Book contents
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Fundamentals of polymers
- 3 Nanofiber technology
- 4 Modeling and simulation
- 5 Mechanical properties of fibers and fiber assemblies
- 6 Characterization of nanofibers
- 7 Bioactive nanofibers
- 8 Electroactive nanofibers
- 9 Nanocomposite fibers
- 10 Future opportunities and challenges of electrospinning
- Appendix I Terms and unit conversion
- Appendix II Abbreviation of polymers
- Appendix III Classification of fibers
- Appendix IV Polymers and solvents for electrospinning
- Index
- References
10 - Future opportunities and challenges of electrospinning
Published online by Cambridge University Press: 05 July 2014
- Frontmatter
- Contents
- Foreword
- 1 Introduction
- 2 Fundamentals of polymers
- 3 Nanofiber technology
- 4 Modeling and simulation
- 5 Mechanical properties of fibers and fiber assemblies
- 6 Characterization of nanofibers
- 7 Bioactive nanofibers
- 8 Electroactive nanofibers
- 9 Nanocomposite fibers
- 10 Future opportunities and challenges of electrospinning
- Appendix I Terms and unit conversion
- Appendix II Abbreviation of polymers
- Appendix III Classification of fibers
- Appendix IV Polymers and solvents for electrospinning
- Index
- References
Summary
Future of nanotechnology
In 2000, Roco et al. [1] estimated that there would be two million nanotechnology workers worldwide (800 000 in the United States) and the product value would reach $1 trillion, of which $800 billion would be in the United States, by 2015, with a 25% rate growth. The initial estimation for the quasi-exponential growth in the nanotechnology workforce and the product value held up to 2008, as shown in Fig.10.1. The market is doubling every three years as a result of the successive introduction of new products, and new generations of nanotechnology products are expected to enter the market within the next few years [1]. So the estimated value of 2015 for both workforce and product value would have been realized as the 25% growth rate is expected to continue.
Nanotechnology is evolving toward new scientific and engineering challenges in areas such as assembly of nanosystems, nanobiotechnology and nanobiomedicine, development of advanced tools, environmental preservation and protection, and pursuit of societal implication studies. Key areas of emphasis in nanotechnology [1] over the next decade are as follows.
Integration of knowledge at the nanoscale and of nanocomponents in nanosystems with deterministic and complex behavior, aiming toward creating fundamentally new products.
Better control of molecular self-assembly, quantum behavior, creation of new molecules, and interaction of nanostructures with external fields in order to build materials, devices and systems by modeling and computational design.
Understanding of biological processes and of nanobio interfaces with abiotic materials, and their biomedical and health/safety applications, and nanotechnology solutions for sustainable natural resources and nanomanufacturing.
- Type
- Chapter
- Information
- Introduction to Nanofiber Materials , pp. 239 - 257Publisher: Cambridge University PressPrint publication year: 2014