Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T05:55:37.070Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  28 May 2021

Luca Ciotti
Affiliation:
Università degli Studi, Bologna, Italy
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, R., and Marsden, J. E. 1978. Foundations of Mechanics, 2nd ed. Addison-Wesley Publishing Company, Inc.Google Scholar
Abramowitz, M., and Stegun, I. A. 1972. Handbook of Mathematical Functions. Dover Publications.Google Scholar
Aguilar, L. A., and Merritt, D. 1990. ApJ, 354, 33.Google Scholar
Alessandrini, E., Lanzoni, B., Miocchi, P., Ciotti, L., and Ferraro, F. R. 2014. ApJ, 795, 169.Google Scholar
Amendt, P., and Cuddeford, P. 1994. ApJ, 435, 93.CrossRefGoogle Scholar
Amorisco, N. C., and Bertin, G. 2010. A&A, 519, A47.Google Scholar
An, J., and Evans, N. W. 2019. MNRAS, 486, 3915.CrossRefGoogle Scholar
An, J. H., and Evans, N. W. 2006. ApJ, 642, 752.Google Scholar
An, J., Evans, N. W., and Sanders, J. L. 2017. MNRAS, 467, 1281.Google Scholar
An, J., van Hese, E., and Baes, M. 2012. MNRAS, 422, 652.Google Scholar
Appell, P. 1887. Ann. Math. Lpz., 30, 155.Google Scholar
Arena, S. E., and Bertin, G. 2007. A&A, 463, 921.Google Scholar
Arena, S. E., Bertin, G., Liseikina, T., and Pegoraro, F. 2006. A&A, 453, 9.Google Scholar
Arfken, G. B., and Weber, H. J. 2005. Mathematical Methods for Physicists. Elsevier Academic Press.Google Scholar
Aris, R. 1989. Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover Publications.Google Scholar
Arnold, V. I. 1978. Mathematical Methods of Classical Mechanics. Springer.Google Scholar
Arnold, V. I. 1990. Huygens and Barrow, Newton and Hooke. Birkhauser Verlag.Google Scholar
Arnold, V. I. 1992. Ordinary Differential Equations, 3rd ed., translated from the Russian by Roger Cooke. Springer.Google Scholar
Arnold, V. I. 1997. Dynamical Systems III. Springer.Google Scholar
Baes, M., and Ciotti, L. 2019a. A&A, 626, A110.Google Scholar
Baes, M., and Ciotti, L. 2019b. A&A, 630, A113.Google Scholar
Baes, M., and Dejonghe, H. 2002. A&A, 393, 485.Google Scholar
Baes, M., and van Hese, E. 2007. A&A, 471, 419.Google Scholar
Baes, M., and van Hese, E. 2011. A&A, 534, A69.Google Scholar
Barber, J. A., and Zhao, H. 2014. MNRAS, 442, 3533.Google Scholar
Barnabè, M., Ciotti, L., Fraternali, F., and Sancisi, R. 2006. A&A, 446, 61.Google Scholar
Barnes, J. E., and Hernquist, L. 1992. ARAA, 30, 705.Google Scholar
Barrow-Green, J. 1997. Poincaré and the Three Body Problem. American Mathematical Society and London Mathematical Society.Google Scholar
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Becker, R. 1982. Electromagnetic Fields and Interactions. Dover Publications.Google Scholar
Bekenstein, J., and Milgrom, M. 1984. ApJ, 286, 7.Google Scholar
Bender, C. M., and Orszag, S. A. 1978. Advanced Mathematical Methodsfor Scientists and Engineers. McGraw Hill.Google Scholar
Bender, R., Burstein, D., and Faber, S. M. 1992. ApJ, 399, 462.Google Scholar
Bertin, G. 2014. Dynamics of Galaxies, 2nd ed. Cambridge University Press.Google Scholar
Bertin, G., and Lin, C. C. 1996. Spiral Structure in Galaxies. A Density Wave Theory. MIT Press.Google Scholar
Bertin, G., and Stiavelli, M. 1984. A&A, 137, 26.Google Scholar
Bertin, G., and Trenti, M. 2003. ApJ, 584, 729.Google Scholar
Bertin, G., and Varri, A. L. 2008. ApJ, 689, 1005.Google Scholar
Bertin, G., Ciotti, L., and Del Principe, M. 2002. A&A, 386, 149.Google Scholar
Bertin, G., Liseikina, T., and Pegoraro. 2003. A&A, 405, 73.Google Scholar
Bertin, G., Pegoraro, F., Rubini, F., and Vesperini, E. 1994. ApJ, 434, 94.Google Scholar
Binney, J. 1977. MNRAS, 181, 735.Google Scholar
Binney, J. 1978. MNRAS, 183, 501.Google Scholar
Binney, J. 1980. MNRAS, 190, 873.Google Scholar
Binney, J. 1981. MNRAS, 196, 455.CrossRefGoogle Scholar
Binney, J. 1982a. ARAA, 20, 399.Google Scholar
Binney, J. 1982b. MNRAS, 200, 951.Google Scholar
Binney, J. 1985. MNRAS, 212, 767.Google Scholar
Binney, J. 1996. J. Astrophys. Astr., 17, 81.Google Scholar
Binney, J. 2014. arXiv e-prints, arXiv:1411.4937.Google Scholar
Binney, J., and Gerhard, O. 1996. MNRAS, 279, 1005.Google Scholar
Binney, J., and Kumar, S. 1993. MNRAS, 261, 584.Google Scholar
Binney, J., and Mamon, G. A. 1982. MNRAS, 200, 361.Google Scholar
Binney, J., and McMillan, P. J. 2016. MNRAS, 456, 1982.Google Scholar
Binney, J., and Merrifield, M. 1998. Galactic Astronomy. Princeton University Press.Google Scholar
Binney, J. J., and Ossipkov, L. P. 2001. Page 317 of: Ossipkov, L. P., and Nikiforov, I. I. (eds.), Stellar Dynamics: From Classic to Modern. Saint Petersburg State University.Google Scholar
Binney, J., and Spergel, D. 1982. ApJ, 252, 308.CrossRefGoogle Scholar
Binney, J., and Spergel, D. 1984. MNRAS, 206, 159.Google Scholar
Binney, J., and Tremaine, S. 2008. Galactic Dynamics, 2nd ed. Princeton University Press.Google Scholar
Bleistein, N., and Handelsman, R. A. 1986. Asymptotic Expansions of Integrals. Dover Publications.Google Scholar
Boccaletti, D., and Pucacco, G. 1996. Theory of Orbits. I: Integrable Systems and Non-Perturbative Methods. Springer-Verlag.Google Scholar
Boltzmann, L. 1896. Lectures on Gas Theory. Dover Publications.Google Scholar
Bontekoe, Tj. R., and van Albada, T. S. 1987. MNRAS, 224, 349.CrossRefGoogle Scholar
Borisenko, A. I., and Tarapov, I. E. 1979. Vector and Tensor Analysis with Applications. Dover Publications.Google Scholar
Born, M. 1969. Atomic Physics. Blackie and Son.Google Scholar
Bovy, J. 2017. MNRAS, 468, L63.Google Scholar
Buchler, J. R., Ipser, J. R., and Williams, C. A. 1988. Integrability in Dynamical Systems. New York Academy of Sciences.Google Scholar
Burkert, A. 1995. ApJL, 447, L25.Google Scholar
Byrd, P. F., and Friedman, M. 1971. Handbook of Elliptic Integrals for Engineers and Physicists, 2nd ed. Springer-Verlag.Google Scholar
Caon, N., Capaccioli, M., and D’Onofrio, M. 1993. MNRAS, 265, 1013.Google Scholar
Cappellari, M. 2002. MNRAS, 333, 400.Google Scholar
Cappellari, M. 2008. MNRAS, 390, 71.Google Scholar
Cappellari, M. 2016. ARAA, 54, 597.Google Scholar
Cappellari, M. 2020. MNRAS, 494, 4819.Google Scholar
Caravita, C., Ciotti, L., and Pellegrini, S. 2021. arXiv e-prints, arXiv:2102.09440Google Scholar
Carollo, C. M., de Zeeuw, P. T., van der Marel, R. P., Danziger, I. J., and Qian, E. E. 1995a. ApJL, 441, L25.Google Scholar
Carollo, C. M., de Zeeuw, P. T., and van der Marel, R. P. 1995b. MNRAS, 276, 1131.Google Scholar
Casertano, S. 1983. MNRAS, 203, 735.CrossRefGoogle Scholar
Cavaliere, A., and Fusco-Femiano, R. 1976. A&A, 500, 95.Google Scholar
Chandrasekhar, S. 1939. An Introduction to the Study of Stellar Structure. Dover Publications.Google Scholar
Chandrasekhar, S. 1941. ApJ, 93, 285.Google Scholar
Chandrasekhar, S. 1942. Principles of Stellar Dynamics. Dover Publications.Google Scholar
Chandrasekhar, S. 1943a. ApJ, 97, 255.Google Scholar
Chandrasekhar, S. 1943b. ApJ, 97, 263.Google Scholar
Chandrasekhar, S. 1943c. ApJ, 98, 54.Google Scholar
Chandrasekhar, S. 1969. Ellipsoidal Figures of Equilibrium. Dover Publications.Google Scholar
Chandrasekhar, S. 1995. Newton’s Principia for the Common Reader. Clarendon Press.Google Scholar
Chandrasekhar, S., and von Neumann, J. 1942. ApJ, 95, 489.Google Scholar
Chandrasekhar, S., and von Neumann, J. 1943. ApJ, 97, 1.Google Scholar
Cimatti, A., Fraternali, F., and Nipoti, C. 2019. Introduction to Galaxy Formation and Evolution. Cambridge University Press.Google Scholar
Ciotti, L. 1991. A&A, 249, 99.Google Scholar
Ciotti, L. 1994. Celest. Mech. Dyn. Astr., 60, 401.Google Scholar
Ciotti, L. 1996. ApJ, 471, 68.Google Scholar
Ciotti, L. 1999. ApJ, 520, 574.Google Scholar
Ciotti, L. 2000. Lecture Notes on Stellar Dynamics. Publications of the Scuola Normale Superiore, Springer.Google Scholar
Ciotti, L. 2009. Nuovo Cimento, 32, 1.Google Scholar
Ciotti, L. 2010. Page 117 of: Bertin, G., de Luca, F., Lodato, G., Pozzoli, R., and Romé, M. (eds.), Plasmas in the Laboratory and in the Universe: Interactions, Patterns, and Turbulence. American Institute of Physics Conference Series, Vol. 1242.Google Scholar
Ciotti, L. 2019. arXiv e-prints, arXiv:1911.10480.Google Scholar
Ciotti, L. 2020. arXiv e-prints, arXiv:2009.06452.Google Scholar
Ciotti, L., and Bertin, G. 1999. A&A, 352, 447.Google Scholar
Ciotti, L., and Bertin, G. 2005. A&A, 437, 419.Google Scholar
Ciotti, L., and Binney, J. 2004. MNRAS, 351, 285.Google Scholar
Ciotti, L., and Dutta, S. N. 1994. MNRAS, 270, 390.Google Scholar
Ciotti, L., and Giampieri, G. 1997. Celest. Mech. Dyn. Astr., 68, 313.Google Scholar
Ciotti, L., and Giampieri, G. 2007. MNRAS, 376, 1162.Google Scholar
Ciotti, L., and Lanzoni, B. 1997. A&A, 321, 724.Google Scholar
Ciotti, L., and Marinacci, F. 2008. MNRAS, 387, 1117.Google Scholar
Ciotti, L., and Morganti, L. 2009. MNRAS, 393, 179.Google Scholar
Ciotti, L., and Morganti, L. 2010a. MNRAS, 401, 1091.Google Scholar
Ciotti, L., and Morganti, L. 2010b. MNRAS, 408, 1070.Google Scholar
Ciotti, L., and Ostriker, J. P. 2012. AGN Feedback in Elliptical Galaxies: Numerical Simulations. Astrophysics and Space Science Library, Vol. 378, p. 83.Google Scholar
Ciotti, L., and Pellegrini, S. 1992. MNRAS, 255, 561.Google Scholar
Ciotti, L., and Pellegrini, S. 1996. MNRAS, 279, 240.Google Scholar
Ciotti, L., and Pellegrini, S. 2004. MNRAS, 350, 609.Google Scholar
Ciotti, L., and Pellegrini, S. 2008. MNRAS, 387, 902.Google Scholar
Ciotti, L., and Pellegrini, S. 2017. ApJ, 848, 29.Google Scholar
Ciotti, L., and Pellegrini, S. 2018. ApJ, 868, 91.Google Scholar
Ciotti, L., and van Albada, T. S. 2001. ApJL, 552, L13. 0Google Scholar
Ciotti, L., and Ziaee Lorzad, A. 2018. MNRAS, 473, 5476.Google Scholar
Ciotti, L., Bertin, G., and Londrillo, P. 2004. Page 322 of: Bertin, G., Farina, D., and Pozzoli, R. (eds.), Plasmas in the Laboratory and in the Universe: New Insights and New Challenges. American Institute of Physics Conference Series, Vol. 703.Google Scholar
Ciotti, L., D’Ercole, A., Pellegrini, S., and Renzini, A. 1991. ApJ, 376, 380.Google Scholar
Ciotti, L., Lanzoni, B., and Renzini, A. 1996. MNRAS, 282, 1.Google Scholar
Ciotti, L., Lanzoni, B., and Volonteri, M. 2007. ApJ, 658, 65.Google Scholar
Ciotti, L., Londrillo, P., and Nipoti, C. 2006. ApJ, 640, 741.Google Scholar
Ciotti, L., Mancino, A., and Pellegrini, S. 2019. MNRAS, 490, 2656.Google Scholar
Ciotti, L., Mancino, A., Pellegrini, S., and Ziaee Lorzad, A. 2021. MNRAS, 500, 1054.Google Scholar
Ciotti, L., Morganti, L., and de Zeeuw, P. T. 2009. MNRAS, 393, 491.Google Scholar
Ciotti, L., Stiavelli, M., and Braccesi, A. 1995. MNRAS, 276, 961.Google Scholar
Ciotti, L., Zhao, H., and de Zeeuw, P. T. 2012. MNRAS, 422, 2058.Google Scholar
Clarke, C., and Carswell, B. 2007. Principles of Astrophysical Fluid Dynamics. Cambridge University Press.Google Scholar
Contopoulos, G., Spyrou, N. K., and Vlahos, L. 1994. Galactic Dynamics and N-Body Simulations – Lecture Notes in Physics, Vol. 433. Springer-Verlag.Google Scholar
Courant, R., and Hilbert, D. 1989. Methods of Mathematical Physics. Wiley.Google Scholar
Cuddeford, P. 1991. MNRAS, 253, 414.Google Scholar
Cuddeford, P., and Louis, P. 1995. MNRAS, 275, 1017.Google Scholar
Cullen, C. G. 1990. Matrices and Linear Transformations. Dover Publications.Google Scholar
Currie, I. G. 1993. Fundamental Mechanics of Fluids. McGraw Hill.Google Scholar
D’Ercole, A., Recchi, S., and Ciotti, L. 2000. ApJ, 533, 799.Google Scholar
D’Onofrio, M., Rampazzo, R., Zaggia, S., Struck, C., Bianchi, L., Poggianti, B. M., Sulentic, J. W., Tully, B. R., Marziani, P., Longair, M. S., Matteucci, F., Ciotti, L., Einasto, J., and Kroupa, P. 2016. Page 509 of: D’Onofrio, M., Rampazzo, R., and Zaggia, S. (eds), From the Realm of the Nebulae to Populations of Galaxies. Astrophysics and Space Science Library, Springer, Vol. 435.Google Scholar
Danby, J. 1962. Fundamentals of Celestial Mechanics. Macmillan.Google Scholar
de Bruijn, N. G. 1958. Asymptotic Methods in Analysis. Dover Publications.Google Scholar
de Bruijne, J. H. J., van der Marel, R. P., and de Zeeuw, P. T. 1996. MNRAS, 282, 909.Google Scholar
de Vaucouleurs, G. 1948. Ann. d’Astrophys., 11, 247.Google Scholar
de Zeeuw, P. T. 1985a. MNRAS, 216, 273.Google Scholar
de Zeeuw, P. T. 1985b. MNRAS, 216, 599.Google Scholar
de Zeeuw, P. T., and Franx, M. 1991. ARAA, 29, 239.Google Scholar
de Zeeuw, P. T., and Lynden-Bell, D. 1985. MNRAS, 215, 713.Google Scholar
de Zeeuw, P. T., and Pfenniger, D. 1988. MNRAS, 235, 949.Google Scholar
de Zeeuw, P. T., Evans, N. W., and Schwarzschild, M. 1996. MNRAS, 280, 903.Google Scholar
de Zeeuw, P. T., Peletier, R., and Franx, M. 1986. MNRAS, 221, 1001.Google Scholar
Dehnen, W. 1993. MNRAS, 265, 250.Google Scholar
Dehnen, W., and Gerhard, O. E. 1993. MNRAS, 261, 311.Google Scholar
Dehnen, W., and Gerhard, O. E. 1994. MNRAS, 268, 1019.Google Scholar
Dejonghe, H. 1986. Phys. Rep., 133, 217.Google Scholar
Dejonghe, H. 1987a. Page 495 of: de Zeeuw, P. T. (ed.), Structure and Dynamics of Elliptical Galaxies. IAU Symposium, Vol. 127.Google Scholar
Dejonghe, H. 1987b. MNRAS, 224, 13.Google Scholar
Dejonghe, H., and de Zeeuw, T. 1988. ApJ, 333, 90.Google Scholar
Dejonghe, H., and Merritt, D. 1992. ApJ, 391, 531.Google Scholar
Dennery, P., and Krzywicki, A. 1967. Mathematics for Physicists. Dover Publications.Google Scholar
Di Cintio, P., and Ciotti, L. 2011. IJBC, 21, 2279.Google Scholar
Di Cintio, P., Ciotti, L., and Nipoti, C. 2013. MNRAS, 431, 3177.Google Scholar
Di Cintio, P., Ciotti, L., and Nipoti, C. 2017. MNRAS, 468, 2222.Google Scholar
Diacu, F., and Holmes, P. 1996. Celestial Encounters. The Origins of Chaos and Stability. Princeton University Press.Google Scholar
Djorgovski, S., and Davis, M. 1987. ApJ, 313, 59.Google Scholar
Do Carmo, M. P. 1976. Differential Geometry of Curves and Surfaces. Prentice Hall.Google Scholar
Dressler, A., Lynden-Bell, D., Burstein, D., Davies, R. L., Faber, S. M., Terlevich, R., and Wegner, G. 1987. ApJ, 313, 42.CrossRefGoogle Scholar
Dubinski, J., and Carlberg, R. G. 1991. ApJ, 378, 496.Google Scholar
Eddington, A. S. 1916. MNRAS, 76, 572.Google Scholar
Edwards, C. H., Jr. 1994. Advanced Calculus of Several Variables. Dover Publications.Google Scholar
Einasto, J. 1965. Trudy Inst. Astrofiz. Alma-Ata, 5, 87.Google Scholar
El-Zant, A. A., Hoffman, Y., Primack, J., Combes, F., and Shlosman, I. 2004. ApJL, 607, L75.Google Scholar
Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. G. 1953. Higher Transcendental Functions. McGraw Hill.Google Scholar
Esposito, L. P. 2014. Planetary Rings: A Post-Equinox View. Cambridge University Press.Google Scholar
Evans, N. W. 1990. PhRvA, 41, 5666.Google Scholar
Evans, N. W. 1993. MNRAS, 260, 191.Google Scholar
Evans, N. W. 1994. MNRAS, 267, 333.Google Scholar
Evans, N. W., and Bowden, A. 2014. MNRAS, 443, 2.Google Scholar
Evans, N. W., and de Zeeuw, P. T. 1992. MNRAS, 257, 152.Google Scholar
Evans, N. W., and de Zeeuw, P. T. 1994. MNRAS, 271, 202.Google Scholar
Evans, N. W., and Lynden-Bell, D. 1989. MNRAS, 236, 801.Google Scholar
Evans, N. W., An, J., Bowden, A., and Williams, A. A. 2015. MNRAS, 450, 846.Google Scholar
Evans, N. W., de Zeeuw, P. T., and Lynden-Bell, D. 1990. MNRAS, 244, 111.Google Scholar
Evans, N. W., Hafner, R. M., and de Zeeuw, P. T. 1997. MNRAS, 286, 315.Google Scholar
Faber, S. M., and Jackson, R. E. 1976. ApJ, 204, 668.Google Scholar
Fabricant, D., Lecar, M., and Gorenstein, P. 1980. ApJ, 241, 552.Google Scholar
Ferrarese, L., and Merritt, D. 2000. ApJL, 539, L9.Google Scholar
Ferraro, F. R., Lanzoni, B., Dalessandro, E., Beccari, G., Pasquato, M., Miocchi, P., Rood, R. T., Sigurdsson, S., Sills, A., Vesperini, E., Mapelli, M., Contreras, R., Sanna, N., and Mucciarelli, A. 2012. Nature, 492, 393.Google Scholar
Ferraro, F. R., Lanzoni, B., Raso, S., Nardiello, D., Dalessandro, E., Vesperini, E., Piotto, G., Pallanca, C., Beccari, G., Bellini, A., Libralato, M., Anderson, J., Aparicio, A., Bedin, L. R., Cassisi, S., Milone, A. P., Ortolani, S., Renzini, A., Salaris, M., and van der Marel, R. P. 2018. ApJ, 860, 36.Google Scholar
Ferrers, N. M. 1877. Quart. J. Pure Appl. Math., 14, 1.Google Scholar
Ferronsky, V. I., Denisik, S. A., and Ferronsky, S. V. 2011. Jacobi Dynamics, Vol. 369. Astrophysics and Space Science Library, Springer.Google Scholar
Feynman, R. P., Leighton, R. B., and Sands, M. 1977. The Feynman Lectures on Physics. Addison Wesley.Google Scholar
Franx, M. 1988a. Structure and Kinematics of Elliptical Galaxies. PhD thesis, Leiden University.Google Scholar
Franx, M. 1988b. MNRAS, 231, 285.Google Scholar
Freeman, K. C. 1966. MNRAS, 134, 15.Google Scholar
Freeman, K. C. 1970. ApJ, 160, 811.Google Scholar
Fricke, W. 1952. Astron. Nachr., 280, 193.Google Scholar
Fridman, A. M., and Poliachenko, V. L. 1984. Physics of Gravitating Systems. I – Equilibrium and Stability. Springer-Verlag.Google Scholar
Gallavotti, G. 2001. Rend. Mat. Acc. Lincei, 12, 125.Google Scholar
Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V., Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J., Pinkney, J., Richstone, D., and Tremaine, S. 2000. ApJL, 539, L13.Google Scholar
Gerhard, O. E., and Binney, J. J. 1996. MNRAS, 279, 993.Google Scholar
Gerhard, O. E. 1991. MNRAS, 250, 812.Google Scholar
Gerhard, O. E. 1993. MNRAS, 265, 213.Google Scholar
Gerhard, , O. E, Arnaboldi, M., Freeman, K. C., Kashikawa, N., Okamura, S., and Yasuda, N. 2005. ApJL, 621, L93.Google Scholar
Gidas, B., Ni, W.-M., and Nirenberg, L. 1979. Comm. Math. Phys., 68, 209.Google Scholar
Gnedin, O. Y., Ostriker, J. P., and Tremaine, S. 2014. ApJ, 785, 71.Google Scholar
Goldreich, P., and Tremaine, S. 1982. ARAA, 20, 249.Google Scholar
Goldstein, H. 1975. Am. J. Phys., 43, 737.Google Scholar
Goldstein, H., Poole, C., and Safko, J. 2000. Classical Mechanics, 3rd ed. Addison Wesley.Google Scholar
González-García, A. C., and van Albada, T. S. 2003. MNRAS, 342, L36.Google Scholar
Gorenflo, R., and Vessella, A. 1991. Abel Integral Equations. Springer-Verlag.Google Scholar
Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., and Zwillinger, D. 2007. Table of Integrals, Series, and Products, 7th ed. Elsevier.Google Scholar
Graham, A. W. 1998. MNRAS, 295, 933.Google Scholar
Graham, A. W., and Colless, M. 1997. MNRAS, 287, 221.Google Scholar
Graham, A. W. 2016. Pp. 263 of Laurikainen, E., Peletier, R., and Gadotti, D. (eds.), Galactic Bulges. Astrophysics and Space Science Library book series (ASSL), vol. 418.Google Scholar
Graham, A. W., and Driver, S. P. 2005. PASA, 22, 118.Google Scholar
Graham, A. W., Merritt, D., Moore, B., Diemand, J., and Terzić, B. 2006. AJ, 132, 2701.Google Scholar
Gutzwiller, M. C. 1990. Chaos in Classical and Quantum Mechanics. Springer-Verlag.Google Scholar
Hagihara, Y. 1970. Celestial Mechanics, Vols. 1–5. MIT Press.Google Scholar
Hansen, S. H., and Moore, B. 2006. New Astron., 11, 333.Google Scholar
Heggie, D., and Hut, P. 2003. The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics. Cambridge University Press.Google Scholar
Hénon, M. 1959. Ann. d’Astrophys., 22, 126.Google Scholar
Hénon, M. 1960. Ann. d’Astrophys., 23, 668.Google Scholar
Hernquist, L. 1990. ApJ, 356, 359.Google Scholar
Hernquist, L., and Ostriker, J. P. 1992. ApJ, 386, 375.Google Scholar
Hiotelis, N. 1994. A&A, 291, 725.Google Scholar
Hjorth, J., and Madsen, J. 1995. ApJ, 445, 55.Google Scholar
Hubble, E. P. 1930. ApJ, 71.Google Scholar
Hunter, C. 1963. MNRAS, 126, 299.Google Scholar
Hunter, C. 1975. AJ, 80, 783.Google Scholar
Hunter, C. 1977. AJ, 82, 271.Google Scholar
Hunter, C., and de Zeeuw, P. T. 1992. ApJ, 389, 79.Google Scholar
Hunter, C., and Qian, E. 1993. MNRAS, 262, 401.Google Scholar
Ince, E. L. 1927. Ordinary Differential Equations. Dover Publications.Google Scholar
Jackson, J. D. 1998. Classical Electrodynamics, 3rd ed. John Wiley & Sons.Google Scholar
Jaffe, W. 1983. MNRAS, 202, 995.Google Scholar
Jeffrey, H., and Jeffrey, B. S. 1950. Methods of Mathematical Physics, 2nd ed. Cambridge University Press.Google Scholar
Jorgensen, I., Franx, M., and Kjaergaard, P. 1993. ApJ, 411, 34.Google Scholar
Jorgensen, I., Franx, M., and Kjaergaard, P. 1996. MNRAS, 280, 167.Google Scholar
Kaasalainen, M., and Binney, J. 1994. MNRAS, 268, 1033.Google Scholar
Kahn, P. B. 2004. Mathematical Methods for Scientists and Engineers. Dover Publications.Google Scholar
Kalnajs, A. J. 1972. ApJ, 175, 63.Google Scholar
Kalnajs, A. J. 1976a. ApJ, 205, 745.Google Scholar
Kalnajs, A. J. 1976b. ApJ, 205, 751.Google Scholar
Kandrup, H. E. 1980. Phys. Rep., 63, 1.Google Scholar
Kellogg, O. D. 1953. Foundations of Potential Theory. Dover Publications.Google Scholar
Kent, S. M. 1990. MNRAS, 247, 702.Google Scholar
Khinchin, A. I. 1949. Mathematical Foundations of Statistical Mechanics. Dover Publications.Google Scholar
Kim, D.-W., and Pellegrini, S. 2012. Hot Interstellar Matter in Elliptical Galaxies. Astrophysics and Space Science Library, Springer, Vol. 378.Google Scholar
King, I. R. 1962. AJ, 67, 471.Google Scholar
King, I. R. 1966. AJ, 71, 64.Google Scholar
King, I. R. 1972. ApJL, 174, L123.Google Scholar
Kormendy, J. 1977. ApJ, 218, 333.Google Scholar
Korol, V., Ciotti, L., and Pellegrini, S. 2016. MNRAS, 460, 1188.Google Scholar
Kuzmin, J. G. 1956. Astron. Zh., 33, 27.Google Scholar
Lamb, H. 1945. Hydrodynamics. Dover Publications.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1969. Mechanics. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1971. The Classical Theory of Fields. Pergamon Press.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1986. Fluid Mechanics. Pergamon Press.Google Scholar
Lanzoni, B., and Ciotti, L. 2003. A&A, 404, 819.Google Scholar
Lanzoni, B., Ciotti, L., Cappi, A., Tormen, G., and Zamorani, G. 2004. ApJ, 600, 640.Google Scholar
Lee, J., and Suto, Y. 2003. ApJ, 585, 151.Google Scholar
Letelier, P. S. 2007. MNRAS, 381, 1031.Google Scholar
Lewin, L. 1986. Polylogarithms and Associated Functions. North Holland.Google Scholar
Lichtenberg, A. J., and Lieberman, M. A. 1992. Regular and Chaotic Dynamics. Springer-Verlag.Google Scholar
Lokas, E. L., and Mamon, G. A. 2001. MNRAS, 321, 155.Google Scholar
Lomen, D., and Mark, J. 1988. Differential Equations. Prentice Hall.Google Scholar
Long, K., and Murali, C. 1992. ApJ, 397, 44.Google Scholar
Louis, P. D. 1993. MNRAS, 261, 283.Google Scholar
Lynden-Bell, D. 1960. MNRAS, 120, 204.Google Scholar
Lynden-Bell, D. 1962a. MNRAS, 123, 447.Google Scholar
Lynden-Bell, D. 1962b. MNRAS, 124, 95.Google Scholar
Lynden-Bell, D. 1962c. MNRAS, 124, 1.Google Scholar
Lynden-Bell, D. 1967. MNRAS, 136, 101.Google Scholar
Lynden-Bell, D. 2004. PhRvD, 70(10), 105017.Google Scholar
Lynden-Bell, D. 2006. arXiv e-prints, astro-ph/0604428.Google Scholar
Lynden-Bell, D., and Eggleton, P. P. 1980. MNRAS, 191, 483.Google Scholar
Lynden-Bell, D., and Lynden-Bell, R. M. 2004. J. Stat. Phys., 117, 199.Google Scholar
Lynden-Bell, D., and Pineault, S. 1978. MNRAS, 185, 679.Google Scholar
Lynden-Bell, D., and Wood, R. 1968. MNRAS, 138, 495.Google Scholar
Magorrian, J., and Binney, J. 1994. MNRAS, 271, 949.Google Scholar
Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S. M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., and Lauer, T. 1998. AJ, 115, 2285.Google Scholar
Mathai, A. M., Saxena, R. K., and Haubold, H. J. 2009. The H-Function: Theory and Applications. Springer-Verlag.Google Scholar
Mathews, W. G., and Brighenti, F. 2003a. ARAA, 41, 191.Google Scholar
Mathews, W. G., and Brighenti, F. 2003b. ApJ, 599, 992.Google Scholar
McCauley, J. L. 1997. Classical Mechanics. Cambridge University Press.Google Scholar
McGill, C., and Binney, J. 1990. MNRAS, 244, 634.Google Scholar
McMillan, W. D. 1958. The Theory of the Potential. Dover Publications.Google Scholar
Merrifield, M. R., and Kent, S. M. 1990. AJ, 99, 1548.Google Scholar
Merritt, D. 1985a. AJ, 90, 1027.Google Scholar
Merritt, D. 1985b. MNRAS, 214, 25P.Google Scholar
Merritt, D. 2013. Dynamics and Evolution of Galactic Nuclei. Princeton University Press.Google Scholar
Merritt, D., and Ferrarese, L. 2001. ApJ, 547, 140.Google Scholar
Merritt, D., Tremaine, S., and Johnstone, D. 1989. MNRAS, 236, 829.Google Scholar
Messiah, A. 1967. Quantum Mechanics, Vols. 1 and 2. North Holland.Google Scholar
Mestel, L. 1963. MNRAS, 126, 553.Google Scholar
Meyer, K. R., and Hall, G. R. 1992. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer-Verlag.Google Scholar
Meyer, R. E. 1982. Introduction to Mathematical Fluid Dynamics. Dover Publications.Google Scholar
Michie, R. W. 1963. MNRAS, 125, 127.Google Scholar
Milgrom, M. 1983. ApJ, 270, 365.Google Scholar
Milne-Thomson, L. M. 1996. Theoretical Hydrodynamics. Dover Publications.Google Scholar
Miyamoto, M. 1971. PASJ, 23, 21.Google Scholar
Miyamoto, M. 1974. A&A, 30, 441.Google Scholar
Miyamoto, M. 1975. PASJ, 27, 431.Google Scholar
Miyamoto, M., and Nagai, R. 1975. PASJ, 27, 533.Google Scholar
Morse, P. M., and Feshbach, H. 1953. Methods of Theoretical Physics. McGraw Hill.Google Scholar
Muccione, V., and Ciotti, L. 2004. A&A, 421, 583.Google Scholar
Nagai, R., and Miyamoto, M. 1976. PASJ, 28, 1.Google Scholar
Narashiman, M. N. L. 1993. Principles of Continuum Mechanics. John Wiley & Sons.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1997. ApJ, 490, 493.Google Scholar
Negri, A., Ciotti, L., and Pellegrini, S. 2014a. MNRAS, 439, 823.Google Scholar
Negri, A., Posacki, S., Pellegrini, S., and Ciotti, L. 2014b. MNRAS, 445, 1351.Google Scholar
Newman, E. T. 1973. J. Math. Phys., 14, 102.Google Scholar
Nipoti, C., Ciotti, L., Binney, J., and Londrillo, P. 2008. MNRAS, 386, 2194.Google Scholar
Nipoti, C., Ciotti, L., and Londrillo, P. 2011. MNRAS, 414, 3298.Google Scholar
Nipoti, C., Londrillo, P., and Ciotti, L. 2002. MNRAS, 332, 901.Google Scholar
Nipoti, C., Londrillo, P., and Ciotti, L. 2003. MNRAS, 342, 501.Google Scholar
Nipoti, C., Londrillo, P., and Ciotti, L. 2006. MNRAS, 370, 681.Google Scholar
Nipoti, C., Londrillo, P., and Ciotti, L. 2007. ApJ, 660, 256.Google Scholar
Nipoti, C., Treu, T., Ciotti, L., and Stiavelli, M. 2004. MNRAS, 355, 1119.Google Scholar
Ogorodnikov, K. F. 1965. Dynamics of Stellar Systems. Pergamon Press.Google Scholar
Oldham, L. J., and Evans, N. W. 2016. MNRAS, 462, 298.Google Scholar
Osipkov, L. P. 1979. Astron. Lett., 5, 77.Google Scholar
Ostriker, J. P. 1980. Comments Astrophys., 8, 177.Google Scholar
Ostriker, J. P., and Ciotti, L. 2005. Philos. Trans. R. Soc., 363, 667.Google Scholar
Ostriker, J. P., and Davidsen, A. F. 1968. ApJ, 151, 679.Google Scholar
Ostriker, J. P., and Peebles, P. J. E. 1973. ApJ, 186, 467.Google Scholar
Paczyńsky, B., and Wiita, P. J. 1980. A&A, 500, 203.Google Scholar
Palmer, P. L. 1994. Stability of Collisionless Stellar Systems: Mechanisms for the Dynamical Structure of Galaxies, Vol. 185. Astrophysics and Space Science Library and Kluwer Academic Publishers.Google Scholar
Pellegrini, S., and Ciotti, L. 2006. MNRAS, 370, 1797.Google Scholar
Plummer, H. C. 1911. MNRAS, 71, 460.Google Scholar
Poincaré, H. 1892. Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars.Google Scholar
Polyachenko, V. L., and Shukhman, I. G. 1981. SvA, 25, 533.Google Scholar
Posacki, S., Pellegrini, S., and Ciotti, L. 2013. MNRAS, 433, 2259.Google Scholar
Poveda, A., Iturriaga, R., and Orozco, I. 1960. Bol. Obs. Tonantzintla y Tacubaya, 2, 3.Google Scholar
Pringle, J. E., and King, A. R. 2007. Astrophysical Flows. Cambridge University Press.Google Scholar
Prudnikov, A. P., Brychkov, Yu. A., and Marichev, 0.I.1990. Integrals and Series. Gordon and Breach.Google Scholar
Prugniel, P., and Simien, F. 1996. A&A, 309, 749.Google Scholar
Prugniel, P., and Simien, F. 1997. A&A, 321, 111.Google Scholar
Qian, E. E., de Zeeuw, P. T., van der Marel, R. P., and Hunter, C. 1995. MNRAS, 274, 602.Google Scholar
Renzini, A., and Ciotti, L. 1993. ApJL, 416, L49.Google Scholar
Reynolds, J. H. 1913. MNRAS, 74, 132.Google Scholar
Richstone, D. O. 1980. ApJ, 238, 103.Google Scholar
Richstone, D. O. 1984. ApJ, 281, 100.Google Scholar
Richstone, D. O., and Tremaine, S. 1984. ApJ, 286, 27.Google Scholar
Riciputi, A., Lanzoni, B., Bonoli, S., and Ciotti, L. 2005. A&A, 443, 133.Google Scholar
Roberts, P. H. 1962. ApJ, 136, 1108.Google Scholar
Rosenbluth, M. N., MacDonald, W. M., and Judd, D. L. 1957. Phys. Rev., 107, 1.Google Scholar
Routh, E. J. 1922. A Treatise on Analytical Statics. II. Cambridge University Press.Google Scholar
Rowley, G. 1988. ApJ, 331, 124.Google Scholar
Roy, A. E. 2005. Orbital Motion, 4th ed. Institute of Physics Publishing.Google Scholar
Saglia, R. P., Bender, R., and Dressler, A. 1993. A&A, 279, 75.Google Scholar
Saha, P. 1991. MNRAS, 248, 494.Google Scholar
Sanders, J. L., and Binney, J. 2015. MNRAS, 447, 2479.Google Scholar
Sanders, R. H. 2010. The Dark Matter Problem: A Historical Perspective. Cambridge University Press.Google Scholar
Sarazin, C. L. 1988. X-Ray Emission from Clusters of Galaxies. Cambridge University Press.Google Scholar
Saslaw, W. C. 1987. Gravitational Physics of Stellar and Galactic Systems. Cambridge University Press.Google Scholar
Satoh, C. 1980. PASJ, 32, 41.Google Scholar
Schiaparelli, G. 1926. Scritti sulla storia dell’astronomia antica. Zanichelli.Google Scholar
Schulz, E. 2009. ApJ, 693, 1310.Google Scholar
Schulz, E. 2012. ApJ, 747, 106.Google Scholar
Schwarzschild, M. 1954. AJ, 59, 273.Google Scholar
Schwarzschild, M. 1979. ApJ, 232, 236.Google Scholar
Sersic, J. L. 1968. Atlas de Galaxias Australes. Observatorio Astronomico, Cordoba, Argentina.Google Scholar
Shu, F. H. 1992. Physics of Astrophysics. II: Gas Dynamics. University Science Books.Google Scholar
Shu, F. H. 1999. ApJ, 525C, 347.Google Scholar
Smet, C. O., Posacki, S., and Ciotti, L. 2015. MNRAS, 448, 2921.Google Scholar
Sparke, L. S., and Gallagher, J. S. 2007. Galaxies in the Universe: An Introduction. Cambridge University Press.Google Scholar
Spies, G. O., and Nelson, D. B. 1974. MNRAS, 17, 1865.Google Scholar
Spitzer, L. 1987. Dynamical Evolution of Globular Clusters. Princeton University Press.Google Scholar
Spitzer, L., Jr. 1942. ApJ, 95, 329.Google Scholar
Stark, A. A. 1977. ApJ, 213, 368.Google Scholar
Stiavelli, M., and Bertin, G. 1985. MNRAS, 217, 735.Google Scholar
Stiavelli, M., and Bertin, G. 1987. MNRAS, 229, 61.Google Scholar
Szebehely, V. 1967. Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press.Google Scholar
Tassoul, J.-L. 1978. Theory of Rotating Stars. Princeton University Press.Google Scholar
Toomre, A. 1963. ApJ, 138, 385.Google Scholar
Toomre, A. 1964. ApJ, 139, 1217.Google Scholar
Toomre, A. 1977. Page 401 of: Tinsley, B. M., and Larson, R. B. (eds.), Evolution of Galaxies and Stellar Populations. Yale University Observatory.Google Scholar
Toomre, A. 1982. ApJ, 259, 535.Google Scholar
Tremaine, S., and Weinberg, M. D. 1984. MNRAS, 209, 729.Google Scholar
Tremaine, S., Henon, M., and Lynden-Bell, D. 1986. MNRAS, 219, 285.Google Scholar
Tremaine, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M., Filippenko, A. V., Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R., Magorrian, J., Pinkney, J., and Richstone, D. 2002. ApJ, 574, 740.Google Scholar
Tremaine, S. D., Ostriker, J. P., and Spitzer, L., Jr. 1975. ApJ, 196, 407.Google Scholar
Tremaine, S., Richstone, D. O., Byun, Y.-I., Dressler, A., Faber, S. M., Grillmair, C., Kormendy, J., and Lauer, T. R. 1994. AJ, 107, 634.Google Scholar
Truesdell, C.-A. 1954. The Kinematics of Vorticity. Indiana University Press.Google Scholar
Truesdell, C.-A. 1984. Rational Thermodynamics. Springer-Verlag.Google Scholar
Truesdell, C.-A. 1991. A First Course in Rational Continuum Mechanics: General Concepts. Academic Press.Google Scholar
Tully, R. B., and Fisher, J. R. 1977. A&A, 500, 105.Google Scholar
Valtonen, M., and Karttunen, H. 2006. The Three-Body Problem. Cambridge University Press.Google Scholar
van Albada, T. S. 1982. MNRAS, 201, 939.Google Scholar
van Albada, T. S., and Szomoru, A. 2020. Page 532 of: Bragaglia, A., Davies, M., Sills, A., and Vesperini, E. (eds.), IAU Symposium. IAU Symposium, Vol. 351.Google Scholar
van Albada, T. S., Bahcall, J. N., Begeman, K., and Sancisi, R. 1985. ApJ, 295, 305.Google Scholar
van Albada, T. S., Bertin, G., and Stiavelli, M. 1995. MNRAS, 276, 1255.Google Scholar
van de Ven, G., Hunter, C., Verolme, E. K., and de Zeeuw, P. T. 2003. MNRAS, 342, 1056.Google Scholar
van der Marel, R. 1994. Velocity Profiles and Dynamical Modeling of Galaxies. PhD thesis, Leiden University.Google Scholar
van der Marel, R. P., and Franx, M. 1993. ApJ, 407, 525.Google Scholar
van der Marel, R. P., Rix, H. W., Carter, D., Franx, M., White, S. D. M., and de Zeeuw, T. 1994. MNRAS, 268, 521.Google Scholar
Van Hese, E., Baes, M., and Dejonghe, H. 2011. ApJ, 726, 80.Google Scholar
Varri, A. L., and Bertin, G. 2009. ApJ, 703, 1911.Google Scholar
Varri, A. L., and Bertin, G. 2012. A&A, 540, A94.Google Scholar
Vladimirov, V. S. 1979. Generalized Functions in Mathematical Physics – Translated from the Russian by George Yankovsky. Mir Publishers.Google Scholar
Vogt, D., and Letelier, P. S. 2009a. MNRAS, 396, 1487.Google Scholar
Vogt, D., and Letelier, P. S. 2009b. MNRAS, 398, 1563.Google Scholar
Watson, G. N.. 1966. A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge University Press.Google Scholar
White, M. L. 1949. ApJ, 109, 159.Google Scholar
White, S. D. M. 1976. MNRAS, 174, 19.Google Scholar
Whittaker, E. T. 1917. A Treatise on the Analytical Dynamics of Particels and Rigid Bodies. Cambridge University Press.Google Scholar
Williams, A. A., and Evans, N. W. 2017. MNRAS, 469, 4414.Google Scholar
Wilson, C. P. 1975. AJ, 80, 175.Google Scholar
Wintner, A. 1947. The Analytical Foundations of Celestial Mechanics. Princeton University Press.Google Scholar
Woltjer, L. 1967. Structure and dynamics of galaxies. Vol. 9, p. 1 of: Ehlers, J. (ed.), Lectures in Applied Mathematics. Relativity Theory and Astrophysics. 2. Galactic Structure. American Mathematical Society.Google Scholar
Yoshida, T. 1987. Eur. J. Phys., 8, 259.Google Scholar
Young, P. J. 1976. AJ, 81, 807.Google Scholar
Zhao, H. 1996. MNRAS, 278, 488.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Luca Ciotti, Università degli Studi, Bologna, Italy
  • Book: Introduction to Stellar Dynamics
  • Online publication: 28 May 2021
  • Chapter DOI: https://doi.org/10.1017/9780511736117.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Luca Ciotti, Università degli Studi, Bologna, Italy
  • Book: Introduction to Stellar Dynamics
  • Online publication: 28 May 2021
  • Chapter DOI: https://doi.org/10.1017/9780511736117.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Luca Ciotti, Università degli Studi, Bologna, Italy
  • Book: Introduction to Stellar Dynamics
  • Online publication: 28 May 2021
  • Chapter DOI: https://doi.org/10.1017/9780511736117.020
Available formats
×