Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Introduction
- 1 Scales and complexity
- 2 Quantum fields
- 3 Conserved particles
- 4 Simple examples of second quantization
- 5 Green's functions
- 6 Landau Fermi-liquid theory
- 7 Zero-temperature Feynman diagrams
- 8 Finite-temperature many-body physics
- 9 Fluctuation–dissipation theorem and linear response theory
- 10 Electron transport theory
- 11 Phase transitions and broken symmetry
- 12 Path integrals
- 13 Path integrals and itinerant magnetism
- 14 Superconductivity and BCS theory
- 15 Retardation and anisotropic pairing
- 16 Local moments and the Kondo effect
- 17 Heavy electrons
- 18 Mixed valence, fluctuations, and topology
- Epilogue: the challenge of the future
- Author Index
- Subject Index
- References
Introduction
Published online by Cambridge University Press: 05 December 2015
- Frontmatter
- Dedication
- Contents
- Preface
- Introduction
- 1 Scales and complexity
- 2 Quantum fields
- 3 Conserved particles
- 4 Simple examples of second quantization
- 5 Green's functions
- 6 Landau Fermi-liquid theory
- 7 Zero-temperature Feynman diagrams
- 8 Finite-temperature many-body physics
- 9 Fluctuation–dissipation theorem and linear response theory
- 10 Electron transport theory
- 11 Phase transitions and broken symmetry
- 12 Path integrals
- 13 Path integrals and itinerant magnetism
- 14 Superconductivity and BCS theory
- 15 Retardation and anisotropic pairing
- 16 Local moments and the Kondo effect
- 17 Heavy electrons
- 18 Mixed valence, fluctuations, and topology
- Epilogue: the challenge of the future
- Author Index
- Subject Index
- References
Summary
This book is written with the graduate student in mind. I had in mind to write a text that would introduce my students to the basic ideas and concepts behind many-body physics. At the same time, I felt very strongly that I would like to share my excitement about this field, for without feeling the thrill of entering uncharted territory I do not think one has the motivation to learn and to make the passage from learning to research.
Traditionally, as physicists we ask “what are the microscopic laws of nature?”, often proceeding with the brash certainty that, once revealed, these laws will have such profound beauty and symmetry that the properties of the universe at large will be self-evident. This basic philosophy can be traced from the earliest atomistic philosophy of Democritus to the most modern quests to unify quantum mechanics and gravity.
The dreams and aspirations of many-body physics interwine the reductionist approach with a complementary philosophy: that of emergent phenomena. In this view, fundamentally new kinds of phenomena emerge within complex assemblies of particles which cannot be anticipated from an a priori knowledge of the microscopic laws of nature. Many-body physics aspires to synthesize, from the microscopic laws, new principles that govern the macroscopic realm, asking:
What emergent principles and laws develop as we make the journey from the microscopic to the macroscopic?
This is a comparatively modern and far less familiar scientific philosophy. Charles Darwin was perhaps the first to seek an understanding of emergent laws of nature. Following in his footsteps, Ludwig Boltzmann and James Clerk Maxwell were among the first physicists to appreciate the need to understand how emergent principles are linked to microscopic physics. From Boltzmann's biography [1], we learn that he was strongly influenced and inspired by Charles Darwin. In more modern times, a strong advocate of this philosophy has been Philip W. Anderson, who first introduced the phrase “emergent phenomenon” into physics. In an influential article entitled “More is different,” written in 1967 [2], he captured the philosophy of emergence, writing:
The behavior of large and complex aggregations of elementary particles, it turns out, is not to be understood in terms of a simple extrapolation of the properties of a few particles.[…]
- Type
- Chapter
- Information
- Introduction to Many-Body Physics , pp. 1 - 4Publisher: Cambridge University PressPrint publication year: 2015
References
- 3
- Cited by