Book contents
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Turbulence in Atomic Hydrogen
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Summary
Understanding the properties of interstellar turbulence is a great intellectual challenge and the urge to solve this problem is partially motivated by a necessity to explain the star formation mystery. This review deals with a recently suggested inversion technique as applied to atomic hydrogen. This technique allows to determine 3D turbulence statistics through the variations of 21 cm intensity. We claim that a radio interferometer is an ideal tool for such a study as its visibility function is directly related to the statistics of galactic HI. Next, we show how galactic rotation curve can be used to study the turbulence slice by slice and relate the statistics given in galactic coordinates and in the velocity space. The application of the technique to HI data reveals a shallow spectrum of the underlying HI density that is not compatible with a naive Kolmogorov picture. We show that the random density corresponding to the found spectrum tends to form low contrast filaments that are elongated towards the observer.
Introduction
The properties of the interstellar medium strongly suggest that it is turbulent. Here turbulence is understood as unpredictable spatial and temporal behavior of nonlinear systems as preached by Scalo (1985, 1987).
The importance of turbulence in molecular clouds and its relation to star formation has long been appreciated (Dickman 1985). Recent progress in numerical simulations of molecular cloud dynamics (see Ostriker, this volume) indicates the intrinsic connection between the turbulence in different phases of the interstellar medium (McKee & Ostriker 1977).
- Type
- Chapter
- Information
- Interstellar Turbulence , pp. 95 - 103Publisher: Cambridge University PressPrint publication year: 1999
- 3
- Cited by