoretical Physics, LAPP, Annecy le Vieux, France, eds. P., Binütruy, P., Sorba and R., Stora, Nucl. Phys. B (Proc. Suppl), 5B (1988) 217.Google Scholar
[18.46] L., Alvarez-Gaume, C., Gomez and C., Reina, Loop groups, Grassmanians and string theory, Phys. Lett., 190B (1987) 55.Google Scholar
[18.47] C., Vafa, Operator formulation on Riemann surfaces, Phys. Lett., 190B (1987) 47.Google Scholar
[18.48] L., Alvarez-Gaume, C., Gomez, G., Moore and C., Vafa, Strings in the operator formalism, Nucl. Phys., B303 (1988) 455.Google Scholar
[18.49] E., Cremmer and J., Gervais, Combining and splitting relativistic strings, Nucl. Phys., B76 (1974) 209.Google Scholar
[18.50] E., Cremmer and J., Gervais, Infinite field theory of interacting relativistic strings and dual theory, Nucl. Phys., B90 (1975) 410.Google Scholar
[18.51] J., Hopkinson, R., Tucker and P., Collins, Quantum strings and the functional calculus, Phys. Rev., D12 (1975) 1653.Google Scholar
[18.52] S., Mandelstam, Interacting-string picture of dual-resonance models, Nucl. Phys., B64 (1973) 205.Google Scholar
[18.53] H., Hata, K., Itoh, T., Kugo, H., Kunitomo and K., Ogawa, Covariant field theory of interacting string, Phys. Lett., 172B (1986) 186;Google Scholar
Manifestly covariant field theory of interacting string. 2, Phys. Lett., 172B (1986) 195.
[18.54] E., Cremmer, A., Schwimmer and C., Thorn, The vertex function in Witten's formulation of string field theory, Phys. Lett., B179 (1986) 57;Google Scholar
D., Gross and A., Jevicki, Operator formulation of i nteracting string field theory, Nucl. Phys., B283 (1987) 1;Google Scholar
Operator formulation of interacting s tring field theory. 2, Nucl. Phys., B287 (1987) 225.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter West, King's College London
  • Book: Introduction to Strings and Branes
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045926.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter West, King's College London
  • Book: Introduction to Strings and Branes
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045926.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter West, King's College London
  • Book: Introduction to Strings and Branes
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139045926.024
Available formats
×