Book contents
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Fundamentals of polymers
- 3 Nanofiber technology
- 4 Modeling and simulation
- 5 Mechanical properties of fibers and fiber assemblies
- 6 Characterization of nanofibers
- 7 Bioactive nanofibers
- 8 Electroactive nanofibers
- 9 Nanocomposite fibers
- 10 Future opportunities and challenges of electrospinning
- Appendix I Terms and unit conversion
- Appendix II Abbreviation of polymers
- Appendix III Classification of fibers
- Appendix IV Polymers and solvents for electrospinning
- Index
- References
5 - Mechanical properties of fibers and fiber assemblies
Published online by Cambridge University Press: 05 July 2014
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Fundamentals of polymers
- 3 Nanofiber technology
- 4 Modeling and simulation
- 5 Mechanical properties of fibers and fiber assemblies
- 6 Characterization of nanofibers
- 7 Bioactive nanofibers
- 8 Electroactive nanofibers
- 9 Nanocomposite fibers
- 10 Future opportunities and challenges of electrospinning
- Appendix I Terms and unit conversion
- Appendix II Abbreviation of polymers
- Appendix III Classification of fibers
- Appendix IV Polymers and solvents for electrospinning
- Index
- References
Summary
Polymer, metallic and ceramic materials in fibrous form are of fundamental importance in materials engineering. Fibrous materials are the basic building blocks for the backbone of most natural and man-made engineering structures, ranging from the skeletal structure of animals to advanced fiber-reinforced composites.
Fiber assemblies normally known as textile materials are unique in their combination of strength and toughness, lightweight, flexibility and cost effectiveness. As an essential requirement to fiber and fiber assemblies, mechanical properties are one of the most important properties that need to be characterized and investigated. In this chapter, we will consider the mechanical properties of fiber assemblies from single fiber to fiber assemblies in a hierarchical manner.
Structure of hierarchy of textile materials
Traditionally fibers are defined as soft materials with a length-to-diameter ratio above 103 and a diameter ranging from several to 100 microns. The emergence of nanofibers broadens the span of fibers to the nanoscale world.
For engineering applications, fibers are usually employed in different forms such as yarns/ropes, woven textiles and nonwoven textiles. The structure hierarchy of textile materials is shown in Fig. 5.1.
- Type
- Chapter
- Information
- Introduction to Nanofiber Materials , pp. 80 - 100Publisher: Cambridge University PressPrint publication year: 2014