Book contents
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Turbulence in the Interstellar Medium: a Retrospective Review
- Mechanism of Formation of Atmospheric Turbulence Relevant for Optical Astronomy
- Properties of Atomic Gas in Spiral Galaxies
- Turbulence in the Ionized Gas in Spiral Galaxies
- Probing Interstellar Turbulence in the Warm Ionized Medium using Emission Lines
- The Spectrum & Galactic Distribution of MicroTurbulence in Diffuse Ionized Gas
- Small Scale Structure and Turbulence in the Interstellar Medium
- What is the Reynolds Number of the Reynolds' Layer?
- Photoionized Gas in the Galactic Halo
- Turbulent Heating of the Diffuse Ionized Gas
- Cosmic Rays in Interstellar Turbulence
- Turbulence in Line-Driven Stellar Winds
- An Introduction to Compressible MHD Turbulence
- Turbulence in Atomic Hydrogen
- Supershells in Spiral Galaxies
- The Size Distribution of Superbubbles in the Interstellar Medium
- Large-Scale Motions in the ISM of Elliptical and Spiral Galaxies
- Vortical Motions Driven by Supernova Explosions
- The Intermittent Dissipation of Turbulence: is it Observed in the Interstellar Medium?
- Chemistry in Turbulent Flows
- Supersonic Turbulence in Giant Extragalactic HII Regions
- Turbulence in HII regions: New results
- Hypersonic Turbulence of H2O Masers
- Water Masers Tracing Alfvenic Turbulence and Magnetic Fields in W51 M and W49 N
- Turbulence in the Ursa Major cirrus cloud
- The Collisions of HVCs with a Magnetized Gaseous Disk
- The Initial Stellar Mass Function as a Statistical Sample of Turbulent Cloud Structure
- The Structure of Molecular Clouds: are they Fractal?
- Diagnosing Properties of Turbulent Flows from Spectral Line Observations of the Molecular Interstellar Medium
- Centroid Velocity Increments as a Probe of the Turbulent Velocity Field in Interstellar Molecular Clouds
- High-Resolution C18O Mapping Observations of Heiles' Cloud 2 – Statistical Properties of the Line Width –
- Observations of Magnetic Fields in Dense Interstellar Clouds: Implications for MHD Turbulence and Cloud Evolution
- The Density PDFs of Supersonic Random Flows
- Turbulence as an Organizing Agent in the ISM
- Turbulence and Magnetic Reconnection in the Interstellar Medium
- The Evolution of Self-Gravitating, Magnetized, Turbulent Clouds: Numerical Experiments
- Super–Alfvénic Turbulent Fragmentation in Molecular Clouds
- Decay Timescales of MHD Turbulence in Molecular Clouds
- Numerical Magnetohydrodynamic Studies of Turbulence and Star Formation
- Direct Numerical Simulations of Compressible Magnetohydrodynamical Turbulence
- Fragmentation in Molecular Clouds: The Formation of a Stellar Cluster
- Accretion Disk Turbulence
- List of participants
Summary
A model for the initial stellar mass function based on random sampling in a hierarchical cloud is reviewed. The Salpeter function is readily obtained, with a flattening at low mass where cloud pieces cannot become self-gravitating. Fluctuations around the IMF are considered.
Introduction
The initial stellar mass function (IMF) shares two properties with turbulence: it is partly scale-free, with nearly a power law distribution for a factor of ∼ 100 in mass, and it is ubiquitous. The scale-free behavior is also like turbulence in the sense that the power law appears beyond a physical boundary, which in this case is set by the inability of gas to form stars at very low mass (at a given temperature and pressure). There is probably an upper boundary for stellar mass too, but this has not been observed yet because high mass stars are rare.
The IMF is ubiquitous as well, having about the same power law slope for the mass distribution function in a wide variety of environments, from old globular clusters to OB associations and young clusters. There are clear deviations from this average slope, and there are sometimes gaps and bumps in the IMF for particular clusters, but it is possible that these deviations and features are within the range of statistical fluctuations, as in the model discussed here. It is also possible that really significant differences in the IMF occur as a result of differences in the one physical parameter that enters this distribution, the lower mass limit.
- Type
- Chapter
- Information
- Interstellar Turbulence , pp. 179 - 189Publisher: Cambridge University PressPrint publication year: 1999
- 1
- Cited by