Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T05:18:40.190Z Has data issue: false hasContentIssue false

Chapter 24 - Pipeline of Pharmacotherapy in Parkinson’s Disease

Upcoming New Molecules in the Treatment of Parkinson’s Disease

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Many drugs are available to treat Parkinson’s disease (PD), but are limited to alleviating symptoms; no disease-modifying treatment (DMT) has been approved by any authority. There is much effort to develop remedies capable of altering the underlying neurodegenerative processes in PD. Current concepts target the deposition of pathologic α-synuclein oligomers either by immunization strategies or by small molecules that interact with the protein aggregation. Further DMT approaches modulate pathologically active intracellular processes such as the c-Abl kinase or LRRK2 pathway or aim to activate signaling pathways involved in neuroprotection, such as the GLP-1 receptor pathway (with GLP1-agonist exenatide being the most advanced DMT in the PD drug pipeline). Replacement of enzymes such as β-glucocerebrosidase, modification of the microbiome, or targeting energy metabolism or inflammation are further approaches proposed to slow down neurodegeneration. Novel symptomatic treatment approaches envisage improvement of pharmacologic properties of levodopa or dopamine agonists or target non-dopaminergic neurotransmitter systems, e.g., the glutamatergic, serotoninergic or cholinergic system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dorsey, ER, Sherer, T, Okun, MS, Bloem, BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 2018;8(s1:S3S8.CrossRefGoogle ScholarPubMed
Armstrong, MJ, Okun, MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323(6):548560.CrossRefGoogle ScholarPubMed
Lotharius, J, Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002;3(12):932942.CrossRefGoogle ScholarPubMed
Hirsch, EC, Vyas, S, Hunot, S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012;18(Suppl 1):S210212.CrossRefGoogle ScholarPubMed
Seppi, K, Ray Chaudhuri, K, Coelho, M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease – an evidence-based medicine review. Mov Disord 2019;34(2):180198.CrossRefGoogle ScholarPubMed
McFarthing, K, Buff, S, Rafaloff, G, et al.Parkinson’s disease drug therapies in the clinical trial pipeline: 2020. J Parkinsons Dis 2020;10(3):757774.CrossRefGoogle ScholarPubMed
Masliah, E, Rockenstein, E, Adame, A, et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 2005;46(6):857868.CrossRefGoogle Scholar
Games, D, Valera, E, Spencer, B, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 2014;34(28):94419454.CrossRefGoogle ScholarPubMed
Meissner, WG, Traon, AP, Foubert-Samier, A, et al. A phase 1 randomized trial of specific active α-synuclein immunotherapies PD01A and PD03A in multiple system atrophy, Mov Disord 2020;35(11):19571965.CrossRefGoogle ScholarPubMed
Volc, D, Poewe, W, Kutzelnigg, A, et al. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: a randomised, single-blinded, phase 1 trial, The Lancet. Neurology 2020;19(7):591600.Google Scholar
Nimmo, JT, Smith, H, Wang, CY, et al. Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathol 2022;143(1):5573.CrossRefGoogle ScholarPubMed
Schenk, DB, Koller, M, Ness, DK, et al. First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 2017;32(2):211218.CrossRefGoogle ScholarPubMed
Jankovic, J, Goodman, I, Safirstein, B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 2018;75(10):12061214.CrossRefGoogle ScholarPubMed
Pagano, G, Zanigni, S, Monnet, A, et al. Delayed-start analysis of PASADENA: a randomized phase 2 study to evaluate the safety and efficacy of prasinezumab in early Parkinson’s disease; Part 2 week 104 results. Presented at: MDS Virtual Congress; September 17–22, 2021. Poster LBA 5.Google Scholar
Fleming, SM, Davis, A, Simons, E. Targeting alpha-synuclein via the immune system in Parkinson’s disease: current vaccine therapies. Neuropharmacology 2022:202:108870.CrossRefGoogle ScholarPubMed
Brys, M, Fanning, L, Hung, S, et al. Randomized phase I clinical trial of anti-α-synuclein antibody BIIB054. Mov Disord 2019;34(8):11541163.CrossRefGoogle ScholarPubMed
Wrasidlo, W, Tsigelny, IF, Price, DL, et al. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain 2016:139(Pt 12):32173236.CrossRefGoogle Scholar
Price, DL, Koike, MA, Khan, A, et al. The small molecule alpha-synuclein misfolding inhibitor, NPT200–11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep 2018;8(1):16165.CrossRefGoogle Scholar
Perni, M, Galvagnion, C, Maltsev, A, et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci U S A 2017;114(6):E1009E1017.CrossRefGoogle ScholarPubMed
Hauser, RA, Sutherland, D, Madrid, JA, et al. Targeting neurons in the gastrointestinal tract to treat Parkinson’s disease. Clin Parkinsonism Relat Disord 2019;1:27.CrossRefGoogle ScholarPubMed
Wagner, J, Ryazanov, S, Leonov, A, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 2013;125(6):795813.CrossRefGoogle ScholarPubMed
Lemos, M, Venezia, S, Refolo, V, et al. Targeting α-synuclein by PD03 AFFITOPE® and Anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance. Transl Neurodegener 2020;9(1):38.CrossRefGoogle Scholar
Paul, A, Zhang, BD, Mohapatra, S, et al. Novel mannitol-based small molecules for inhibiting aggregation of α-synuclein amyloids in Parkinson’s disease. Front Mol Biosci 2019;6:16.CrossRefGoogle ScholarPubMed
Shaltiel-Karyo, R, Frenkel-Pinter, M, Rockenstein, E, et al. A blood–brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J Biol Chem 2013;288(24):1757917588.CrossRefGoogle ScholarPubMed
Lahiri, DK, Chen, D, Maloney, B, et al. The experimental Alzheimer’s disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Therap 2007;320(1):386396.CrossRefGoogle ScholarPubMed
Kuo, YM, Nwankwo, EI, Nussbaum, RL, Rogers, J, Maccecchini, ML. Translational inhibition of α-synuclein by Posiphen normalizes distal colon motility in transgenic Parkinson mice. Am J Neurodegener Dis 2019;8(1):115.Google ScholarPubMed
Maccecchini, ML, Chang, MY, Pan, C, et al. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-β peptide and τ levels: target engagement, tolerability and pharmacokinetics in humans. J Neurol Neurosurg Psychiatry 2012;83(9):894902.CrossRefGoogle ScholarPubMed
Krishnan, R, Tsubery, H, Proschitsky, MY, et al. A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J Mol Biol 2014;426(13):25002519.CrossRefGoogle ScholarPubMed
Levenson, JM, Schroeter, S, Carroll, JC, et al. NPT088 reduces both amyloid-β and tau pathologies in transgenic mice. Alzheimers Dement (N Y) 2016;2(3):141155.CrossRefGoogle ScholarPubMed
Michelson, D, Grundman, M, Magnuson, K, et al. Randomized, placebo controlled trial of NPT088, a phage-derived, amyloid-targeted treatment for Alzheimer’s disease. J Prev Alzheimers Dis 2019;6(4):228231.Google ScholarPubMed
Lee, JE, Kim, HN, Kim, DY, et al. Memantine exerts neuroprotective effects by modulating α-synuclein transmission in a parkinsonian model. Exp Neurol 2021;344:113810.CrossRefGoogle Scholar
Chen, Y, Sam, R, Sharma, P, et al. Glucocerebrosidase as a therapeutic target for Parkinson’s disease. Exp Opin Therap Targets 2020;24(4):287294.CrossRefGoogle ScholarPubMed
Abeliovich, A, Hefti, F, Sevigny, J. Gene therapy for Parkinson’s disease associated with GBA1 mutations. J Parkinsons Dis 2021;11(s2):S183S188.CrossRefGoogle ScholarPubMed
Peterschmitt, MJ, Crawford, NPS, Gaemers, SJM, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of oral venglustat in healthy volunteers. Clin Pharmacol Drug Devel 2021;10(1):8698.CrossRefGoogle ScholarPubMed
Peterschmitt, MJ, Saiki, H, Hatano, T, et al. Safety, pharmacokinetics, and pharmacodynamics of oral venglustat in patients with Parkinson’s disease and a GBA mutation: results from part 1 of the randomized, double-blinded, placebo-controlled MOVES-PD trial. J Parkinsons Dis 2022;12(2):557570.CrossRefGoogle Scholar
Schneider, SA, Hizli, B, Alcalay, RN. Emerging targeted therapeutics for genetic subtypes of parkinsonism. Neurotherapeutics 2020;17(4):13781392.CrossRefGoogle ScholarPubMed
Migdalska-Richards, A, Daly, L, Bezard, E, Schapira, AH. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol 2016;80(5):766775.CrossRefGoogle ScholarPubMed
Mullin, S, Smith, L, Lee, K, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol 2020;77(4):427434.CrossRefGoogle ScholarPubMed
den Heijer, JM, Kruithof, AC, van Amerongen, G, et al. A randomized single and multiple ascending dose study in healthy volunteers of LTI-291, a centrally penetrant glucocerebrosidase activator. Br J Clin Pharmacol 2021;87(9):35613573.CrossRefGoogle ScholarPubMed
Kinghorn, KJ, Asghari, AM, Castillo-Quan, JI. The emerging role of autophagic–lysosomal dysfunction in Gaucher disease and Parkinson’s disease. Neural Regener Res 2017;12(3):380384.CrossRefGoogle ScholarPubMed
Werner, M.H., Olanow, C.W., Parkinson’s disease modification through Abl kinase inhibition: an opportunity. Mov Disord 2022;37(1):615.CrossRefGoogle ScholarPubMed
Pagan, FL, Hebron, ML, Wilmarth, B, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol 2020;77(3):309317.CrossRefGoogle ScholarPubMed
Simuni, T, Fiske, B, Merchant, K, et al. Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. JAMA Neurol 2021;78(3):312320.CrossRefGoogle ScholarPubMed
Fowler, AJ, Hebron, M, Missner, AA, et al. Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Drugs R D 2019;19(2):149166.CrossRefGoogle ScholarPubMed
Tolosa, E, Vila, M, Klein, C, Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020;16(2):97107.CrossRefGoogle ScholarPubMed
Blanca Ramírez, M, Madero-Perez, J, Rivero-Rios, P, et al. LRRK2 and Parkinson’s disease: from lack of structure to gain of function. Curr Protein Peptide Sci 2017;18(7):677686.CrossRefGoogle ScholarPubMed
Wojewska, DN, Kortholt, A. LRRK2 targeting strategies as potential treatment of Parkinson’s disease. Biomolecules 2021;11(8):1101.CrossRefGoogle ScholarPubMed
Brauer, R, Wei, L, Ma, T, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain 2020;143(10):30673076.CrossRefGoogle ScholarPubMed
Grieco, M, Giorgi, A, Gentile, MC, et al. Glucagon-like peptide-1: a focus on neurodegenerative diseases. Front Neurosci 2019;13:1112.CrossRefGoogle ScholarPubMed
Zhang, L, Zhang, L, Li, L, Hölscher, C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis 2019;9(1):157171.CrossRefGoogle ScholarPubMed
Athauda, D, Maclagan, K, Skene, SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390(10103):16641675.CrossRefGoogle ScholarPubMed
Liu, W, Jalewa, J, Sharma, M, et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 2015;303:4250.CrossRefGoogle ScholarPubMed
Svenningsson, P, Wirdefeldt, K, Yin, L, et al. Reduced incidence of Parkinson’s disease after dipeptidyl peptidase-4 inhibitors – a nationwide case–control study. Mov Disord 2016;31(9):14221423.CrossRefGoogle ScholarPubMed
Craft, S, Raman, R, Chow, TW, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol 2020;77(9):10991109.CrossRefGoogle ScholarPubMed
Novak, P, Pimentel Maldonado, DA, Novak, V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: a double-blinded placebo-controlled pilot study. PLoS One 2019;14(4):e0214364.CrossRefGoogle ScholarPubMed
Riesenberg, R, Werth, J, Zhang, Y, Duvvuri, S, Gray, D. PF-06649751 efficacy and safety in early Parkinson’s disease: a randomized, placebo-controlled trial. Therap Adv Neurol Disord 2020;13:1756286420911296.CrossRefGoogle ScholarPubMed
Brice, NL, Schiffer, HH, Monenschein, H, et al. Development of CVN424: a selective and novel GPR6 inverse agonist effective in models of Parkinson disease. J Pharmacol Exp Therap 2021;377(3):407416.CrossRefGoogle ScholarPubMed
Olanow, CW, Standaert, DG, Kieburtz, K, Viegas, TX, Moreadith, R. Once-weekly subcutaneous delivery of polymer-linked rotigotine (SER-214) provides continuous plasma levels in Parkinson’s disease patients. Mov Disord 2020;35(6):10551061.CrossRefGoogle ScholarPubMed
Olanow, CW, Kieburtz, K, Leinonen, M, et al. A randomized trial of a low-dose rasagiline and pramipexole combination (P2B001) in early Parkinson’s disease. Mov Disord 2017;32(5):783789.CrossRefGoogle ScholarPubMed
Schuepbach, WM, Rau, J, Knudsen, K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368(7):610622.CrossRefGoogle ScholarPubMed
Olanow, CW, Factor, SA, Espay, AJ, et al. Apomorphine sublingual film for off episodes in Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 study. Lancet Neurol 2020;19(2):135144.CrossRefGoogle ScholarPubMed
Poewe, W, Antonini, A. Novel formulations and modes of delivery of levodopa. Mov Disord 2015;30(1):114120.CrossRefGoogle ScholarPubMed
Rosebraugh, M, Voight, EA, Moussa, EM, et al. Foslevodopa/foscarbidopa: a new subcutaneous treatment for Parkinson’s disease. Ann Neurol 2021;90(1):5261.CrossRefGoogle ScholarPubMed
Olanow, CW, Espay, AJ, Stocchi, F, et al. Continuous subcutaneous levodopa delivery for Parkinson’s disease: a randomized study. J Parkinsons Dis 2021;11(1):177186.CrossRefGoogle ScholarPubMed
Laloux, C, Gouel, F, Lachaud, C, et al. Continuous cerebroventricular administration of dopamine: a new treatment for severe dyskinesia in Parkinson’s disease? Neurobiol Dis 2017;103:2431.CrossRefGoogle ScholarPubMed
Fabbrini, A, Guerra, A. Pathophysiological mechanisms and experimental pharmacotherapy for L-dopa-induced dyskinesia. J Exp Pharmacol 2021;13:469485.CrossRefGoogle ScholarPubMed
Wolf, E, Seppi, K, Katzenschlager, R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 2010;25(10):13571363.CrossRefGoogle ScholarPubMed
Natoli, S. The multiple faces of ketamine in anaesthesia and analgesia. Drugs Context 2021;10:2020-12-8.CrossRefGoogle ScholarPubMed
Park, LT, Kadriu, B, Gould, TD, et al. A randomized trial of the N-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int J Neuropsychopharmacol 2020;23(7):417425.CrossRefGoogle ScholarPubMed
Wallace, M, White, A, Grako, KA, et al. Randomized, double-blind, placebo-controlled, dose-escalation study: Investigation of the safety, pharmacokinetics, and antihyperalgesic activity of l-4-chlorokynurenine in healthy volunteers. Scand J Pain 2017;17:243251.CrossRefGoogle ScholarPubMed
Rascol, O, Fox, S, Gasparini, F, et al. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 2014;20(9):947956.CrossRefGoogle ScholarPubMed
Trenkwalder, C, Stocchi, F, Poewe, W, et al. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord 2016;31(7):10541058.CrossRefGoogle ScholarPubMed
Tison, F, Keywood, C, Wakefield, M, et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 2016;31(9):13731380.CrossRefGoogle ScholarPubMed
Cavallone, LF, Montana, MC, Frey, K, et al. The metabotropic glutamate receptor 5 negative allosteric modulator fenobam: pharmacokinetics, side effects, and analgesic effects in healthy human subjects. Pain 2020;161(1):135146.CrossRefGoogle ScholarPubMed
Haass-Koffler, CL, Goodyear, K, Long, VM, et al. A phase I randomized clinical trial testing the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy volunteers. Eur J Pharmaceut Sci 2017;109:7885.CrossRefGoogle ScholarPubMed
Kågedal, M, Cselényi, Z, Nyberg, S, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 – estimating occupancy in the absence of a reference region. NeuroImage 2013;82:160169.CrossRefGoogle ScholarPubMed
Zerbib, F, Bruley des Varannes, S, Roman, S, et al. Randomised clinical trial: effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2011;33(8):911921.CrossRefGoogle ScholarPubMed
Youssef, EA, Berry-Kravis, E, Czech, C, et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results. Neuropsychopharmacology 2018;43(3):503512.CrossRefGoogle Scholar
Barth, AL, Schneider, JS, Johnston, TH, et al. NYX-458 improves cognitive performance in a primate Parkinson’s disease model. Mov Disord 2020;35(4):640649.CrossRefGoogle Scholar
Kawazoe, T, Park, HK, Iwana, S, Tsuge, H, Fukui, K. Human d-amino acid oxidase: an update and review. Chem Rec 2007;7(5):305315.CrossRefGoogle ScholarPubMed
Bonifati, V, Fabrizio, E, Cipriani, R, Vanacore, N, Meco, G. Buspirone in levodopa-induced dyskinesias. Clin Neuropharmacol 1994;17(1):7382.CrossRefGoogle ScholarPubMed
Depoortere, R, Johnston, TH, Fox, SH, Brotchie, JM, Newman-Tancredi, A. The selective 5-HT(1A) receptor agonist, NLX-112, exerts anti-dyskinetic effects in MPTP-treated macaques. Parkinsonism Relat Disord 2020;78;151157.CrossRefGoogle ScholarPubMed
Zoldan, J, Friedberg, G, Livneh, M, Melamed, E. Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 1995;45(7):13051308.CrossRefGoogle ScholarPubMed
Zeiss, R, Gahr, M, Graf, H. Rediscovering psilocybin as an antidepressive treatment strategy. Pharmaceuticals (Basel) 2021;14(10):985.CrossRefGoogle Scholar
Lowe, H, Toyang, N, Steele, B, Bryant, J, Ngwa, W. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci 2021;22(17):9472.CrossRefGoogle ScholarPubMed
Carroll, CB, Bain, PG, Teare, L, Liu, X, Joint, C, Wroath, C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology 2004;63(7):12451250.CrossRefGoogle ScholarPubMed
Sieradzan, KA, Fox, SH, Hill, M, et al. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 2001;57(11):21082111.CrossRefGoogle ScholarPubMed
Peball, M, Krismer, F, Knaus, HG, et al. Non-motor symptoms in Parkinson’s disease are reduced by nabilone. Ann Neurol 2020;88(4):712722.CrossRefGoogle ScholarPubMed
de Almeida, CMO, Brito, MMC, Bosaipo, NB, et al. Cannabidiol for rapid eye movement sleep behavior disorder. Mov Disord 2021;36(7):17111715.CrossRefGoogle ScholarPubMed
Perez-Lloret, S, Barrantes, FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis 2016;2:16001.CrossRefGoogle ScholarPubMed
Henderson, EJ, Lord, SR, Brodie, MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016;15(3):249258.CrossRefGoogle ScholarPubMed
Sydserff, S, Sutton, EJ, Song, D, et al. Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 2009;78(7):880888.CrossRefGoogle ScholarPubMed
Castner, SA, Smagin, GN, Piser, TM, et al. Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol Psychiatry 2011;69(1):1218.CrossRefGoogle ScholarPubMed
Yonguc, T, Sefik, E, Inci, I, et al. Randomized, controlled trial of fesoterodine fumarate for overactive bladder in Parkinson’s disease. World J Urol 2020;38(8):20132019.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Evatt, M, Vaughan, CP, et al. Randomized, controlled pilot trial of solifenacin succinate for overactive bladder in Parkinson’s disease. Parkinsonism Relat Disord 2015;21(5):514520.CrossRefGoogle ScholarPubMed
Oertel, WH, Henrich, MT, Janzen, A, Geibl, FF. The locus coeruleus: another vulnerability target in Parkinson’s disease. Mov Disord 2019;34(10):14231429.CrossRefGoogle ScholarPubMed
Kaufmann, H, Freeman, R, Biaggioni, I, et al. Droxidopa for neurogenic orthostatic hypotension: a randomized, placebo-controlled, phase 3 trial. Neurology 2014;83(4):328335.CrossRefGoogle ScholarPubMed
Cho, SY, Jeong, SJ, Lee, S, et al. Mirabegron for treatment of overactive bladder symptoms in patients with Parkinson’s disease: a double-blind, randomized placebo-controlled trial (Parkinson’s Disease Overactive bladder Mirabegron, PaDoMi Study). Neurourol Urodyn 2021;40(1):286294.CrossRefGoogle ScholarPubMed
Zhang, XL, Wang, GB, Zhao, LY, et al. Clonidine improved laboratory-measured decision-making performance in abstinent heroin addicts. PLoS One 2012;7(1):e29084.CrossRefGoogle ScholarPubMed
Tasker, NR, Wipf, P. Biosynthesis, total synthesis, and biological profiles of ergot alkaloids. Alkaloids Chem Biol 2021;85:1112.CrossRefGoogle ScholarPubMed
Li, H, Kim, J, Tran, HNK, et al. Extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan reduces behavioral defect and enhances autophagy in experimental models of Parkinson’s disease. Neuromolec Med 2021;23(3):428443.CrossRefGoogle ScholarPubMed
Shi, J, Tian, J, Li, T, et al. Efficacy and safety of SQJZ herbal mixtures on nonmotor symptoms in Parkinson disease patients: protocol for a randomized, double-blind, placebo-controlled trial. Medicine 2017;96(50):e8824.CrossRefGoogle ScholarPubMed
Zhang, R, Xu, S, Cai, Y, et al. Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation. Evid Based Complement Alternat Med 2011;2011:156810.CrossRefGoogle ScholarPubMed
Kuypers, KPC. Self-medication with Ganoderma lucidum (“Reishi”) to combat Parkinson’s disease symptoms: a single case study. J Med Food 2021;24(7):766773.CrossRefGoogle ScholarPubMed
Sun, P, Su, L, Zhu, H, et al. Gut microbiota regulation and their implication in the development of neurodegenerative disease. Microorganisms 2021:9(11):2281.CrossRefGoogle ScholarPubMed
Hegelmaier, T, Lebbing, M, Duscha, A, et al. Interventional influence of the intestinal microbiome through dietary intervention and bowel cleansing might improve motor symptoms in Parkinson’s disease. Cells 2020;9(2):376.CrossRefGoogle ScholarPubMed
Chen, C, Turnbull, DM, Reeve, AK. Mitochondrial dysfunction in Parkinson’s disease – cause or consequence? Biology 2019;8(2):38.CrossRefGoogle ScholarPubMed
Avcı, B, Günaydın, C, Güvenç, T, et al. Idebenone ameliorates rotenone-induced Parkinson’s disease in rats through decreasing lipid peroxidation. Neurochem Res 2021;46(3):513522.CrossRefGoogle ScholarPubMed
Yan, A, Liu, Z, Song, L, et al. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson’s disease mice. Front Cell Neurosci 2018;12:529.CrossRefGoogle ScholarPubMed
Monti, DA, Zabrecky, G, Kremens, D, et al. N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin Pharmacol Ther 2019;106(4):884890.CrossRefGoogle ScholarPubMed
Sathe, AG, Tuite, P, Chen, C, et al. Pharmacokinetics, safety, and tolerability of orally administered ursodeoxycholic acid in patients with Parkinson’s disease – a pilot study. J Clin Pharmacol 2020;60(6):744750.CrossRefGoogle ScholarPubMed
Kim, J. Pre-clinical neuroprotective evidences and plausible mechanisms of sulforaphane in Alzheimer’s disease. Int J Mol Sci 2021;22(6):6929.Google ScholarPubMed
Gendelman, HE, Zhang, Y, Santamaria, P, et al. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinson’s Dis 2017;3:10.CrossRefGoogle Scholar
Olson, KE, Namminga, KL, Lu, Y, et al. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine 2021;67:103380.CrossRefGoogle ScholarPubMed
Zhou, X, Lu, J, Wei, K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson’s disease mouse model by regulating inflammation and intestinal microbiota. Oxid Med Cell Longev 2021;2021:9424582.CrossRefGoogle ScholarPubMed
Yimer, EM, Hishe, HZ, Tuem, KB. Repurposing of the β-lactam antibiotic, ceftriaxone for neurological disorders: a review. Front Neurosci 2019;13:236.CrossRefGoogle ScholarPubMed
Reading, CL, Ahlem, CN, Murphy, MF. NM101 Phase III study of NE3107 in Alzheimer’s disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener Dis Manag 2021;11(4):289298.CrossRefGoogle ScholarPubMed
Zhou, W, Bercury, K, Cummiskey, J, et al. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 2011;286(17):1494114951.CrossRefGoogle ScholarPubMed
Mahoney-Sánchez, L, Bouchaoui, H, Ayton, S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Progr Neurobiol 2021;196:101890.CrossRefGoogle ScholarPubMed
Devos, D, Moreau, C, Devedjian, JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014;21(2):195210.CrossRefGoogle ScholarPubMed
Martin-Bastida, A, Ward, RJ, Newbould, R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 2017;7(1):1398.CrossRefGoogle Scholar
Salehi, Z, Rajaei, F. Expression of hepatocyte growth factor in the serum and cerebrospinal fluid of patients with Parkinson’s disease. J Clin Neurosci 2010;17(12):15531556.CrossRefGoogle ScholarPubMed
Schneider, JS, Gollomp, SM, Sendek, S, et al. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 2013;324(1–2):140148.CrossRefGoogle ScholarPubMed
Schneider, JS, Cambi, F, Gollomp, SM, et al. GM1 ganglioside in Parkinson’s disease: pilot study of effects on dopamine transporter binding. J Neurol Sci 2015;356(1–2):118123.CrossRefGoogle ScholarPubMed
Lahmy, V, Long, R, Morin, D, Villard, V, Maurice, T. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2–73, a tetrahydrofuran derivative, in Aβ25–35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Front Cell Neurosci 2014;8:463.Google ScholarPubMed
Björklund, T, Davidsson, M. Next-generation gene therapy for Parkinson’s disease using engineered viral vectors. J Parkinsons Dis 2021;11(s2):S209S217.CrossRefGoogle ScholarPubMed
Palfi, S, Gurruchaga, JM, Ralph, GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014;383(9923):11381146.CrossRefGoogle ScholarPubMed
Palfi, S, Gurruchaga, JM, Lepetit, H, et al. Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum Gene Ther Clin Dev 2018;29(3):148155.CrossRefGoogle ScholarPubMed
Marks, WJ Jr, Baumann, TL, Bartus, RT. Long-term safety of patients with Parkinson’s disease receiving rAAV2-neurturin (CERE-120) gene transfer. Hum Gene Ther 2016;27(7):522527.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×