Published online by Cambridge University Press: 18 December 2014
Generalities
Most solids are positionally ordered in three dimensions: if the position of one of their constituent particles is known, then the positions of all the other particles will also be known. Particle positions are said to be correlated, and solids possessing this property are termed crystalline. On the other hand, most liquids are positionally disordered: knowledge of the position of one particular particle tells us nothing about the positions of any other particles that are not its near neighbours, as these positions continually change. In this case particle positions are said to be uncorrelated, and liquids possessing this property are termed isotropic. If, however, the constituent particles are markedly non-spherical, they may be orientationally ordered, if their orientations, rather than their positions, are correlated. Materials made up of non-spherical particles may therefore exhibit liquid crystalline phases or mesophases: states of matter in which particles are on average parallel to one another, but where their positions are uncorrelated in one, two or three dimensions. These phases are intermediate between the crystalline solid (which is positionally as well as orientationally ordered) and the isotropic liquid (which is positionally as well as orientationally disordered). A material or substance that exhibits mesophases is called a mesogen.
Liquid crystals were first discovered by the Austrian biochemist Friedrich Reinitzer (1858–1927). In 1888, while studying cholesterol derivatives extracted from carrots, he was surprised to observe that cholesteryl benzoate appeared to have two melting points. Between the solid and the liquid there was a turbid liquid phase. Reinitzer sent some of his samples to the German physicist Otto Lehmann (1855–1922), who examined them using his microscope fitted with light polarisers and a hot stage. Lehmann found that the turbid liquid phase was homogeneous, but had the optical properties of a crystal when illuminated with polarised light. This is how the name ‘liquid crystal’ eventually came to be applied to this class of materials.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.