Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T06:25:19.803Z Has data issue: false hasContentIssue false

17 - Heavy electrons

Published online by Cambridge University Press:  05 December 2015

Piers Coleman
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] E., Bucher, J. P., Maita, G. W., Hull, R. C., Fulton, and A. S., Cooper, Electronic properties of beryllides of the rare earth and some actinides, Phys. Rev. B, vol. 11, p. 440, 1975.Google Scholar
[2] F., Steglich, J., Aarts, C. D., Bredl,W., Leike, D. E., Meshida,W., Franz, and H., Schäfer, Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett., vol. 43, p. 1892, 1976.
[3] K., Andres, J., Graebner, and H. R., Ott, 4f-virtual-bound-state formation in CeAl3 at low temperatures, Phys. Rev. Lett., vol. 35, p. 1779, 1975.Google Scholar
[4] M. A., Ruderman and C., Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., vol. 96, p. 99, 1954.Google Scholar
[5] G., Aeppli and Z., Fisk, Kondo insulators, Comments Condens. Matter Phys., vol. 16, p. 155, 1992.Google Scholar
[6] A., Menth, E., Buehler, and T. H., Geballe, Magnetic and semiconducting properties of SmB6, Phys. Rev. Lett., vol. 22, p. 295, 1969.Google Scholar
[7] M. B., Maple and D., Wohlleben, Nonmagnetic 4f shell in the high-pressure phase of SmS, Phys. Rev. Lett., vol. 27, no. 8, p. 511, 1971.Google Scholar
[8] N. F., Mott, Rare-earth compounds with mixed valencies, Philos. Mag., vol. 30, no. 2, p. 403, 1974.Google Scholar
[9] S., Doniach, Kondo lattice and weak antiferromagnetism, Physica, vol. 91B, p. 231, 1977.Google Scholar
[10] T., Kasuya, A theory of metallic ferro- and antiferromagnetism on Zener's model, Prog. Theor. Phys., vol. 16, no. 1, p. 45, 1956.Google Scholar
[11] R., Jullien, J., Fields, and S., Doniach, Zero-temperature real-space renormalizationgroup method for a Kondo-lattice model Hamiltonian, Phys. Rev. B, vol. 16, no. 11, p. 4889, 1977.Google Scholar
[12] J. L., Smith and P. S., Riseborough, Actinides, the narrowest bands, J. Magn. Magn. Mater., vol. 47–48, p. 545, 1985.Google Scholar
[13] Y., Onuki and T., Komatsubara, Heavy fermion state CeCu6, J. Magn. Magn. Mater., vol. 63–64, p. 281, 1987.Google Scholar
[14] R. M., Martin, Fermi-surface sum rule and its consequences for periodic Kondo and mixed-valence systems, Phys. Rev. Lett., vol. 48, p. 362, 1982.Google Scholar
[15] M., Oshikawa, Topological approach to Luttinger's theorem and the Fermi surface of a Kondo lattice, Phys. Rev. Lett., vol. 84, p. 3370, 2000.Google Scholar
[16] L., Taillefer, R., Newbury, G. G., Lonzarich, Z., Fisk, and J. L., Smith, Direct observation of heavy quasiparticles in UPt3 via the dHvA effect, J. Magn. Magn. Mater., vol. 63–64, p. 372, 1987.Google Scholar
[17] L., Taillefer and G. G., Lonzarich, Heavy-fermion quasiparticles in UPt3, Phys. Rev. Lett., vol. 60, p. 1570, 1988.Google Scholar
[18] H., Shishido, R., Settai, H., Harima, and Y., Onuki, A drastic change of the Fermi surface at a critical pressure in CeRhIn 5: dHvA study under pressure, J. Phys. Soc. Jpn., vol. 74, p. 1103, 2005.Google Scholar
[19] B., Coqblin and J. R., Schrieffer, Exchange interaction in alloys with cerium impurities, Phys. Rev., vol. 185, p. 847, 1969.Google Scholar
[20] H., Ikeda and K., Miyake, A theory of anisotropic semiconductor of heavy fermions, J. Phys. Soc. Jpn., vol. 65, no. 6, p. 1769, 1996.Google Scholar
[21] M., Mekata, S., Ito, N., Sato, T., Satoh, and N., Sato, Spin fluctuations in dense Kondo alloys, J. Magn. Magn. Mater., vol. 54, p. 433, 1986.Google Scholar
[22] C., Urano, M., Nohara, S., Kondo, F., Sakai, H., Takagi, T., Shiraki, and T., Okubo, Phys. Rev. Lett., vol. 85, p. 1052, 2000.
[23] P. W., Anderson, Valence Fluctuations in Solids, North Holland, 1981.
[24] E., Witten, Chiral symmetry, the 1/N expansion and the SU(N) Thirring model, Nucl. Phys. B, vol. 145, p. 110, 1978.Google Scholar
[25] O., Gunnarsson and K., Schönhammer, Electron spectroscopies for Ce compounds in the impurity model, Phys. Rev. B, vol. 28, p. 4315, 1983.Google Scholar
[26] N., Read and D. M., Newns, On the solution of the Coqblin–Schrieffer Hamiltonian by the large-N expansion technique, J. Phys. C, vol. 16, p. 3274, 1983.Google Scholar
[27] P., Coleman, 1/N expansion for the Kondo lattice, Phys. Rev., vol. 28, p. 5255, 1983.Google Scholar
[28] C., Lacroix and M., Cyrot, Phase diagram of the Kondo lattice, Phys. Rev. B, vol. 20, p. 1969, 1979.Google Scholar
[29] S., Chakravarty, abstract of unpublished preprint, Proc. Am. Phys. Soc. (March), 1982.Google Scholar
[30] P., Coleman, New approach to the mixed-valence problem, Phys. Rev. B, vol. 29, p. 3035, 1984.Google Scholar
[31] N., Read and D. M., Newns, A new functional integral formalism for the degenerate Anderson model, J. Phys. C, vol. 29, p. L1055, 1983.Google Scholar
[32] A., Auerbach and K., Levin, Kondo bosons and the Kondo lattice: microscopic basis for the heavy Fermi liquid, Phys. Rev. Lett., vol. 57, p. 877, 1986.Google Scholar
[33] S. E., Barnes, New method for the Anderson model, J. Phys. F: Met. Phys., vol. 6, p. 1375, 1976.Google Scholar
[34] A. J., Millis and P. A., Lee, Large-orbital-degeneracy expansion for the lattice Anderson model, Phys. Rev. B, vol. 35, no. 7, p. 3394, 1987.Google Scholar
[35] P., Coleman, Mixed valence as an almost broken symmetry, Phys. Rev. B, vol. 35, p. 5072, 1987.Google Scholar
[36] M. C., Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett., vol. 10, no. 5, p. 159, 1963. The Hubbard model was written down independently by Gutzwiller in equation (11) of this paper.Google Scholar
[37] W. F., Brinkman and T. M., Rice, Application of Gutzwiller's variational method to the metal insulator transition, Phys. Rev. B, vol. 2, p. 4302, 1970.Google Scholar
[38] B. H., Brandow, Variational theory of valence fluctuations: ground states and quasiparticle excitations of the Anderson lattice model, Phys. Rev. B, vol. 33, p. 215, 1986.Google Scholar
[39] M., Dzero, K., Sun, V., Galitski, and P., Coleman, Topological Kondo insulators, Phys. Rev. Lett., vol. 104, p. 106408, 2010.Google Scholar
[40] S., Wolgast, Ç., Kurdak, K., Sun, J.W., Allen, D.-J., Kim, and Z., Fisk, Low-temperature surface conduction in the Kondo insulator SmB6, Phys. Rev. B, vol. 88, p. 180405, 2013.Google Scholar
[41] D. J. S., Thomas, T., Grant, J., Botimer, Z., Fisk, and J., Xia, Surface Hall effect and nonlocal transport in SmB6: evidence for surface conduction, Sci. Rep., vol. 3, p. 3150, 2014.Google Scholar
[42] S., Burdin, A., Georges, and D. R., Grempel, Coherence scale of the Kondo lattice, Phys. Rev. Lett., vol. 85, p. 1048, 2000.Google Scholar
[43] T. A., Costi and N., Manini, Low-energy scales and temperature-dependent photoemission of heavy fermions, J. Low Temp. Phys., vol. 126, p. 835, 2002.Google Scholar
[44] H., Shishido, R., Settai, H., Harima, and Y., Onuki, A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn., vol. 74, no. 4, p. 1103, 2005.Google Scholar
[45] T., Park, F., Ronning, H. Q., Yuan, M. B., Salamon, R., Movshovich, J. L., Sarrao, and J. D., Thompson, Hidden magnetism and quantum criticality in the heavy-fermion superconductor CeRhIn5, Nature, vol. 440, no. 7080, p. 65, 2006.Google Scholar
[46] A. F. G., Wyatt, Anomalous densities of states in normal tantalum and niobium, Phys. Rev Lett., vol. 13, p. 401, 1964.Google Scholar
[47] J., Appelbaum, s-d exchange model of zero-bias tunneling anomalies, Phys. Rev. Lett., vol. 17, p. 91, 1966.Google Scholar
[48] P.W., Anderson, Localized magnetic states and Fermi-surface anomalies in tunneling, Phys. Rev. Lett., vol. 17, p. 95, 1966.Google Scholar
[49] D. V., Averin and Y. V., Nazarov, Virtual electron diffusion during quantum tunneling of the electric charge, Phys. Rev. Lett., vol. 65, no. 19, p. 2446, 1990.Google Scholar
[50] M., Pustilnik and L., Glazman, Kondo effect in real quantum dots, Phys. Rev. Lett., vol. 87, p. 216601, 2001.Google Scholar
[51] D., Goldhaber-Gordon, H., Shtrikman, and D., Mahalu, Kondo effect in a singleelectron transistor, Nature, vol. 391, no. 6663, p. 156, 1998.Google Scholar
[52] M. I., Katsnelson, A. I., Lichtenstein, and H. Van, Kempen, Real-space imaging of an orbital Kondo resonance on the Cr (001) surface, Nature, vol. 415, no. 6871, p. 507, 2002.Google Scholar
[53] U., Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev., vol. 124, no. 6, p. 1866, 1961.Google Scholar
[54] V., Madhavan, Tunneling into a single magnetic atom: spectroscopic evidence of the Kondo resonance, Science, vol. 280, no. 5363, p. 567, 1998.Google Scholar
[55] A. R., Schmidt, M. H., Hamidian, P., Wahl, and F., Meier, Imaging the Fano lattice to 'hidden order' transition in URu2Si2, Nature, vol. 465, p. 570, 2010.
[56] P., Aynajian, E. H. da Silva, Neto, A., Gyenis, R. E., Baumbach, J. D., Thompson, Z., Fisk, E. D., Bauer, and A., Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature, vol. 486, no. 7402, p. 201, 2012.Google Scholar
[57] M., Maltseva, M., Dzero, and P., Coleman, Electron cotunneling into a Kondo lattice, Phys. Rev. Lett., vol. 103, no. 20, 2009.Google Scholar
[58] J. R., Schrieffer and P., Wolff, Relation between the Anderson and Kondo Hamiltonians, Phys. Rev., vol. 149, p. 491, 1966.Google Scholar
[59] A. J., Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B, vol. 48, p. 7183, 1993.Google Scholar
[60] L., Degiorgi, F., Anders, and G., Gruner, Charge excitations in heavy electron metals, Eur. Phys. J. B, vol. 19, p. 167, 2001.Google Scholar
[61] S. V., Dordevic, D. N., Basov, N. R., Dilley, E. D., Bauer, and M. B., Maple, Hybridization gap in heavy fermion compounds, Phys. Rev. Lett., vol. 86, p. 684, 2001.Google Scholar
[62] B., Bucher, Z., Schlesinger, D., Mandrus, et al., Charge dynamics of Ce-based compounds: Connection between the mixed valent and Kondo-insulator states, Phys. Rev. B, vol. 53, p. R2948, 1996.Google Scholar
[63] W. P., Beyerman, G., Gruner, Y., Dlicheouch, and M. B., Maple, Frequency-dependent transport properties of UPt3, Phys. Rev. B, vol. 37, p. 10353, 1988.Google Scholar
[64] S., Donovan, A., Schwartz, and G., Grüner, Observation of an Optical Pseudogap in UPt3, Phys. Rev. Lett., vol. 79, p. 1401, 1997.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Heavy electrons
  • Piers Coleman, Rutgers University, New Jersey
  • Book: Introduction to Many-Body Physics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020916.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Heavy electrons
  • Piers Coleman, Rutgers University, New Jersey
  • Book: Introduction to Many-Body Physics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020916.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Heavy electrons
  • Piers Coleman, Rutgers University, New Jersey
  • Book: Introduction to Many-Body Physics
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139020916.019
Available formats
×