Skip to main content Accessibility help
×
Hostname: page-component-5cf477f64f-tx7qf Total loading time: 0 Render date: 2025-04-08T10:50:37.843Z Has data issue: false hasContentIssue false

4 - Biological Risk Amplification: Disease Vulnerability

Published online by Cambridge University Press:  03 April 2025

R. Andrew Chambers
Affiliation:
Indiana University School of Medicine, Indianapolis
Kevin G. Masterson
Affiliation:
Linden Oaks Hospital, Naperville
Get access

Summary

As with other diseases, vulnerability to addiction is not evenly distributed in the population. It is concentrated in people that bear higher concentrations of biologically active risk factors. Addiction vulnerability is associated with earlier age of substance use, multiple concurrent addictions, and mental illness. It is determined by complex interactions between many hundreds of genes, and a wide range of environmental–developmental experiences – all of which are biologically active in shaping motivational-behavioral repertoires and cortical–striatal–limbic networks anchored on the NAC. Understanding the developmental neurocircuitry of addiction and its linkage with mental illness informs our understanding of this disease vulnerability. All major forms of mental illness, spanning schizophrenia, bipolar disorder, depression, trauma-spectrum disorders, personality disorders, impulse controls disorders, etc., involve anatomical–functional abnormalities that overlap and interlink with primary motivational circuits involved in addiction. The neurocircuitry of mental illness, involving disrupted inputs from PFC, AMY, HCF, into the NAC, involuntarily alters NAC network responsivity to addictive drugs, allowing their pathological neuroplastic effects to produce more robust and accelerated sensitization of drug-motivated behavior. Similarly, adolescent neurodevelopment is a biological context marked by profound change of motivational-behavioral repertoires – and neural network revision within cortical–striatal–limbic circuits – that increases brain susceptibility to addiction.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, J. H., Werners, U., Secher, S. M., Hill, K. E., Brazil, R., Masson, K., Pernet, D. E., Kirkbride, J. B., Murray, G. K., Bullmore, E. T., and Jones, P. B.. 2007. Substance use in a population-based clinic sample of people with first-episode psychosis. Br J Psychiatry, 190: 515–20.Google Scholar
Bechara, A. 2003. Risky business: Emotion, decision-making and addiction. J Gambl Stud, 19: 2351.Google ScholarPubMed
Becker, J. B., McClellan, M. L., and Reed, B. G.. 2017. Sex differences, gender and addiction. J Neurosci Res, 95: 136–47.Google ScholarPubMed
Bell, R. L., Rodd, Z. A., Lumeng, L., Murphy, J. M., and McBride, W. J.. 2006. The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol, 11: 270–88.Google ScholarPubMed
Berg, S. A., and Chambers, R. A.. 2008. Accentuated behavioral sensitization to nicotine in the neonatal ventral hippocampal lesion model of schizophrenia. Neuropharmacology, 54: 1201–07.Google ScholarPubMed
Berg, S. A., Czachowski, C. L., and Chambers, R. A.. 2011. Alcohol seeking and consumption in the NVHL neurodevelopmental rat model of schizophrenia. Behav Brain Res, 218: 346–49.CrossRefGoogle ScholarPubMed
Berg, S. A., Sentir, A. M., Bell, R. L., Engleman, E. A., and Chambers, R. A.. 2015. Nicotine effects in adolescence and adulthood on cognition and alpha(4)beta(2)-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia. Psychopharmacology, 232: 1681–92.Google Scholar
Berg, S. A., Sentir, A. M., Cooley, B. S., Engleman, E. A., and Chambers, R. A.. 2014. Nicotine is more addictive, not more cognitively therapeutic in a neurodevelopmental model of schizophrenia produced by neonatal ventral hippocampal lesions. Addict Biol, 19: 1020–31.Google ScholarPubMed
Bickel, W. K., Green, L., and Vuchinich, R. E.. 1995. Behavioral economics. J Exp Anal Behav, 64: 257–62.Google ScholarPubMed
Boscarino, J. A., Rukstalis, M., Hoffman, S. N., Han, J. J., Erlich, P. M., Gerhard, G. S., and Stewart, W. F.. 2010. Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system. Addiction, 105: 1776–82.CrossRefGoogle Scholar
Bracken, A. L., Chambers, R. A., Berg, S. A., Rodd, Z. A., and McBride, W. J.. 2011. Nicotine exposure during adolescence enhances behavioral sensitivity to nicotine during adulthood in Wistar rats. Pharmacol Biochem Behav, 99: 8793.CrossRefGoogle ScholarPubMed
Brady, A. M., McCallum, S. E., Glick, S. D., and O’ Donnell, P.. 2008. Enhanced methamphetamine self-administration in a neurodevelopmental rat model of schizophrenia. Pschopharmacology, 200: 205–15.Google Scholar
Brewer, J. A., and Potenza, M. N.. 2007. The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochem Pharmacol, 75: 6375.Google ScholarPubMed
Burns, L. H., Annett, L., Everett, B. J., Robbins, T. W., and Kelley, A. E.. 1996. Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: Implication for limbic–striatal interactions. Behav Neurosci, 110: 6073.Google ScholarPubMed
Chambers, J. 2017. The neurobiology of attachment: From infancy to clinical outcomes. Psychodyn Psychiatry, 45: 542–63.Google ScholarPubMed
Chambers, R. A., and Conroy, S. K.. 2007. Network modeling of adult neurogenesis: Shifting rates of neuronal turnover optimally gears network learning according to novelty gradient. J Cogn Neurosci, 19: 112.CrossRefGoogle ScholarPubMed
Chambers, R. A., Jones, R. M., Brown, S., and Taylor, J. R.. 2005. Natural reward related learning in rats with neonatal ventral hippocampal lesions and prior cocaine exposure. Psychopharmacology, 179: 470–78.Google ScholarPubMed
Chambers, R. A., Krystal, J. K., and Self, D. W.. 2001. A neurobiological basis for substance abuse comorbidity in schizophrenia. Biol Psychiatry, 50: 7183.Google ScholarPubMed
Chambers, R. A., and Potenza, M. N.. 2003. Neurodevelopment, impulsivity, and adolescent gambling. J Gambl Stud, 19: 5384.CrossRefGoogle ScholarPubMed
Chambers, R. A., Potenza, M. N., Hoffman, R. E., and Miranker, W.. 2004. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology, 29: 747–58.CrossRefGoogle ScholarPubMed
Chambers, R. A., Sajdyk, T. J., Conroy, S. K., Lafuze, J. E., Fitz, S. D., and Shekhar, A.. 2007. Neonatal amygdala lesions: Co-occurring impact on social/fear-related behavior and cocaine sensitization in adult rats. Behav Neurosci, 121: 1316–27.CrossRefGoogle ScholarPubMed
Chambers, R. A., and Self, D. W.. 2002. Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: An animal model of dual diagnosis schizophrenia. Neuropsychopharmacology, 27: 889905.Google ScholarPubMed
Chambers, R. A., Sentir, A. M., and Engleman, E. A.. 2010. Ventral and dorsal striatal dopamine efflux and behavior in rats with simple vs. co-morbid histories of cocaine sensitization and neonatal ventral hippocampal lesions. Pschopharmacology, 212: 7383.Google ScholarPubMed
Chambers, R. A., Sheehan, T., and Taylor, J. R.. 2004. Locomotor sensitization to cocaine in rats with olfactory bulbectomy. Synapse, 52: 167–75.CrossRefGoogle ScholarPubMed
Chambers, R. A., and Taylor, J. R.. 2004. Animal modeling dual diagnosis schizophrenia: Sensitization to cocaine in rats with neonatal ventral hippocampal lesions. Biol Psychiatry, 56: 308–16.Google ScholarPubMed
Chambers, R. A., Taylor, J. R., and Potenza, M. N.. 2003. Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. Am J Psychiatry, 160: 1041–52.CrossRefGoogle ScholarPubMed
Chambers, R. A. 2013. Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend, 130: 112.Google ScholarPubMed
Chambers, R. A., McClintick, J. N., Sentir, A. M., Berg, S. A., Runyan, M., Choi, K. H., and Edenberg, H. J.. 2013. Cortical–striatal gene expression in neonatal hippocampal lesion (NVHL)-amplified cocaine sensitization. Genes Brain Behav, 12: 564–75.Google ScholarPubMed
Chambers, R. A., and Sentir, A. M.. 2020. Integrated effects of neonatal ventral hippocampal lesions and impoverished social–environmental rearing on endophenotypes of mental illness and addiction vulnerability. Dev Neurosci, 41: 263–73.Google Scholar
Chambers, R. A., Sentir, A. M., Conroy, S. K., Truitt, W. A., and Shekhar, A.. 2010. Cortical–striatal integration of cocaine history and prefrontal dysfunction in animal modeling of dual diagnosis. Biol Psychiatry, 67: 788–92.Google ScholarPubMed
Chopra, S., Segal, A., Oldham, S., Holmes, A., Sabaroedin, K., Orchard, E. R., Francey, S. M., O’Donoghue, B., Cropley, V., Nelson, B., Graham, J., Baldwin, L., Tiego, J., Yuen, H. P., Allott, K., Alvarez-Jimenez, M., Harrigan, S., Fulcher, B. D., Aquino, K., Pantelis, C., et al. 2023. Network-based spreading of gray matter changes across different stages of psychosis. JAMA Psychiatry, 80: 1246–57.CrossRefGoogle ScholarPubMed
Cicchetti, D., and Rogosch, F. A.. 1996. Equifinality and multifinality in developmental psychopathology. Dev Psychopathol, 8: 597600.CrossRefGoogle Scholar
Cicchetti, D., and Rogosch, F. A.. 1999. Psychopathology as risk for adolescent substance use disorders: A developmental psychopatholgy perspective. J Clin Child Psychol, 28: 355–65.CrossRefGoogle Scholar
Conroy, S. K., Rodd, Z., and Chambers, R. A.. 2007. Ethanol sensitization in a neurodevelopmental lesion model of schizophrenia in rats. Pharmacol Biochem Behav, 86: 386–94.CrossRefGoogle Scholar
Erickson, C. A., and Chambers, R. A.. 2006. Male adolescence: Neurodevelopment and behavioral impulsivity. in Grant, J. and Potenza, M. N. (eds.), Textbook of Men’s Mental Health. Washington, DC: American Psychiatric Publishing.Google Scholar
Esterlis, I., Ranganathan, M., Bois, F., Pittman, B., Picciotto, M. R., Shearer, L., Anticevic, A., Carlson, J., Niciu, M. J., Cosgrove, K. P., and D’Souza, D. C.. 2014. In vivo evidence for beta nicotinic acetylcholine receptor subunit upregulation in smokers as compared with nonsmokers with schizophrenia. Biol Psychiatry, 76: 495502.CrossRefGoogle Scholar
Goldstein, R. B., Smith, S. M., Chou, S. P., Saha, T. D., Jung, J., Zhang, H., Pickering, R. P., Ruan, W. J., Huang, B., and Grant, B. F.. 2016. The epidemiology of DSM-5 posttraumatic stress disorder in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. Soc Psychiatry Psychiatr Epidemiol, 51: 1137–48.CrossRefGoogle ScholarPubMed
Grant, B. F., Saha, T. D., Ruan, W. J., Goldstein, R. B., Chou, S. P., Jung, J., Zhang, H., Smith, S. M., Pickering, R. P., Huang, B., and Hasin, D. S.. 2016. Epidemiology of DSM-5 drug use disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions-III. JAMA Psychiatry, 73: 3947.Google ScholarPubMed
Groenewegen, H. J., Wright, C. I., Beijer, A. V., and Voorn, P.. 1999. Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci, 877: 4963.CrossRefGoogle ScholarPubMed
Hartz, S. M., Pato, C. N., Medeiros, H., Cavazos-Rehg, P., Sobell, J. L., Knowles, J. A., Bierut, L. J., Pato, M. T., and Consortium Genomic Psychiatry Cohort. 2014. Comorbidity of severe psychotic disorders with measures of substance use. JAMA Psychiatry, 71: 248–54.Google ScholarPubMed
Hatoum, A. S., Colbert, S. M., Johnson, E. C., Huggett, S. B., Deak, J. D., Pathak, G., Jennings, M. V., Paul, S. E., Karcher, N. R, Hansen, I., Baranger, D. A. A., Edwards, A., Grotzinger, A., Substance Use Disorder Working Group of the Psychiatric Genomics Consortium; Tucker-Drob, E. M., Kranzler, H. R., Davis, L. K., Sanchez-Roige, S., Polimanti, R., Gelernter, J., et al. 2023. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multipole substance use disorders. Nature Mental Health, 1: 210–23.CrossRefGoogle Scholar
Hulvershorn, L. A., Erickson, C. A., and Chambers, R. A.. 2010. Impact of childhood mental health problems. In Grant, J. E. and Potenza, M. N. (eds.), Young Adult Mental Health. Oxford: Oxford University Press.Google Scholar
Jeanblanc, J., Balguerie, K., Coune, F., Legastelois, R., Jeanblanc, V., and Naassila, M.. 2015. Light alcohol intake during adolescence induces alcohol addiction in a neurodevelopmental model of schizophrenia. Addict Biol, 20: 490–99.Google Scholar
Jentsch, J. D., and Taylor, J. R.. 1999. Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli. Psychopharmacology, 146: 373–90.Google ScholarPubMed
Kalman, D., Morrissette, S. B., and George, T. P.. 2005. Co-morbidity of smoking in patients with psychiatric and substance use disorders. Am J Addict, 14: 106–23.CrossRefGoogle ScholarPubMed
Krieger, H., Young, C. M., Anthenien, A. M., and Neighbors, C.. 2018. The epidemiology of binge drinking among college-age individuals in the United States. Alcohol Res, 39: 2330.Google ScholarPubMed
Lewis, D. A. 1997. Development of the prefrontal cortex during adolescence: Insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology, 16: 385–98.Google ScholarPubMed
Lipska, B. K., Jaskiw, G. E., and Weinberger, D. R.. 1993. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: A potential animal model of schizophrenia. Neuropsychopharmacology, 9: 6775.Google Scholar
Lopez-Quintero, C., Perez de los Cobos, J., Hasin, D. S., Okuda, M., Wang, S., Grant, B. F., and Blanco, C.. 2011. Probability and predictors of transition from first use to dependence on nicotine, alcohol, cannabis, and cocaine: Results of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). Drug Alcohol Depend, 115: 120–30.CrossRefGoogle ScholarPubMed
Masterman, D. L., and Cummings, J. L.. 1997. Frontal–subcortical circuits: The anatomical basis of executive, social and motivational behaviors. J Psychopharmacol, 11: 107–14.Google Scholar
Mills, K. L., Goddings, A. L., Clasen, L. S., Giedd, J. N., and Blakemore, S. J.. 2014. The developmental mismatch in structural brain maturation during adolescence. Dev Neurosci, 36: 147–60.Google ScholarPubMed
Moffett, M. C., Vicentic, A., Kozel, M., Plotsky, P., Francis, D. D., and Kuhar, M. J.. 2007. Maternal separation alters drug intake patterns in adulthood in rats. Biochem Pharmacol, 73: 321–30.Google ScholarPubMed
O’Donnell, P. 2012. Cortical disinhibition in the neonatal ventral hippocampal lesion model of schizophrenia: New vistas on possible therapeutic approaches. Pharmacol Ther, 133: 1925.CrossRefGoogle ScholarPubMed
Pennartz, C. M. A., Groenewegen, H. J., and Lopez, F. H. da Silva, . 1994. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioral, electrophysiological and anatomical data. Progr Neurobiol, 42: 719–61.CrossRefGoogle ScholarPubMed
Petry, N. M., Bickel, W. K., and Arnett, M.. 1998. Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction, 93: 729–38.CrossRefGoogle ScholarPubMed
Rao, K. N., Sentir, A. M., Engleman, E. A., Bell, R. L., Hulvershorn, L. A., Breier, A., and Chambers, R. A.. 2016. Toward early estimation and treatment of addiction vulnerability: Radial arm maze and N-acetyl cysteine before cocaine sensitization or nicotine self-administration in neonatal ventral hippocampal lesion rats. Psychopharmacology, 233: 3933–45.Google ScholarPubMed
Rodd-Henricks, Z. A., Bell, R. L., Kuc, K. A., Murphy, J. M., McBride, W. J., Lumeng, L., and Li, T. K.. 2002a. Effects of ethanol exposure on subsequent acquisition and extinction of ethanol self-administration and expression of alcohol-seeking behavior in adult alcohol-preferring (P) rats: I. Periadolescent exposure. Alcohol Clin Exp Res, 26: 1632–41.Google Scholar
Rodd-Henricks, Z. A., Bell, R. L., Kuc, K. A., Murphy, J. M., McBride, W. J., Lumeng, L., and Li, T. K.. 2002b. Effects of ethanol exposure on subsequent acquisition and extinction of ethanol self-administration and expression of alcohol-seeking behavior in adult alcohol-preferring (P) rats: II. Adult exposure. Alcohol Clin Exp Res, 26: 1642–52.Google ScholarPubMed
Schiffer, B., Muller, B. W., Scherbaum, N., Forsting, M., Wiltfang, J., Leygraf, N., and Gizewski, E. R.. 2010. Impulsivity-related brain volume deficits in schizophrenia–addiction comorbidity. Brain, 133: 3093–103.Google ScholarPubMed
Sentir, A. M., Bell, R. L., Engleman, E. A., and Chambers, R. A.. 2020. Polysubstance addiction vulnerability in mental illness: Concurrent alcohol and nicotine self-administration in the neurodevelopmental hippocampal lesion rat model of schizophrenia. Addict Biol, 25(1): e12704.Google ScholarPubMed
Spear, L P. 2000. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev, 24: 417–63.Google ScholarPubMed
Spitzer, M. 1999. The Mind Within the Net. London: MIT Press.Google Scholar
Szerman, N., and Peris, L.. 2014. Personality disorders and addiction disorders. In el-Guebaly, N., Carra, G., and Galanter, M. (eds.), Textbook of Addiction Treatment International Perspective. Milan: Springer-Verlag Italia.Google Scholar
Teicher, M. H., and Samson, J. A.. 2013. Childhood maltreatment and psychopathology: A case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. Am J Psychiatry, 170: 1114–33.CrossRefGoogle ScholarPubMed
Teicher, M. H., Samson, J. A., Anderson, C. M., and Ohashi, K.. 2016. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci, 17: 652–66.CrossRefGoogle ScholarPubMed
Tseng, K. Y., Chambers, R. A., and Lipska, B. K.. 2009. The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res, 204: 295305.Google ScholarPubMed
Tseng, K. Y., Lewis, B. L., Hashimoto, T., Sesack, S. R., Kloc, M., Lewis, D. A., and O’Donnell, P.. 2008. A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci, 28: 12691–99.Google ScholarPubMed
Tseng, K. Y., Lewis, B. L., Lipska, B. K., and O’Donnell, P.. 2007. Post-pubertal disruption of medial prefrontal cortical dopamine–glutamate interactions in a developmental animal model of schizophrenia. Biol Psychiatry, 62: 730–38.Google Scholar
Van Dam, N. T., Rando, K., Potenza, M. N., Tuit, K., and Sinha, R.. 2014. Childhood maltreatment, altered limbic neurobiology, and substance use relapse severity via trauma-specific reductions in limbic gray matter volume. JAMA Psychiatry, 71: 917–25.Google ScholarPubMed
Wagner, F. A., and Anthony, J. C.. 2002. From first drug use to drug dependence: developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology, 26: 479–88.CrossRefGoogle ScholarPubMed
Weinberger, D. R. 1999. Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry, 45: 395402.Google ScholarPubMed
Weinberger, D. R., Aloa, M. S., Goldberg, T. E., and Berman, K. F.. 1994. The frontal lobes and schizophrenia. J Neuropsychiatry, 6: 419–27.Google ScholarPubMed
Zarse, E. M., Neff, M. R., Yoder, R., Hulvershorn, L., Chambers, J. E., and Chambers, R. A.. 2019. The adverse childhood experiences scale: Two decades of research on childhood trauma as a primary cause of adult mental illness, addiction and medical diseases. Cogent Medicine, 6.CrossRefGoogle Scholar
Zhang, X., Stein, E. A., and Hong, L. E.. 2010. Smoking and schizophrenia independently and additively reduce white matter integrity between striatum and frontal cortex. Biol Psychiatry, 68: 674–77.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×