from Part III - Collisionless Systems
Published online by Cambridge University Press: 28 May 2021
In this chapter, we show how the (infinite) set of equations known as the Jeans equations is derived by considering velocity moments of the collisionless Boltzmann equation (CBE) discussed in Chapter 9. The Jeans equations are very important for physically intuitive modeling of stellar systems, and they are some of the most useful tools in stellar dynamics. In fact, while the natural domain of existence of the solution of the CBE is the six-dimensional phase space, the Jeans equations are defined over three-dimensional configuration space, allowing us to achieve more intuitive modeling of directly observable quantities. The physical meaning of the quantities entering the Jeans equations is also illustrated by comparison with the formally analogous equations of fluid dynamics. Finally, by taking the spatial moments of the Jeans equations over the configuration space, the virial theorem in tensorial form is derived, complementing the more elementary discussion in Chapter 6.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.