Book contents
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Fundamentals of polymers
- 3 Nanofiber technology
- 4 Modeling and simulation
- 5 Mechanical properties of fibers and fiber assemblies
- 6 Characterization of nanofibers
- 7 Bioactive nanofibers
- 8 Electroactive nanofibers
- 9 Nanocomposite fibers
- 10 Future opportunities and challenges of electrospinning
- Appendix I Terms and unit conversion
- Appendix II Abbreviation of polymers
- Appendix III Classification of fibers
- Appendix IV Polymers and solvents for electrospinning
- Index
- References
9 - Nanocomposite fibers
Published online by Cambridge University Press: 05 July 2014
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Fundamentals of polymers
- 3 Nanofiber technology
- 4 Modeling and simulation
- 5 Mechanical properties of fibers and fiber assemblies
- 6 Characterization of nanofibers
- 7 Bioactive nanofibers
- 8 Electroactive nanofibers
- 9 Nanocomposite fibers
- 10 Future opportunities and challenges of electrospinning
- Appendix I Terms and unit conversion
- Appendix II Abbreviation of polymers
- Appendix III Classification of fibers
- Appendix IV Polymers and solvents for electrospinning
- Index
- References
Summary
Introduction
A nanocomposite is a material in which the matrix contains reinforcement materials having at least one dimension in the nanoscale (<100 nm), wherein the small size offers some level of controllable performance that is expected to be better than in conventional composites. In another words, these nanocomposites should show great promise either in terms of superior mechanical properties, or in terms of superior thermal, electrical, optical and other properties, and in general, at relatively low-reinforcement volume fractions [1, 2]. The principal properties for such reinforcement effects are that (1) the properties of nano-reinforcements are considerably higher than the reinforcing materials in use and (2) the ratio of their surface area to volume is very high, which provides a greater interfacial interaction with the matrix [1]. Table 9.1 shows the geometries, types and surface-to-volume relations of reinforcements and their arrangement modes in fiber composites.
Table 9.2 lists the typical functional nanoparticles and matrices that have been used for the composites. Among all the nano-reinforcements, carbon nanotubes (CNTs), nanoclay, graphene and nanofibers are the most usually involved materials for the structural nanocomposites that are introduced in this chapter.
- Type
- Chapter
- Information
- Introduction to Nanofiber Materials , pp. 191 - 238Publisher: Cambridge University PressPrint publication year: 2014