Published online by Cambridge University Press: 23 March 2023
NN models with more hidden layers than the traditional NN are referred to as deep neural network (DNN) or deep learning (DL) models, which are now widely used in environmental science. For image data, the convolutional neural network (CNN) has been developed, where in convolutional layers, a neuron is only connected to a small patch of neurons in the preceding layer, thereby greatly reducing the number of model weights. Popular architectures of DNN include the encoder-decoder and U-net models. For time series modelling, the long short-term memory (LSTM) network and temporal convolutional network have been developed. Generative adversarial network (GAN) produces highly realistic fake data.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.