Skip to main content Accessibility help
×
Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-29T11:51:05.404Z Has data issue: false hasContentIssue false

Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

References

Pfeiffer, RF. Autonomic dysfunction in Parkinson’s disease. Neurotherapeutics 2020;17(4):14641479.CrossRefGoogle ScholarPubMed
Stanković, I, Petrović, I, Pekmezović, T, et al. Longitudinal assessment of autonomic dysfunction in early Parkinson’s disease. Parkinsonism Relat Disord 2019;66:7479.CrossRefGoogle ScholarPubMed
Szewczyk-Krolikowski, K, Tomlinson, P, Nithi, K, et al. The influence of age and gender on motor and non-motor features of early Parkinson’s disease: initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism Relat Disord 2014;20(1):99105.CrossRefGoogle ScholarPubMed
Sauerbier, A, Lenka, A, Aris, A, Pal, PK. Nonmotor symptoms in Parkinson’s disease: gender and ethnic differences. Int Rev Neurobiol 2017:133:417446.CrossRefGoogle ScholarPubMed
Schrag, A, Hommel, ALAJ, Lorenzl, S, et al. The late stage of Parkinson’s – results of a large multinational study on motor and non-motor complications. Parkinsonism Relat Disord 2020;75:9196.CrossRefGoogle Scholar
Espay, AJ, Marras, C. Clinical Parkinson disease subtyping does not predict pathology. Nat Rev Neurol 2019;15(4):189190.CrossRefGoogle ScholarPubMed
Borghammer, P, Van Den Berge, N. Brain-first versus gut-first Parkinson’s disease: a hypothesis. J Parkinsons Dis 2019;9(s2):S281295.CrossRefGoogle ScholarPubMed
Palermo, G, Del Prete, E, Bonuccelli, U, Ceravolo, R. Early autonomic and cognitive dysfunction in PD, DLB and MSA: blurring the boundaries between α-synucleinopathies. J Neurol 2020;267(12):34443456.CrossRefGoogle ScholarPubMed
Seppi, K, Ray Chaudhuri, K, Coelho, M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease – an evidence-based medicine review. Mov Disord 2019;34(2):180198.CrossRefGoogle ScholarPubMed
Rukavina, K, Batzu, L, Boogers, A, et al. Non-motor complications in late stage Parkinson’s disease: recognition, management and unmet needs. Expert Rev Neurother 2021;21(3):335352.CrossRefGoogle ScholarPubMed
Hermanowicz, N, Jones, SA, Hauser, RA. Impact of non-motor symptoms in parkinson’s disease: a PMDAlliance survey. Neuropsychiatr Dis Treat 2019;15:22052212.CrossRefGoogle ScholarPubMed
Hurt, CS, Rixon, L, Chaudhuri, KR, et al. Barriers to reporting non-motor symptoms to health-care providers in people with Parkinson’s. Parkinsonism Relat Disord 2019;64:220225.CrossRefGoogle ScholarPubMed
Kaufmann, H, Palma, JA. Neurogenic orthostatic hypotension: the very basics. Clin Auton Res 2017;27(s1):3943.CrossRefGoogle ScholarPubMed
Fanciulli, A, Campese, N, Goebel, G, et al. Association of transient orthostatic hypotension with falls and syncope in patients with Parkinson’s disease. Neurology 2020;95(21):e2854e2865.CrossRefGoogle Scholar
Shiraishi, T, Umehara, T, Oka, H, et al. Clinical and neuroendocrinological characteristics of delayed orthostatic hypotension in Parkinson’s disease. Clin Auton Res 2021;31(3):425431.CrossRefGoogle ScholarPubMed
Espay, AJ, LeWitt, PA, Hauser, RA, et al. Neurogenic orthostatic hypotension and supine hypertension in Parkinson’s disease and related synucleinopathies: prioritisation of treatment targets. Lancet Neurol 2016;15(9):954966.CrossRefGoogle ScholarPubMed
Chaudhuri, KR, Ellis, C, Love-Jones, S, et al. Postprandial hypotension and parkinsonian state in Parkinson’s disease. Mov Disord 1997;12(6):877884.CrossRefGoogle ScholarPubMed
Merola, A, Sawyer, RP, Artusi, CA, et al. Orthostatic hypotension in Parkinson disease: impact on health care utilization. Parkinsonism Relat Disord 2018;47:4549.CrossRefGoogle ScholarPubMed
Hiorth, YH, Pedersen, KF, Dalen, I, Tysnes, OB, Alves, G. Orthostatic hypotension in Parkinson disease: a 7-year prospective population-based study. Neurology 2019;93(16):E1526–1534.CrossRefGoogle ScholarPubMed
Palma, JA, Kaufmann, H. Orthostatic hypotension in Parkinson disease. Clin Geriatr Med 2020;36(1):5367.CrossRefGoogle ScholarPubMed
Gibbons, CH, Schmidt, P, Biaggioni, I, et al. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol 2017;264(8):15671582.CrossRefGoogle ScholarPubMed
Palma, JA, Kaufmann, H. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord 2018;33(3):372390.CrossRefGoogle ScholarPubMed
Pavy-Le Traon, A, Amarenco, G, Duerr, S, et al. The Movement Disorders Task Force review of dysautonomia rating scales in Parkinson’s disease with regard to symptoms of orthostatic hypotension. Mov Disord 2011;26(11):19851992.CrossRefGoogle ScholarPubMed
Kaufmann, H, Malamut, R, Norcliffe-Kaufmann, L, Rosa, K, Freeman, R. The Orthostatic Hypotension Questionnaire (OHQ): validation of a novel symptom assessment scale. Clin Auton Res 2012;22(2):7990.CrossRefGoogle ScholarPubMed
Braune, S, Reinhardt, M, Schnitzer, R, Riedel, A, Lücking, CH. Cardiac uptake of 123I MIBG separates Parkinson’s disease from multiple system atrophy. Neurology 1999;53(5):1020.CrossRefGoogle ScholarPubMed
Palma, JA, Gomez-Esteban, JC, Norcliffe-Kaufmann, L, et al. Orthostatic hypotension in Parkinson disease: how much you fall or how low you go? Mov Disord 2015;30(5):639645.CrossRefGoogle ScholarPubMed
Merola, A, Romagnolo, A, Rosso, M, et al. Orthostatic hypotension in Parkinson’s disease: does it matter if asymptomatic? Parkinsonism Relat Disord 2016;33:6571.CrossRefGoogle ScholarPubMed
Fanciulli, A, Goebel, G, Metzler, B, et al. Elastic abdominal binders attenuate orthostatic hypotension in Parkinson’s disease. Mov Disord Clin Pract 2016;3(2):156160.CrossRefGoogle ScholarPubMed
Jordan, J, Fanciulli, A, Tank, J, et al. Management of supine hypertension in patients with neurogenic orthostatic hypotension: scientific statement of the American Autonomic Society, European Federation of Autonomic Societies, and the European Society of Hypertension. J Hypertens 2019;37(8):15411546.CrossRefGoogle ScholarPubMed
Kaufmann, H, Norcliffe-Kaufmann, L, Hewitt, LA, Rowse, GJ, White, WB. Effects of the novel norepinephrine prodrug, droxidopa, on ambulatory blood pressure in patients with neurogenic orthostatic hypotension. J Am Soc Hypertens 2016;10(10):819826.CrossRefGoogle ScholarPubMed
Rukavina, K, Batzu, L, Leta, V, Chaudhuri, KR. New approaches to treatments for sleep, pain and autonomic failure in Parkinson’s disease – pharmacological therapies. Neuropharmacology 2022;208:108959.CrossRefGoogle ScholarPubMed
Dafsari, HS, Petry-Schmelzer, JN, Ray-Chaudhuri, K, et al. Non-motor outcomes of subthalamic stimulation in Parkinson’s disease depend on location of active contacts. Brain Stimul 2018;11(4):904912.CrossRefGoogle ScholarPubMed
Barone, P, Antonini, A, Colosimo, C, et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 2009;24(11):16411649.CrossRefGoogle ScholarPubMed
Sakakibara, R, Panicker, J, Finazzi-Agro, E, Iacovelli, V, Bruschini, H. A guideline for the management of bladder dysfunction in Parkinson’s disease and other gait disorders. Neurourol Urodyn 2015;35:551563.CrossRefGoogle ScholarPubMed
Picillo, M, Palladino, R, Barone, P, et al. The PRIAMO study: urinary dysfunction as a marker of disease progression in early Parkinson’s disease. Eur J Neurol 2017;24(6):788795.CrossRefGoogle ScholarPubMed
Batla, A, Tayim, N, Pakzad, M, Panicker, JN. Treatment options for urogenital dysfunction in Parkinson’s disease. Curr Treat Options Neurol 2016;18(10):45.CrossRefGoogle ScholarPubMed
Schapira, AHV, Chaudhuri, KR, Jenner, P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017;18(7):435450.CrossRefGoogle ScholarPubMed
Batla, A, Phé, V, De Min, L, Panicker, JN. Nocturia in Parkinson’s disease: why does it occur and how to manage? Mov Disord Clin Pract 2016;3(5):443451.CrossRefGoogle ScholarPubMed
Madan, A, Ray, S, Burdick, D, Agarwal, P. Management of lower urinary tract symptoms in Parkinson’s disease in the neurology clinic. Int J Neurosci 2017;127(12):11361149.CrossRefGoogle ScholarPubMed
Ogawa, T, Sakakibara, R, Kuno, S, et al. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy. Nat Rev Urol 2017;14(2):7989.CrossRefGoogle ScholarPubMed
Erro, R, Vitale, C, Amboni, M, et al. The heterogeneity of early Parkinson’s disease: a cluster analysis on newly diagnosed untreated patients. PLoS One 2013;8(8):18.CrossRefGoogle ScholarPubMed
Picillo, M, Palladino, R, Erro, R, et al. The PRIAMO study: active sexual life is associated with better motor and non-motor outcomes in men with early Parkinson’s disease. Eur J Neurol 2019;26(10):13271333.CrossRefGoogle ScholarPubMed
Bernard, BA, Metman, LV, Levine, L, et al. Sildenafil in the treatment of erectile dysfunction in Parkinson’s disease. Mov Disord Clin Pract 2017;4(3):412415.CrossRefGoogle ScholarPubMed
Varanda, S, Ribeiro da Silva, J, Costa, AS, et al. Sexual dysfunction in women with Parkinson’s disease. Mov Disord 2016;31(11):16851693.CrossRefGoogle ScholarPubMed
Hassan, A, Bower, JH, Kumar, N, et al. Dopamine agonist-triggered pathological behaviors: surveillance in the PD clinic reveals high frequencies. Parkinsonism Relat Disord 2011;17(4):260264.CrossRefGoogle ScholarPubMed
Mobley, DF, Khera, M, Baum, N. Recent advances in the treatment of erectile dysfunction. Postgrad Med J 2017;93(1105):679685.CrossRefGoogle ScholarPubMed
Urso, D, Leta, V, Rukavina, K. Management strategies of sexual dysfunctions in Parkinson’s disease. Int Rev Neurobiol 2022;162:97116.CrossRefGoogle ScholarPubMed
Pfeiffer, RF. Gastrointestinal dysfunction in Parkinson’s disease. Curr Treat Options Neurol 2018;20(12):54.CrossRefGoogle ScholarPubMed
Fasano, A, Visanji, NP, Liu, LWC, Lang, AE, Pfeiffer, RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol 2015;14(6):625639.CrossRefGoogle ScholarPubMed
Simuni, T, Caspell-Garcia, C, Coffey, CS, et al. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson’s disease: the PPMI cohort. J Neurol Neurosurg Psychiatry 2018;89(1):7888.CrossRefGoogle ScholarPubMed
Erro, R, Picillo, M, Vitale, C, et al. The non-motor side of the honeymoon period of Parkinson’s disease and its relationship with quality of life: a 4-year longitudinal study. Eur J Neurol 2016;23(11):16731679.CrossRefGoogle ScholarPubMed
Braak, H, De Vos, RAI, Bohl, J, Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006;396(1):6772.CrossRefGoogle ScholarPubMed
Shannon, KM, Keshavarzian, A, Mutlu, E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 2012;27(6):709715.CrossRefGoogle ScholarPubMed
Abbott, RD, Petrovitch, H, White, LR, et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 2001;57(3):456462.CrossRefGoogle ScholarPubMed
Svensson, E, Horváth-Puhó, E, Thomsen, RW, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol 2015;78(4):522529.CrossRefGoogle ScholarPubMed
Liu, B, Fang, F, Pedersen, NL, et al. Vagotomy and Parkinson disease. Neurology 2017;88(21):19962002.CrossRefGoogle ScholarPubMed
Houser, MC, Tansey, MG. The gut–brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis 2017;3(1): article 3.CrossRefGoogle ScholarPubMed
Metta, V, Leta, V, Mrudula, KR, et al. Gastrointestinal dysfunction in Parkinson’s disease: molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J Neurol 2022;269(3):11541163.CrossRefGoogle ScholarPubMed
van Wamelen, DJ, Leta, V, Johnson, J, et al. Drooling in Parkinson’s disease: prevalence and progression from the Non-motor International Longitudinal Study. Dysphagia 2020;35(6):955961.CrossRefGoogle ScholarPubMed
Ray Chaudhuri, K, Qamar, MA, Rajah, T, et al. Non-oral dopaminergic therapies for Parkinson’s disease: current treatments and the future. NPJ Parkinsons Dis 2016;2(1):17.CrossRefGoogle ScholarPubMed
Marrinan, S, Emmanuel, A V., Burn, DJ. Delayed gastric emptying in Parkinson’s disease. Mov Disord 2014;29(1):2332.CrossRefGoogle ScholarPubMed
Chaudhuri, KR, Martinez-Martin, P, Schapira, AHV, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov Disord 2006;21(7):916923.CrossRefGoogle ScholarPubMed
Visser, M, Marinus, J, Stiggelbout, AM, van Hilten, JJ. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord 2004;19(11):13061312.CrossRefGoogle ScholarPubMed
Chaudhuri, KR, Schrag, A, Weintraub, D, et al. The Movement Disorder Society Nonmotor Rating Scale: initial validation study. Mov Disord 2020;35(1):116133.CrossRefGoogle ScholarPubMed
Chaudhuri, KR, Martinez-Martin, P, Brown, RG, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord 2007;22(13):19011911.CrossRefGoogle ScholarPubMed
Leta, V, Ray Chaudhuri, K, Milner, O, et al. Neurogenic and anti-inflammatory effects of probiotics in Parkinson’s disease: a systematic review of preclinical and clinical evidence. Brain Behav Immun 2021;98:5973.CrossRefGoogle ScholarPubMed
Leta, V, van Wamelen, D, Rukavina, K, et al. Sweating and other thermoregulatory abnormalities in Parkinson’s disease: a review. Ann Mov Disord 2019;2(2):3947.CrossRefGoogle Scholar
Pont-Sunyer, C, Hotter, A, Gaig, C, et al. The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 2015;30(2):229237.CrossRefGoogle ScholarPubMed
Beach, TG, Adler, CH, Sue, LI, et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010;119(6):689702.CrossRefGoogle ScholarPubMed
Gelpi, E, Navarro-Otano, J, Tolosa, E, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord 2014;29(8):10101018.CrossRefGoogle ScholarPubMed
Ramirez-Zamora, A, Smith, H, Youn, Y, et al. Hyperhidrosis associated with subthalamic deep brain stimulation in Parkinson’s disease: insights into central autonomic functional anatomy. J Neurol Sci 2016;366:5964.CrossRefGoogle ScholarPubMed
Coon, EA, Low, PA. Thermoregulation in Parkinson disease. In: Romanovsky, AA, ed., Handbook of Clinical Neurology, 1st ed., Vol. 157. Amsterdam: Elsevier B.V.; 2018: 715725Google Scholar
Hirayama, M. Sweating dysfunctions in Parkinson’s disease. J Neurol. 2006;253(suppl. 7):4247.CrossRefGoogle ScholarPubMed
Marras, C, Chaudhuri, KR. Nonmotor features of Parkinson’s disease subtypes. Mov Disord 2016;31(8):10951102.CrossRefGoogle ScholarPubMed
Yu, XX, Fernandez, HH. Dopamine agonist withdrawal syndrome: a comprehensive review. J Neurol Sci 2017;374:5355.CrossRefGoogle ScholarPubMed
Kataoka, H, Ueno, S. Severe cold lower limbs in patients with Parkinson’s disease during the summer. Neurol Int 2016;8(4):6466.CrossRefGoogle ScholarPubMed
Thomaides, TN, Chaudhuri, KR, Maule, S, et al. Growth hormone response to clonidine in central and peripheral primary autonomic failure. Lancet 1992;340(8814):263266.CrossRefGoogle ScholarPubMed
Haider, A, Solish, N. Hyperhidrosis: an approach to diagnosis and management. Dermatology Nurs 2004;16(6):515517, 523.Google ScholarPubMed
Trachani, E, Constantoyannis, C, Sirrou, V, et al. Effects of subthalamic nucleus deep brain stimulation on sweating function in Parkinson’s disease. Clin Neurol Neurosurg 2010;112(3):213217.CrossRefGoogle ScholarPubMed
Pursiainen, V, Lyytinen, J, Pekkonen, E. Effect of duodenal levodopa infusion on blood pressure and sweating. Acta Neurol Scand 2012;126(4):2024.CrossRefGoogle ScholarPubMed
Sánchez-Ferro, A, Benito-León, J, Gómez-Esteban, JC. The management of orthostatic hypotension in Parkinson’s disease. Front Neurol 2013;4:111.CrossRefGoogle ScholarPubMed
Gottwald, MD. Entacapone, a catechol-O-methyltransferase inhibitor for treating Parkinson’s disease: review and current status. Expert Opin Investig Drugs 1999;8(4):453462.CrossRefGoogle ScholarPubMed
Storch, A, Schneider, CB, Wolz, M, et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology 2013;80(9):800809.CrossRefGoogle ScholarPubMed
Nirenberg, MJ. Dopamine agonist withdrawal syndrome: implications for patient care. Drugs Aging 2013;30(8):587592.CrossRefGoogle ScholarPubMed
Newman, EJ, Grosset, DG, Kennedy, PGE. The parkinsonism–hyperpyrexia syndrome. Neurocrit Care 2009;10(1):136140.CrossRefGoogle ScholarPubMed
van Wamelen, DJ, Martinez-Martin, P, Weintraub, D, et al. The Non-Motor Symptoms Scale in Parkinson’s disease: Validation and use. Acta Neurol Scand 2021;143(1):312.CrossRefGoogle ScholarPubMed

References

Hommel, A, Meinders, MJ, Lorenzl, S, et al. The prevalence and determinants of neuropsychiatric symptoms in late-stage parkinsonism. Mov Disord Clin Pract 2020;7(5):531542.CrossRefGoogle ScholarPubMed
Schrag, A, Horsfall, L, Walters, K, Noyce, A, Petersen, I. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 2015;14:5764.CrossRefGoogle ScholarPubMed
Weintraub, D, Caspell-Garcia, C, Simuni, T, et al. Neuropsychiatric symptoms and cognitive abilities over the initial quinquennium of Parkinson disease. Ann Clin Transl Neurol 2020;7:449461.CrossRefGoogle ScholarPubMed
Kazmi, H, Walker, Z, Booij, J, et al. Late onset depression: dopaminergic deficit and clinical features of prodromal Parkinson’s disease: a cross-sectional study. J Neurol Neurosurg Psychiatry 2021;92(2):158164.CrossRefGoogle ScholarPubMed
Marinus, J, Zhu, K, Marras, C, Aarsland, D, van Hilten, JJ. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol 2018;17(6):559568.CrossRefGoogle ScholarPubMed
Patterson, L, Rushton, SP, Attems, J, Thomas, AJ, Morris, CM. Degeneration of dopaminergic circuitry influences depressive symptoms in Lewy body disorders. Brain Pathol 2019;29(4):544557.CrossRefGoogle ScholarPubMed
Saari, L, Heiskanen, L, Gardberg, M, Kaasinen, V. Depression and nigral neuron density in Lewy body spectrum diseases. Ann Neurol 2021;89:10461050.CrossRefGoogle ScholarPubMed
Ray, S, Agarwal, P. Depression and anxiety in Parkinson disease. Clin Geriatr Med 2020;36(1):93104.CrossRefGoogle ScholarPubMed
Seppi, K, Ray Chaudhuri, K, Coelho, M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence-based medicine review. Mov Disord 2019;34:180198.CrossRefGoogle ScholarPubMed
Mills, KA, Greene, MC, Dezube, R, et al. Efficacy and tolerability of antidepressants in Parkinson’s disease: a systematic review and network meta-analysis. Int J Geriatr Psychiatry 2018;33(4):642651.CrossRefGoogle ScholarPubMed
Barone, P, Santangelo, G, Morgante, L, et al. A randomized clinical trial to evaluate the effects of rasagiline on depressive symptoms in non-demented Parkinson’s disease patients. Eur J Neurol 2015;22(8):11841191.CrossRefGoogle ScholarPubMed
Barone, P, Poewe, W, Albrecht, S, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010;9:573580.CrossRefGoogle ScholarPubMed
Peball, M, Krismer, F, Knaus, HG, et al. Non-motor symptoms in Parkinson’s disease are reduced by nabilone. Ann Neurol 2020;88:712722.CrossRefGoogle ScholarPubMed
Dobkin, RD, Mann, SL, Gara, MA, et al. Telephone-based cognitive behavioral therapy for depression in Parkinson disease: a randomized controlled trial. Neurology 2020;94(16):e1764e1773.CrossRefGoogle ScholarPubMed
Dobkin, RD, Mann, SL, Weintraub, D, et al. Innovating Parkinson’s care: a randomized controlled trial of telemedicine depression treatment. Mov Disord 2021;36(11):25492558.CrossRefGoogle Scholar
Wu, PL, Lee, M, Huang, TT. Effectiveness of physical activity on patients with depression and Parkinson’s disease: a systematic review. PLoS One 2017;12(7):e0181515.CrossRefGoogle ScholarPubMed
Li, S, Jiao, R, Zhou, X, Chen, S. Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: a PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020;99(18):e19642.CrossRefGoogle ScholarPubMed
Lin, F, Su, Y, Weng, Y, et al. The effects of bright light therapy on depression and sleep disturbances in patients with Parkinson’s disease: a systematic review and meta-analysis of randomized controlled trials. Sleep Med 2021;83:280289.CrossRefGoogle ScholarPubMed
Broen, MP, Narayen, NE, Kuijf, ML, Dissanayaka, NN, Leentjens, AF. Prevalence of anxiety in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2016;31:11251133.CrossRefGoogle ScholarPubMed
van der Velden, RMJ, Broen, MPG, Kuijf, ML, Leentjens, AFG. Frequency of mood and anxiety fluctuations in Parkinson’s disease patients with motor fluctuations: a systematic review. Mov Disord 2018;33(10):15211527.CrossRefGoogle ScholarPubMed
Pontone, GM, Dissanayka, N, Apostolova, L, et al. Report from a multidisciplinary meeting on anxiety as a non-motor manifestation of Parkinson’s disease. NPJ Parkinsons Dis 2019;5:30.CrossRefGoogle ScholarPubMed
Joling, M, van den Heuvel, OA, Berendse, HW, Booij, J, Vriend, C. Serotonin transporter binding and anxiety symptoms in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2018;89(1):8994.CrossRefGoogle ScholarPubMed
Leentjens, AF, Dujardin, K, Pontone, GM, et al. The Parkinson Anxiety Scale (PAS): development and validation of a new anxiety scale. Mov Disord 2014;29(8):10351043.CrossRefGoogle ScholarPubMed
Schneider, RB, Auinger, P, Tarolli, CG, et al. A trial of buspirone for anxiety in Parkinson’s disease: safety and tolerability. Parkinsonism Relat Disord 2020;81:6974.CrossRefGoogle ScholarPubMed
Moonen, AJH, Mulders, AEP, Defebvre, L, et al. Cognitive behavioral therapy for anxiety in Parkinson’s disease: a randomized controlled trial. Mov Disord 2021;36(11):25392548.CrossRefGoogle ScholarPubMed
Kwok, JYY, Kwan, JCY, Auyeung, M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol 2019;76(7):755763.CrossRefGoogle ScholarPubMed
Estevao, C, Fancourt, D, Dazzan, P, et al. Scaling-up health-arts programmes: the largest study in the world bringing arts-based mental health interventions into a national health service. BJPsych Bull 2021;45(1):3239.CrossRefGoogle ScholarPubMed
Cummings, J, Pinto, LC, Cruz, M, et al. Criteria for psychosis in major and mild neurocognitive disorders: International Psychogeriatric Association (IPA) consensus clinical and research definition. Am J Geriatr Psychiatry 2020;28:12561269.CrossRefGoogle ScholarPubMed
Fenelon, G, Soulas, T, Zenasni, F, de Langavant, L. The changing face of Parkinson’s disease-associated psychosis: a cross-sectional study based on the new NINDS-NIMH criteria. Mov Disord 2010;25:763766.CrossRefGoogle ScholarPubMed
Pagonabarraga, J, Martinez-Horta, S, Fernandez de Bobadilla, R, et al. Minor hallucinations occur in drug−naive Parkinson’s disease patients, even from the premotor phase. Mov Disord 2016;31:4552.CrossRefGoogle ScholarPubMed
Barrett, MJ, Smolkin, ME, Flanigan, JL, et al. Characteristics, correlates, and assessment of psychosis in Parkinson disease without dementia. Parkinsonism Relat Disord 2017;43:5660.CrossRefGoogle ScholarPubMed
Guo, Y, Xu, W, Liu, FT, et al. Modifiable risk factors for cognitive impairment in Parkinson’s disease: a systematic review and meta-analysis of prospective cohort studies. Mov Disord 2019;34:876883.CrossRefGoogle ScholarPubMed
Dafsari, HS, Martinez-Martin, P, Rizos, A, et al. EuroInf 2: subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson’s disease. Mov Disord 2019;34(3):353365.CrossRefGoogle ScholarPubMed
Ballanger, B, Strafella, A, van Eimeren, T, et al. Serotonin 2A receptors and visual hallucinations in Parkinson disease. Arch Neurol 2010;67:416421.CrossRefGoogle ScholarPubMed
Barrett, MJ, Blair, JC, Sperling, SA, Smolkin, ME, Druzgal, TJ. Baseline symptoms and basal forebrain volume predict future psychosis in early Parkinson disease. Neurology 2018;90:e1618e1626.CrossRefGoogle ScholarPubMed
Lenka, A, Ingalhalikar, M, Shah, A, et al. Abnormalities in the white matter tracts in patients with Parkinson disease and psychosis. Neurology 2020;94:e1876e1884.CrossRefGoogle ScholarPubMed
O’Brien, J, Taylor, JP, Ballard, C, et al. Visual hallucinations in neurological and ophthalmological disease: pathophysiology and management. J Neurol Neurosurg Psychiatry 2020;91(5):512519.CrossRefGoogle ScholarPubMed
Friedberg, G, Zoldan, J, Weizman, A, Melamed, E. Parkinson Psychosis Rating Scale: a practical instrument for grading psychosis in Parkinson’s disease. Clin Neuropharmacol 1998;21:280284.Google Scholar
Cummings, J, Isaacson, S, Mills, R, et al. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 2014;383:533540.CrossRefGoogle ScholarPubMed
Sawada, H, Oeda, T, Kohsaka, M, et al. Early use of donepezil against psychosis and cognitive decline in Parkinson’s disease: a randomised controlled trial for 2 years. J Neurol Neurosurg Psychiatry 2018;89:13321340.CrossRefGoogle ScholarPubMed
Tariot, PN, Cummings, JL, Soto-Martin, ME, et al. Trial of pimavanserin in dementia-related psychosis. N Engl J Med 2021;385(4):309319.CrossRefGoogle ScholarPubMed
Weintraub, D, Chiang, C, Kim, HM, et al. Association of antipsychotic use with mortality risk in patients with Parkinson disease. JAMA Neurol 2016;73(5):535541.CrossRefGoogle ScholarPubMed
Takamiya, A, Seki, M, Kudo, S, et al. Electroconvulsive therapy for Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2021;36(1):5058.CrossRefGoogle ScholarPubMed
Corvol, JC, Artaud, F, Cormier-Dequaire, F, et al. Longitudinal analysis of impulse control disorders in Parkinson disease. Neurology 2018;91:e189e201.CrossRefGoogle ScholarPubMed
Weintraub, D, Koester, J, Potenza, M, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 2010;67:589595.CrossRefGoogle ScholarPubMed
Martinez-Martin, P, Wan, YM, Ray Chaudhuri, K, Schrag, AE, Weintraub, D. Impulse control and related behaviors in Parkinson’s disease with dementia. Eur J Neurol 2020;27:944950.CrossRefGoogle ScholarPubMed
Okun, M, Weintraub, D. Should impulse control disorders and dopamine dysregulation syndrome be indications for deep brain stimulation and intestinal levodopa? Mov Disord 2013;28:19151919.CrossRefGoogle ScholarPubMed
Weintraub, D, Papay, K, Siderowf, A, Parkinson’s Progression Markers Initiative. Screening for impulse control disorder symptoms in patients with de novo Parkinson disease: a case-control study. Neurology 2013;80:176180.CrossRefGoogle ScholarPubMed
Garcia-Ruiz, P, Castrillo, J, Alonso-Canovas, A, et al. Impulse control disorders in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. J Neurol Neurosurg Psychiatry 2014;85:840844.CrossRefGoogle ScholarPubMed
Steeves, T, Miyasaki, J, Zurowski, M, et al. Increased striatal dopamine release in parkinsonian patients with pathological gambling: a 11C raclopride PET study. Brain 2009;132:13761385.CrossRefGoogle ScholarPubMed
Ray, N, Miyasaki, J, Zurowski, M, et al. Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s patients with medication-induced pathological gambling: a [11C] FLB-457 and PET study. Neurobiol Dis 2012;48:519525.CrossRefGoogle ScholarPubMed
Claassen, DO, Stark, AJ, Spears, CA, et al. Mesocorticolimbic hemodynamic response in Parkinson’s disease patients with compulsive behaviors. Mov Disord 2017;32:15741583.CrossRefGoogle ScholarPubMed
Smith, KM, Xie, SX, Weintraub, D. Incident impulse control disorder symptoms and dopamine transporter imaging in Parkinson disease. J Neurol Neurosurg Psychiatry 2016;87(8):864870.CrossRefGoogle ScholarPubMed
Kraemmer, J, Smith, K, Weintraub, D, et al. Clinical–genetic model predicts incident impulse control disorders in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2016;87(10):11061111.CrossRefGoogle ScholarPubMed
Eisinger, RS, Cagle, JN, Alcantara, JD, et al. Distinct roles of the human subthalamic nucleus and dorsal pallidum in Parkinson’s disease impulsivity. Biol Psychiatry 2022;91(4):370379.CrossRefGoogle ScholarPubMed
Wen, MC, Thiery, A, Tseng, WI, et al. Apathy is associated with white matter network disruption and specific cognitive deficits in Parkinson’s disease. Psychol Med 2022;52(2):264273.CrossRefGoogle ScholarPubMed
Thobois, S, Lhommee, E, Klinger, H, et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 2013;136:15681577.CrossRefGoogle ScholarPubMed
Le Heron, C, Plant, O, Manohar, S, et al. Distinct effects of apathy and dopamine on effort-based decision-making in Parkinson’s disease. Brain 2018;141(5):14551469.CrossRefGoogle ScholarPubMed
Thobois, S, Prange, S, Sgambato-Faure, V, Tremblay, L, Broussolle, E. Imaging the etiology of apathy, anxiety, and depression in Parkinson’s disease: implication for treatment. Curr Neurol Neurosci Rep 2017;17(10):76.CrossRefGoogle ScholarPubMed
Dujardin, K, Moonen, AJ, Behal, H, et al. Cognitive disorders in Parkinson’s disease: confirmation of a spectrum of severity. Parkinsonism Relat Disord 2015;21(11):12991305.CrossRefGoogle ScholarPubMed
Hauser, RA, Slawek, J, Barone, P, et al. Evaluation of rotigotine transdermal patch for the treatment of apathy and motor symptoms in Parkinson’s disease. BMC Neurol 2016;16:90.CrossRefGoogle ScholarPubMed
Devos, D, Moreau, C, Maltete, D, et al. Rivastigmine in apathetic but dementia and depression-free patients with Parkinson’s disease: a double-blind, placebo-controlled, randomised clinical trial. J Neurol Neurosurg Psychiatry 2014;85(6):668674.CrossRefGoogle ScholarPubMed
Zoon, TJC, van Rooijen, G, Balm, G, et al. Apathy induced by subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Mov Disord 2020;36:317326.CrossRefGoogle ScholarPubMed
Santin, MDN, Voulleminot, P, Vrillon, A, et al. Impact of subthalamic deep brain stimulation on impulse control disorders in Parkinson’s disease: a prospective study. Mov Disord 2021;36(3):750757.CrossRefGoogle ScholarPubMed
Pigott, K, Rick, J, Xie, S, et al. Longitudinal study of normal cognition in Parkinson disease. Neurology 2015;85(15):12761282.CrossRefGoogle ScholarPubMed
Backstrom, D, Granasen, G, Domellof, ME, et al. Early predictors of mortality in parkinsonism and Parkinson disease: a population-based study. Neurology 2018;91(22):e2045e2056.CrossRefGoogle ScholarPubMed
Genier Marchand, D, Montplaisir, J, Postuma, RB, Rahayel, S, Gagnon, JF. Detecting the cognitive prodrome of dementia with Lewy bodies: a prospective study of REM sleep behavior disorder. Sleep 2017;40:111.Google ScholarPubMed
Guo, Y, Liu, FT, Hou, XH, et al. Predictors of cognitive impairment in Parkinson’s disease: a systematic review and meta-analysis of prospective cohort studies. J Neurol 2021;268(8):27132722.CrossRefGoogle ScholarPubMed
Zarkali, A, McColgan, P, Leyland, LA, Lees, AJ, Weil, RS. Visual dysfunction predicts cognitive impairment and white matter degeneration in Parkinson’s disease. Mov Disord 2021;36(5):11911202.CrossRefGoogle ScholarPubMed
Oxtoby, NP, Leyland, LA, Aksman, LM, et al. Sequence of clinical and neurodegeneration events in Parkinson’s disease progression. Brain 2021;144(3):975988.CrossRefGoogle ScholarPubMed
Mata, IF, Leverenz, JB, Weintraub, D, et al. GBA variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Mov Disord 2016;31(1):95102.CrossRefGoogle ScholarPubMed
Liu, G, Peng, J, Liao, Z, et al. Genome-wide survival study identifies a novel synaptic locus and polygenic score for cognitive progression in Parkinson’s disease. Nat Genet 2021;53(6):787793.CrossRefGoogle ScholarPubMed
Biondetti, E, Gaurav, R, Yahia-Cherif, L, et al. Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease. Brain 2020;143(9):27572770.CrossRefGoogle ScholarPubMed
Prasuhn, J, Prasuhn, M, Fellbrich, A, et al. Association of locus coeruleus and substantia nigra pathology with cognitive and motor functions in patients with Parkinson disease. Neurology 2021;97(10):e1007e1016.CrossRefGoogle ScholarPubMed
Ray, NJ, Bradburn, S, Murgatroyd, C, et al. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain 2018;141(1):165176.CrossRefGoogle ScholarPubMed
Pereira, JB, Hall, S, Jalakas, M, et al. Longitudinal degeneration of the basal forebrain predicts subsequent dementia in Parkinson’s disease. Neurobiol Dis 2020;139:104831.CrossRefGoogle ScholarPubMed
Albin, RL, Muller, M, Bohnen, NI, et al. Alpha4beta2(*) nicotinic cholinergic receptor target engagement in Parkinson disease gait–balance disorders. Ann Neurol 2021;90:130142.CrossRefGoogle ScholarPubMed
Backstrom, D, Eriksson Domellof, M, Granasen, G, et al. Polymorphisms in dopamine-associated genes and cognitive decline in Parkinson’s disease. Acta Neurol Scand 2018;137(1):9198.CrossRefGoogle ScholarPubMed
Matar, E, Shine, JM, Halliday, GM, Lewis, SJG. Cognitive fluctuations in Lewy body dementia: towards a pathophysiological framework. Brain 2020;143(1):3146.CrossRefGoogle ScholarPubMed
Litvan, I, Goldman, J, Troster, A, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force Guidelines. Mov Disord 2012;27(3):349356.CrossRefGoogle ScholarPubMed
Hoogland, J, Boel, JA, de Bie, RMA, et al. Mild cognitive impairment as a risk factor for Parkinson’s disease dementia. Mov Disord 2017;32(7):10561065.CrossRefGoogle ScholarPubMed
Hoogland, J, van Wanrooij, LL, Boel, JA, et al. Detecting mild cognitive deficits in Parkinson’s disease: comparison of neuropsychological tests. Mov Disord 2018;33:17501759.CrossRefGoogle ScholarPubMed
Dalrymple-Alford, J, MacAskill, M, Nakas, C, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology 2010;75:17171725.CrossRefGoogle ScholarPubMed
Mantri, S, Fullard, M, Gray, S, et al. Patterns of dementia treatment and frank prescribing errors in Parkinson disease. JAMA Neurol 2019;76:4149.CrossRefGoogle Scholar
Knox, MG, Adler, CH, Shill, HA, et al. Neuropathological findings in Parkinson’s disease with mild cognitive impairment. Mov Disord 2020;35(5):845850.CrossRefGoogle ScholarPubMed
Centi, J, Freeman, R, Gibbons, CH, et al. Effects of orthostatic hypotension on cognition in Parkinson disease. Neurology 2017;88(1):1724.CrossRefGoogle ScholarPubMed
Kaminska, M, Mery, VP, Lafontaine, AL, et al. Change in cognition and other non-motor symptoms with obstructive sleep apnea treatment in Parkinson disease. J Clin Sleep Med 2018;14(5):819828.CrossRefGoogle ScholarPubMed
Svenningsson, P, Odin, P, Dizdar, N, et al. A phase 2a trial investigating the safety and tolerability of the novel cortical enhancer IRL752 in Parkinson’s disease dementia. Mov Disord 2020;35:10461054.CrossRefGoogle ScholarPubMed
Sawada, H, Oeda, T, Kohsaka, M, et al. Early-start vs delayed-start donepezil against cognitive decline in Parkinson disease: a randomized clinical trial. Exp Opin Pharmacother 2021;22(3):363371.CrossRefGoogle ScholarPubMed

References

Xia, Y, Kou, L, Zhang, G, et al. Investigation on sleep and mental health of patients with Parkinson’s disease during the Coronavirus disease 2019 pandemic. Sleep Med 2020;75:428433.CrossRefGoogle ScholarPubMed
Lees, AJ, Blackburn, NA, Campbell, VL. The nighttime problems of Parkinson’s disease. Clin Neuropharmacol 1988;11:512519.CrossRefGoogle ScholarPubMed
Singer, G, Weiner, W, Sanchez-Ramos, JR. Autonomic dysfunction in men with Parkinson’s disease. Eur Neurol 1992;32:134140.CrossRefGoogle ScholarPubMed
Rye, DB, Bliwise, DL, Dihenia, B, Gurecki, P. Fast track: daytime sleepiness in Parkinson’s disease. J Sleep Res 2000;9:6369.CrossRefGoogle ScholarPubMed
Fernández-Arcos, A, Morenas-Rodríguez, E, Santamaria, J, et al. Clinical and video-polysomnographic analysis of rapid eye movement sleep behaviour disorder and other sleep disturbances in dementia with Lewy bodies. Sleep 2019;42(7):zsz086.CrossRefGoogle ScholarPubMed
Kumru, H, Santamaria, J, Tolosa, E, et al. Rapid eye movement sleep behaviour disorder in parkinsonism with parkin mutations. Ann Neurol 2004;56(4):599603.CrossRefGoogle ScholarPubMed
Pont-Sunyer, C, Iranzo, A, Gaig, C, et al. Sleep disorders in parkinsonian and nonparkinsonian LRRK2 mutation carriers. PLoS One 2015;10(7):e0132368.CrossRefGoogle ScholarPubMed
American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed. Darien, IL American Academy of Sleep Medicine 2014.Google Scholar
Tholfsen, LK, Larsen, JP, Schulz, J, Tysnes, OB, Gjerstad, MD. Changes in insomnia subtypes in early Parkinson disease. Neurology 2017;88:352358.CrossRefGoogle ScholarPubMed
Wohlgemuth, WK, Fins, AI. Theories and models of insomnia. In: Wedding, D, Beutler, L, Freedland, KE, Sobell, LC, Wolfe, AD, eds. Insomnia. 1st ed. Göttingen: Hogrefe; 2019: 1015.CrossRefGoogle Scholar
French, IT, Muthusamy, KA. A review of sleep and its disorders in patients with Parkinson’s disease in relation to various brain structures. Front Aging Neurosci 2016;8:114.CrossRefGoogle ScholarPubMed
Videnovic, A, Noble, C, Reid, KJ, et al. Circadian melatonin rhythm and excessive daytime sleepiness in parkinson disease. JAMA Neurol 2014;71:463469.CrossRefGoogle ScholarPubMed
Mizrahi-Kliger, AD, Kaplan, A, Israel, Z, Deffains, M, Bergman, H. Basal ganglia beta oscillations during sleep underlie Parkinsonian insomnia. Proc Natl Acad Sci U S A 2020;117(29):1735917368.CrossRefGoogle ScholarPubMed
Trenkwalder, C, Kohen, R, Högl, B, et al. Parkinson’s disease sleep-scale validation of the revised version PDSS-2. Mov Disord 2011;26:644652.CrossRefGoogle ScholarPubMed
Trenkwalder, C, Kies, B, Rudzinska, M, et al. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord 2011;26:9099.CrossRefGoogle ScholarPubMed
Baumann-Vogel, H, Imbach, LL, Sürücü, O, et al. The impact of subthalamic deep brain stimulation on sleep–wake behaviour: a prospective electrophysiological study in 50 Parkinson patients. Sleep 2017;40(5).Google ScholarPubMed
Menza, M, Dobkin, RD, Marin, H, et al. Treatment of insomnia in Parkinson’s disease: a controlled trial of eszopiclone and placebo. Mov Disord 2010;25:17081714.CrossRefGoogle ScholarPubMed
Rios Romenets, S, Creti, L, Fichten, C, et al. Doxepin and cognitive behavioural therapy for insomnia in patients with parkinson’s disease – a randomized study. Parkinsonism Relat Disord 2013;19:670675.CrossRefGoogle ScholarPubMed
Dowling, GA, Mastick, J, Colling, E, et al. Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med 2005;6:459466.CrossRefGoogle ScholarPubMed
Ondo, WG, Perkins, T, Swick, T, et al. Sodium oxybate for excessive daytime sleepiness in Parkinson disease: an open-label polysomnographic study. Arch Neurol 2008;65:13371340.CrossRefGoogle ScholarPubMed
Linazasoro, G, Martí Massó, JF, Suárez, JA. Nocturnal akathisia in Parkinson’s disease: treatment with clozapine. Mov Disord 1993;8:171174.CrossRefGoogle ScholarPubMed
Valko, PO, Waldvogel, D, Weller, M, et al. Fatigue and excessive daytime sleepiness in idiopathic Parkinson’s disease differently correlate with motor symptoms, depression and dopaminergic treatment. Eur J Neurol 2010;17:14281436.CrossRefGoogle ScholarPubMed
De Cock, VC, Vidailhet, M, Arnulf, I. Sleep disturbances in patients with parkinsonism. Nat Clin Pract Neurol 2008;4:254266.CrossRefGoogle ScholarPubMed
Feng, F, Cai, Y, Hou, Y, et al. Excessive daytime sleepiness in Parkinson’s disease: a systematic review and meta-analysis. Parkinsonism Relat Disord 2021;85:133140.CrossRefGoogle ScholarPubMed
Simuni, T, Caspell-Garcia, C, Coffey, C, et al. Correlates of excessive daytime sleepiness in de novo Parkinson’s disease: a case control study. Mov Disord 2015;30(10):13711381.CrossRefGoogle ScholarPubMed
Tholfsen, LK, Larsen, JP, Schulz, J, Tysnes, OB, Gjerstad, MD. Development of excessive daytime sleepiness in early Parkinson disease. Neurology 2015;85(2):162168.CrossRefGoogle ScholarPubMed
Höglund, A, Hagell, P, Broman, JE, et al. A 10-year follow-up of excessive daytime sleepiness in Parkinson’s disease. Parkinsons Dis 2019;2019:5708515.Google ScholarPubMed
Abbott, RD, Ross, GW, White, LR, et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 2005;65:14421446.CrossRefGoogle ScholarPubMed
Spindler, M, Gooneratne, NS, Siderowf, A, et al. Daytime sleepiness is associated with falls in Parkinson’s disease. Parkinsons Dis 2013;3:387391.Google ScholarPubMed
Amara, AW, Chahine, LM, Caspell-Garcia, C, et al. Longitudinal assessment of excessive daytime sleepiness in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 2017;88(8):653662.CrossRefGoogle ScholarPubMed
Hobson, DE, Lang, AE, Martin, WR, et al. Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease. A survey by the Canadian Movement Disorder Group. JAMA 2002;287:455463.CrossRefGoogle Scholar
Ondo, WG, Dat Vuong, K, Khan, H, et al. Daytime sleepiness and other sleep disorders in Parkinson’s disease. Neurology 2001;57:13921396.CrossRefGoogle ScholarPubMed
Micallef, J, Rey, M, Eusebio, A, et al. Antiparkinsonian drug-induced sleepiness: a double-blind placebo-controlled study of L-dopa, bromocriptine and pramipexole in healthy subjects. Br J Clin Pharmacol 2009;67:333340.CrossRefGoogle ScholarPubMed
Zoccolella, S, Savarese, M, Lamberti, P, et al. Sleep disorders and the natural history of Parkinson’s disease: the contribution of epidemiological studies. Sleep Med Rev 2011;15:4150.CrossRefGoogle ScholarPubMed
Jellinger, KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 1991;14:153197.CrossRefGoogle Scholar
Fronczek, R, Overeem, S, Lee, SY, et al. Hypocretin (orexin) loss in Parkinson’s disease. Brain 2007;130:15771585.CrossRefGoogle ScholarPubMed
Thannickal, TC, Lai, YY, Siegel, JM. Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 2007;130:15861595.CrossRefGoogle ScholarPubMed
Videnovic, A, Noble, C, Reid, KJ, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 2014;71(4):463469.CrossRefGoogle ScholarPubMed
Wienecke, M, Werth, E, Poryazova, R, et al. Progressive dopamine and hypocretin deficiencies in Parkinson’s disease: is there an impact on sleep and wakefulness? J Sleep Res 2012;21:710717.CrossRefGoogle ScholarPubMed
Bargiotas, P, Lachenmayer, ML, Schreier, DR, Mathis, J, Bassetti, CL. Sleepiness and sleepiness perception in patients with Parkinson’s disease: a clinical and electrophysiological study. Sleep 2019;42(4):zsz004.CrossRefGoogle ScholarPubMed
Lohr, JB, Liu, L, Caligiuri, MP, et al. Modafinil improves antipsychotic-induced parkinsonism but not excessive daytime sleepiness, psychiatric symptoms or cognition in schizophrenia and schizoaffective disorder: a randomized, double-blind, placebo-controlled study. Schizophr Res 2013;150:289296.CrossRefGoogle ScholarPubMed
Moreau, C, Delval, A, Defebvre, L, et al. Methylphenidate for gait hypokinesia and freezing in patients with Parkinson’s disease undergoing subthalamic stimulation: a multicentre, parallel, randomised, placebo-controlled trial. Lancet Neurol 2012;11(7):589596.CrossRefGoogle ScholarPubMed
Büchele, F, Hackius, M, Schreglmann, SR, et al. Sodium oxybate for excessive daytime sleepiness and sleep disturbance in Parkinson disease: a randomized clinical trial. JAMA Neurol 2018;75(1):114118.CrossRefGoogle ScholarPubMed
Videnovic, A, Amara, AW, Comella, C, et al. Solriamfetol for excessive daytime sleepiness in Parkinson’s disease: phase 2 proof-of-concept trial. Mov Disord 2021;36(10):24082412.CrossRefGoogle ScholarPubMed
Corvol, JC, Azulay, JP, Bosse, B, et al. THN 102 for excessive daytime sleepiness associated with Parkinson’s Disease: a phase 2a trial. Mov Disord 2022;37(2):410415.CrossRefGoogle ScholarPubMed
Videnovic, A, Klerman, EB, Wang, W, et al. Timed light therapy for sleep and daytime sleepiness associated with Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74(4):411418.CrossRefGoogle ScholarPubMed
Johns, MW. A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale. Sleep 1991;14:5055.CrossRefGoogle ScholarPubMed
Siciliano, M, Trojano, L, Santangelo, G, et al. Fatigue in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 2018;33(11):17121723.CrossRefGoogle ScholarPubMed
Chaudhuri, A, Behan, PO. Fatigue in neurological disorders. Lancet 2004;363:978988.CrossRefGoogle ScholarPubMed
van Dijk, JP, Havlikova, E, Rosenberger, J, et al. Influence of disease severity on fatigue in patients with Parkinson’s disease is mainly mediated by symptoms of depression. Eur Neurol 2013;70:201209.CrossRefGoogle ScholarPubMed
Stocchi, F; The ADAGIO investigators. Benefits of treatment with rasagiline for fatigue symptoms in patients with early Parkinson’s disease. Eur J Neurol 2014;21(2):357360.CrossRefGoogle ScholarPubMed
Schiehser, DM, Ayers, CR, Liu, L, et al. Validation of the Modified Fatigue Impact Scale in Parkinson’s disease. Parkinsonism Relat Disord 2013;19:335338.CrossRefGoogle ScholarPubMed
Krupp, LB, LaRocca, NG, Muir-Nash, J, Steinberg, AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989;46:11211123.CrossRefGoogle ScholarPubMed
Ongre, SO, Dalen, I, Tysnes, OB, Alves, G, Herlofson, K. Progression of fatigue in Parkinson’s disease – a 9-year follow-up. Eur J Neurol 2021;28(1):108116.CrossRefGoogle ScholarPubMed
Morita, A, Okuma, Y, Kamei, S, et al. Pramipexole reduces the prevalence of fatigue in patients with Parkinson’s disease. Intern Med 2011;50:21632168.CrossRefGoogle ScholarPubMed
Lin, I, Edison, B, Mantri, S, et al. Triggers and alleviating factors for fatigue in Parkinson’s disease. PLoS One 2021;16(2):e0245285.CrossRefGoogle ScholarPubMed
Valko, PO, Bassetti, CL, Bloch, KE, Held, U, Baumann, CR. Validation of the fatigue severity scale in a Swiss cohort. Sleep 2008;31:16011607.CrossRefGoogle Scholar
Pujol, M, Pujol, J, Alonso, T, et al. Idiopathic REM sleep behaviour disorder in the elderly Spanish community: a primary care center study with a two-stage design using video-polysomnography. Sleep Med 2017;40:116121.CrossRefGoogle ScholarPubMed
Haba-Rubio, J, Frauscher, B, Marques-Vidal, P, et al. Prevalence and determinants of rapid eye movement sleep behaviour disorder in the general population. Sleep 2018;41(2):zsx197.CrossRefGoogle ScholarPubMed
Fernández-Arcos, A, Iranzo, A, Serradell, M, Gaig, C, Santamaria, J. The clinical phenotype of idiopathic REM sleep behaviour disorder at presentation: a study in 203 consecutive patients. Sleep 2016;39:121132.CrossRefGoogle ScholarPubMed
Boeve, BF, Silber, MH, Ferman, TJ, Lucas, JA, Parisi, JE. Association of REM sleep behaviour disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord 2001;16:622630.CrossRefGoogle ScholarPubMed
Ferini-Strambi, L, Marelli, S. Sleep dysfunction in multiple system atrophy. Curr Treat Options Neurol 2012;14:464473.CrossRefGoogle ScholarPubMed
Pao, WC, Boeve, BF, Ferman, TJ, et al. Polysomnographic findings in dementia with Lewy bodies. Neurologist 2013;19:16.CrossRefGoogle ScholarPubMed
Comella, CL, Nardine, TM, Diederich, NJ, Stebbins, GT. Sleep-related violence, injury, and REM sleep behaviour disorder in Parkinson’s disease. Neurology 1998;51:526529.CrossRefGoogle ScholarPubMed
Baumann-Vogel, H, Hor, H, Poryazova, R, et al. REM sleep behaviour in Parkinson disease: Frequent, particularly with higher age. PLoS One 2020;15(12):e0243454.CrossRefGoogle ScholarPubMed
Luppi, PH, Clément, O, Valencia Garcia, S, Brischoux, F, Fort, P. New aspects in the pathophysiology of rapid eye movement sleep behaviour disorder: the potential role of glutamate, gamma-aminobutyric acid, and glycine. Sleep Med 2013;14:714718.CrossRefGoogle ScholarPubMed
Valencia Garcia, S, Libourel, PA, Lazarus, M, et al. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain 2017;140;414428.CrossRefGoogle ScholarPubMed
Valencia Garcia, S, Brischoux, F, Clément, O, et al. Ventromedial medulla inhibitory neuron inactivation induces REM sleep without atonia and REM sleep behaviour disorder. Nat Commun 2018;9:504.CrossRefGoogle Scholar
Iranzo, A, Tolosa, E, Gelpi, E, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 2013;12:443453.CrossRefGoogle ScholarPubMed
Gaig, C, Iranzo, A, Tolosa, E, et al. Pathologically description of a non-motor variant of multiple system atrophy. J Neurol Neurosurg Psychiatry 2008;79:13991400.CrossRefGoogle ScholarPubMed
Iranzo, A, Gelpi, E, Tolosa, E, et al. Neuropathology of prodromal Lewy body disease. Mov Disord 2014;29;410415.CrossRefGoogle ScholarPubMed
Iranzo, A, Santamaria, J, Rye, DB, et al. Characteristics of idiopathic REM sleep behaviour disorder and that associated with MSA and PD. Neurology 2005;65:247252.CrossRefGoogle ScholarPubMed
Oudiette, D, De Cock, VC, Lavault, S, et al. Nonviolent elaborate behaviours may also occur in REM sleep behaviour disorder. Neurology 2009;72:551557.CrossRefGoogle Scholar
Siclari, F, Wienecke, M, Poryazova, R, Bassetti, CL, Baumann, CR. Laughing as a manifestation of rapid eye movement sleep behaviour disorder. Parkinsonism Relat Disord 2011;17:382385.CrossRefGoogle Scholar
De Cock, VC, Vidailhet, M, Leu, S, et al. Restoration of normal motor control in Parkinson’s disease during REM sleep. Brain 2007;130(Pt 2):450456.CrossRefGoogle ScholarPubMed
Scaglione, C, Vignatelli, L, Plazzi, G, et al. REM sleep behaviour disorder in Parkinson’s disease: a questionnaire-based study. Neurol Sci 2005;25:316321.CrossRefGoogle ScholarPubMed
Iranzo, A, Santamaria, J, Tolosa, E. Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol 2016;15:405419.CrossRefGoogle ScholarPubMed
Postuma, RB, Arnulf, I, Hogl, B, et al. A single-question screen for rapid eye movement sleep behaviour disorder: a multicenter validation study. Mov Disord 2012;27:913916.CrossRefGoogle ScholarPubMed
Iranzo, A, Santamaría, J. Severe obstructive sleep apnea mimicking REM sleep behaviour disorder. Sleep 2005;28:203206.CrossRefGoogle Scholar
Gaig, C, Iranzo, A, Pujol, M, Perez, H, Santamaria, J. Periodic limb movements during sleep mimicking REM sleep behaviour disorder: a new form of periodic limb movement disorder. Sleep 2017;40(3).CrossRefGoogle ScholarPubMed
Montplaisir, J, Gagnon, JF, Fantini, ML, et al. Polysomnographic diagnosis of idiopathic REM sleep behaviour disorder. Mov Disord 2010;25:20442051.CrossRefGoogle Scholar
Frauscher, B, Iranzo, A, Gaig, C, et al. Normative EMG values during REM sleep for the diagnosis of REM sleep behaviour disorder. Sleep 2012;35:835847.CrossRefGoogle Scholar
Schenck, CH, Bundlie, SR, Mahowald, MW. Delayed emergence of a parkinsonian disorder in 38% of 29 older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder. Neurology 1996;46:388392.CrossRefGoogle ScholarPubMed
Schenck, C, Boeve, B, Mahowald, M. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behaviour disorder: a 16-year update on a previously reported series. Sleep Med 2013;14:744748.CrossRefGoogle ScholarPubMed
Iranzo, A, Molinuevo, JL, Santamaría, J, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 2006;5:572577.CrossRefGoogle Scholar
Postuma, RB, Iranzo, A, Hu, M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142:744759.CrossRefGoogle ScholarPubMed
Iranzo, A, Stefani, A, Serradell, M, et al. Characterization of patients with longstanding idiopathic REM sleep behaviour disorder. Neurology 2017;89:242248.CrossRefGoogle Scholar
Miglis, MG, Adler, CH, Antelmi, E, et al. Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder. Lancet Neurol 2021;20:671684.CrossRefGoogle ScholarPubMed
Sprenger, FS, Stefanova, N, Gelpi, E, et al. Enteric nervous system α-synuclein immunoreactivity in idiopathic REM sleep behaviour disorder. Neurology 2015;85:17611768.CrossRefGoogle Scholar
Vilas, D, Iranzo, A, Tolosa, E, et al. Assessment of α-synuclein in submandibular glands of patients with idiopathic rapid-eye-movement sleep behaviour disorder: a case-control study. Lancet Neurol 2016;15:708718.CrossRefGoogle ScholarPubMed
Iranzo, A, Borrego, S, Vilaseca, I, et al. α-Synuclein aggregates in labial salivary glands of idiopathic rapid eye movement sleep behaviour disorder. Sleep 2018;41(8).Google Scholar
Fernández-Arcos, A, Vilaseca, I, Aldecoa, I, et al. Alpha-synuclein aggregates in the parotid gland of idiopathic REM sleep behaviour disorder. Sleep Med 2018;52:1417.CrossRefGoogle Scholar
Antelmi, E, Donadio, V, Incensi, A, Plazzi, G, Liguori, R. Skin nerve phosphorylated α-synuclein deposits in idiopathic REM sleep behaviour disorder. Neurology 2017;88:21282131.CrossRefGoogle Scholar
Doppler, K, Jentschke, HM, Schulmeyer, L, et al. Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol 2017;133:535545.CrossRefGoogle ScholarPubMed
Stefani, A, Iranzo, A, Holzknecht, E, et al. Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain 2021;144:11181126.CrossRefGoogle ScholarPubMed
Iranzo, A, Fairfoul, G, Ayudhaya, ACN, et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol 2021;20:203212.CrossRefGoogle ScholarPubMed
Gagnon, JF, Bédard, MA, Fantini, ML, et al. REM sleep behaviour disorder and REM sleep without atonia in Parkinson’s disease. Neurology 2002;59:585589.CrossRefGoogle ScholarPubMed
Sixel-Doring, F, Trautmann, E, Mollenhauer, B, Trenkwalder, C. Associated factors for REM sleep behaviour disorder in Parkinson disease. Neurology 2011;77:10481054.CrossRefGoogle ScholarPubMed
Gagnon, JF, Vendette, M, Postuma, RB, et al. Mild cognitive impairment in rapid eye movement sleep behaviour disorder and Parkinson’s disease. Ann Neurol 2009;66:3947.CrossRefGoogle ScholarPubMed
Postuma, RN, Lang, AE, Gagnon, JF, Pelletier, A, Montplaisir, JY. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Brain 2012;27:617626.Google Scholar
Sommerauer, M, Valko, PO, Werth, E, et al. Revisiting the impact of REM sleep behavior disorder on motor progression in Parkinson’s disease. Parkinsonism Relat Disord 2014;20(4):460462.CrossRefGoogle ScholarPubMed
Aurora, RN, Zak, RS, Maganti, RK, et al. Best practice guide for the treatment of REM sleep behaviour disorder (RBD). J Clin Sleep Med 2010;6:8595.Google Scholar
Yan, J, Huang, J, Wu, J, et al. Pharmacological interventions for REM sleep behaviour disorder in Parkinson’s disease: a systematic review. Front Aging Neurosci 2021;13:709878.CrossRefGoogle ScholarPubMed
Di Giacopo, R, Fasano, A, Quaranta, D, Della Marca, G. Rivastigmine as alternative treatment for refractory REM sleep behaviour disorder in Parkisnon disease. Mov Disord 2012;27:599561.CrossRefGoogle Scholar
Plastino, M, Gorgone, G, Fava, A, et al. Effects of safinamide on REM sleep behaviour disorder in Parkinson disease: a randomized, longitudinal, cross-over pilot study. J Clin Neurosci 2021;91:306312.CrossRefGoogle ScholarPubMed
Meloni, M, Figorilli, M, Carta, M, et al. Preliminary finding of a randomized, double-blind, placebo-controlled, crossover study to evaluate the safety and efficacy of 5-hydroxytryptophan on REM sleep behaviour disorder in Parkinson’s disease. Sleep Breath 2022;26(3):10231031.CrossRefGoogle ScholarPubMed
Oberholzer, M, Poryazova, R, Bassetti, CL. Sleepwalking in Parkinson’s disease: a questionnaire-based survey. J Neurol 2011;258:12611267.CrossRefGoogle ScholarPubMed
Yong, MH, Fook-Chong, S, Pavanni, R, Lim, LL, Tan, EK. Case control polysomnographic studies of sleep disorders in Parkinson’s disease. PLoS One 2011;6:e22511.CrossRefGoogle ScholarPubMed
Trotti, LM, Bliwise, DL. No increased risk of obstructive sleep apnea in Parkinson’s disease. Mov Disord 2010;25:22462249.CrossRefGoogle ScholarPubMed
Cochen de Cock, V, Abouda, M, Leu, S, et al. Is obstructive sleep apnea a problem in Parkinson’s disease? Sleep Med 2010;11:247252.CrossRefGoogle ScholarPubMed
Diederich, NJ, Vaillant, M, Leischen, M, et al. Sleep apnea syndrome in Parkinson’s disease. A case-control study in 49 patients. Mov Disord 2005;11:14131418.CrossRefGoogle Scholar
Baumann, C, Ferini-Strambi, L, Waldvogel, D, Werth, E, Bassetti, CL. Parkinsonism with excessive daytime sleepiness. J Neurol 2005;252:139145.CrossRefGoogle ScholarPubMed
Cochen de Cock, V, Abouda, M, Leu, S, et al. Is obstructive sleep apnea a problem in Parkinson’s disease? Sleep Med 2010;11:247252.CrossRefGoogle ScholarPubMed
Valko, PO, Hauser, S, Sommerauer, M, Werth, E, Baumann, CR. Observations on sleep-disordered breathing in idiopathic Parkinson’s disease. PLoS One 2014;9(6):e100828.CrossRefGoogle ScholarPubMed
Hermann, W, Schmitz-Peiffer, H, Kasper, E, et al. Sleep disturbances and sleep disordered breathing impair cognitive performance in Parkinson’s disease. Front Neurosci 2020;14:689.CrossRefGoogle ScholarPubMed
Allen, RP, Picchietti, D, Hening, WA, et al. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. A report from the restless legs syndrome diagnosis and epidemiology workshop at the National Institutes of Health. Sleep Med 2003;4(2):101119.CrossRefGoogle ScholarPubMed
Allen, RP, Picchietti, DL, Garcia-Borreguero, D, et al. Restless legs syndrome/Willis–Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria – history, rationale, description, and significance. Sleep Med 2014;15(8):860873.CrossRefGoogle Scholar
Gjerstad, MD, Tysnes, OB, Larsen, JP. Increased risk of leg motor restlessness but not RLS in early Parkinson disease. Neurology 2011;77:19411946.CrossRefGoogle Scholar
Connor, JR, Ponnuru, P, Wang, XS, et al. Profile of altered brain iron acquisition in restless legs syndrome. Brain 2011;134:959968.CrossRefGoogle ScholarPubMed
Walters, AS, LeBrocq, C, Passi, V, et al. A preliminary look at the percentage of patients with restless legs syndrome who also have Parkinson’s disease, essential tremor or Tourette syndrome in a single practice. J Sleep Res 2003;12:343345.CrossRefGoogle Scholar
Wong, JC, Li, Y, Schwarzschild, MA, Ascherio, A, Gao, X. Restless legs syndrome: an early clinical feature of Parkinson disease in men. Sleep 2014;37(2):369372.CrossRefGoogle Scholar
Szatmari, S Jr, Bereczki, D, Fornadi, K, et al. Association of restless legs syndrome with incident Parkinson’s disease. Sleep 2017;40(2):zsw065.CrossRefGoogle ScholarPubMed
Ondo, WG, Vuong, KD, Jankovic, J. Exploring the relationship between Parkinson disease and restless legs syndrome. Arch Neurol 2002;59:421424.CrossRefGoogle ScholarPubMed
Tan, EK, Lum, SY, Wong, MC. Restless legs syndrome in Parkinson’s disease. J Neurol Sci 2002;196:3336.CrossRefGoogle ScholarPubMed
Gómez-Esteban, JC, Zarranz, JJ, Tijero, B, et al. Restless legs syndrome in Parkinson’s disease. Mov Disord 2007;22:19121916.CrossRefGoogle ScholarPubMed
Verbaan, D, Rooden, SM, van Hilten, J, Rijsman, RM. Prevalence and clinical profile of restless legs syndrome in Parkinson’s disease. Mov Disord 2010;25:21422147.CrossRefGoogle ScholarPubMed
Yang, X, Liu, B, Shen, H, et al. Prevalence of restless legs syndrome in Parkinson’s disease: a systematic review and meta-analysis of observational studies. Sleep Med 2018;43:4046.CrossRefGoogle ScholarPubMed
Moccia, M, Erro, R, Picillo, M, et al. A four-year longitudinal study on restless legs syndrome in Parkinson disease. Sleep 2016;39(2):405412.CrossRefGoogle ScholarPubMed
De Cock, VC, Bayard, S, Yu, H, et al. Suggested immobilization test for diagnosis of restless legs syndrome in Parkinson’s disease. Mov Disord 2012;27(6):743749.CrossRefGoogle ScholarPubMed
Zuzúarregui, JR, Ostrem, JL. Zuzuárregui, JRP, Ostrem, JL. The impact of deep brain stimulation on sleep in Parkinson’s disease: an update. J Parkinsons Dis 2020;10(2):393404.CrossRefGoogle ScholarPubMed
Lauretti, E, Di Meco, A, Merali, S, Praticò, D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol Psychiatry 2017;22(2):280286.CrossRefGoogle ScholarPubMed
Leng, Y, Blackwell, T, Cawthon, PM, et al. Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol 2020;77(10):12701278.CrossRefGoogle ScholarPubMed
Leng, Y, Musiek, ES, Hu, K, Cappuccio, FP, Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019;18:307318.CrossRefGoogle ScholarPubMed
Whitehead, DL, Davies, AD, Playfer, JR, Turnbull, CJ. Circadian rest–activity rhythm is altered in Parkinson’s disease patients with hallucinations. Mov Disord 2008;23:11371145.CrossRefGoogle ScholarPubMed
van Hilten, B, Hoff, JI, Middelkoop, HA, et al. Sleep disruption in Parkinson’s disease. Assessment by continuous activity monitoring. Arch Neurol 1994;51:922928.CrossRefGoogle ScholarPubMed
Videnovic, A, Noble, C, Reid, KJ, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol 2014;71(4):463469.CrossRefGoogle ScholarPubMed
Bordet, R, Devos, D, Brique, S, et al. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 2003;26:6572.CrossRefGoogle ScholarPubMed
Obayashi, K, Saeki, K, Yamagami, Y, et al. Circadian activity rhythm in Parkinson’s disease: findings from the PHASE study. Sleep Med 2021;85:814.CrossRefGoogle ScholarPubMed
Pierangeli, G, Provini, F, Maltoni, P, et al. Nocturnal body core temperature falls in Parkinson’s disease but not in multiple-system atrophy. Mov Disord 2001;16:226232.CrossRefGoogle ScholarPubMed
De Pablo-Fernández, E, Courtney, R, Warner, TT, Holton, JL. A histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. JAMA Neurol 2018;75(8):10081012.CrossRefGoogle ScholarPubMed
Gros, P, Videnovic, A. Overview of sleep and circadian rhythm disorders in Parkinson disease. Clin Geriatr Med 2020;36(1):119130.CrossRefGoogle ScholarPubMed
Fifel, K, Videnovic, A. Circadian alterations in patients with neurodegenerative diseases: neuropathological basis of underlying network mechanisms. Neurobiol Dis 2020;144:105029.CrossRefGoogle ScholarPubMed
Fifel, K. Alterations of the circadian system in Parkinson’s disease patients. Mov Disord 2017;32(5):682692.CrossRefGoogle ScholarPubMed
Bolitho, SJ, Naismith, SL, Rajaratnam, SM, et al. Disturbances in melatonin secretion and circadian sleep–wake regulation in Parkinson disease. Sleep Med 2014;15(3):342347.CrossRefGoogle ScholarPubMed
Paus, S, Schmitz-Hübsch, T, Wüllner, U, et al. Bright light therapy in Parkinson’s disease: a pilot study. Mov Disord 2007;22:14951498.CrossRefGoogle ScholarPubMed
Willis, GL, Turner, EJ. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int 2007;24:521537.CrossRefGoogle ScholarPubMed
Videnovic, A, Klerman, EB, Wang, W, et al. Timed light therapy for sleep and daytime sleepiness associated with Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74(4):411418.CrossRefGoogle ScholarPubMed
Endo, T, Matsumura, R, Tokuda, IT, et al. Bright light improves sleep in patients with Parkinson’s disease: possible role of circadian restoration. Sci Rep 2020;10(1):7982.CrossRefGoogle ScholarPubMed
Baumann, CR. Sleep–wake disorders in Parkinson disease. In: Wolters, ECh, Baumann, C, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 217227.Google Scholar

References

Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357381.CrossRefGoogle ScholarPubMed
Nambu, A, Tokuno, H, Takada, M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 2002;43:111117.CrossRefGoogle ScholarPubMed
Delong, MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990;13(7):281285.CrossRefGoogle ScholarPubMed
Delong, MR, Wichmann, T. Update on models of basal ganglia function and dysfunction. Parkinsonism Relat Disord 2009;15(S3):S237240.CrossRefGoogle Scholar
Galvan, A, Devergnas, A, Wichmann, T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front Neuroanat 2015;9(5):121.CrossRefGoogle ScholarPubMed
Brown, P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003;18(4):357363.CrossRefGoogle Scholar
Lozano, AM, Hutchson, WD, Kalia, SK. What we learned about movement disorders from functional neurosurgery. Annu Rev Neurosci 2017;40:453457.CrossRefGoogle ScholarPubMed
Brown, P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol 2007;17:656664.CrossRefGoogle ScholarPubMed
Brown, P, Oliviero, A, Mazzone, P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 2001;21(3):1033.CrossRefGoogle ScholarPubMed
Oswala, A, Brown, P, Litvak, V. Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol 2013;26:662670.CrossRefGoogle Scholar
Kuhn, AA, Kupsch, A, Schneider, GH, et al. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 2006;23:19561960.CrossRefGoogle ScholarPubMed
Bronte-Stewart, H, Barberini, C, Koop, MM, et al. The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp Neurol 2009;215:2028.CrossRefGoogle ScholarPubMed
Brown, P, Mazzone, P, Oliviero, A, et al. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson’s disease. Exp Neurol 2004;188:480490.CrossRefGoogle ScholarPubMed
Albe-Fessard, D, Arfel, G, Guiot, G, et al. Characteristic electric activities of some cerebral structures in man. Ann Chir 1963;17:11851214.Google ScholarPubMed
Guiot, G, Hardy, J, Albe-Fessard, D. Precise delimitation of the subcortical structures and identification of thalamic nuclei in man by stereotactic electrophysiology. Neurochirurgia (Stuttg) 1962;5:118.Google Scholar
Lenz, FA, Tasker, RR, Kwan, HC, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic ‘tremor cells’ with the 3–6 Hz component of parkinsonian tremor. J Neurol Sci 1988;8(3):754764.Google ScholarPubMed
Hutchison, WD, Lozano, AM, Tasker, RR, et al. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp Brain Res 1997;113(3):557563.CrossRefGoogle ScholarPubMed
Hurtado, JM, Gray, CM, Tamas, LB, et al. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proc Natl Acad Sci U S A 1999;96(4):16741679.CrossRefGoogle ScholarPubMed
Amtage, F, Henschel, K, Schelter, B, et al. Tremor-correlated neuronal activity in the subthalamic nucleus of parkinsonian patients. Neurosci Lett 2008;442(3):195199.CrossRefGoogle ScholarPubMed
Miller, WC, DeLong, MR. Parkinsonian symptomatology. An anatomical and physiological analysis. Ann N Y Acad Sci 1988;515:287302.CrossRefGoogle ScholarPubMed
Bergman, H, Wichmann, T, Karmon, B, et al. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994;72:507520.CrossRefGoogle ScholarPubMed
Bergman, H, Raz, A, Feingold, A, et al., Physiology of MPTP tremor. Mov Disord 1998;13(Suppl. 3):2934.CrossRefGoogle ScholarPubMed
Molnar, GF, Pilliar, A, Lozano, AM, et al. Differences in neuronal firing rates in pallidal and cerebellar receiving areas of thalamus in patients with Parkinson’s disease, essential tremor, and pain. J Neurophysiol 2005;93(6):30943101.CrossRefGoogle ScholarPubMed
Du, G, Zhuang, P, Hallett, M, et al. Properties of oscillatory neuronal activity in the basal ganglia and thalamus in patients with Parkinson’s disease. Transl Neurodegener 2018;7:1729.CrossRefGoogle ScholarPubMed
Alavi, M, Dostrovsky, JO, Hodaie, M, et al. Spatial extent of beta oscillatory activity in and between the subthalamic nucleus and substantia nigra pars reticulata of Parkinson’s disease patients. Exp Neurol 2013;245:6071.CrossRefGoogle ScholarPubMed
Magnin, M, Morel, A, Jeanmonod, D. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in Parkinsonian patients. Neuroscience 2000;96(3) 549564.CrossRefGoogle ScholarPubMed
Moran, A, Bergman, H, Israel, Z, et al. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 2008;131:33953409.CrossRefGoogle ScholarPubMed
López-Azcárate, J, Tainta, M, Rodríguez-Oroz, MC, et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J Neurosci 2010;30(19):66676677.CrossRefGoogle ScholarPubMed
Weinberger, M, Mahant, N, Hutchison, WD, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 2006;96(6):32483256.CrossRefGoogle ScholarPubMed
Levy, R, Ashby, P, Hutchison, WD, et al. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 2002;125(6):11961209.CrossRefGoogle ScholarPubMed
Guo, S, Zhuang, P, Hallett, M, et al. Subthalamic deep brain stimulation for Parkinson’s disease: correlation between locations of oscillatory activity and optimal site of stimulation. Parkinsonism Relat Disord 2013;19(1):109114.CrossRefGoogle ScholarPubMed
Meng, D, Zhuang, P, Hallett, M, et al. Characteristics of oscillatory pallidal neurons in patients with Parkinson’s disease. J Neurol Sci 2020;410:116125.CrossRefGoogle ScholarPubMed
Kühn, AA, Tsui, A, Aziz, T, et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol 2009;215:380387.CrossRefGoogle ScholarPubMed
Ray, NJ, Jenkinson, N, Wang, S, et al. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 2008;213(1):108113.CrossRefGoogle ScholarPubMed
Weinberger, M, Hutchison, WD, Alavi, M. Oscillatory activity in the globus pallidus internus: comparison between Parkinson’s disease and dystonia. Clin Neurophysiol 2012;123(2):358368.CrossRefGoogle ScholarPubMed
Sharott, A, Gulberti, A, Zittel, S, et al. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson’s disease. J Neurosci 2014;34(18):62736285.CrossRefGoogle ScholarPubMed
Hallett, M. Parkinson’s disease tremor: pathophysiology. Parkinsonism Relat Disord 2012;18(Suppl 1):S8586.CrossRefGoogle ScholarPubMed
Helmich, RC, Halett, M, Deuschl, G, et al. Cerebral cause and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 2012;135:32063226.CrossRefGoogle ScholarPubMed
Zaidel, A, Arkadir, D, Israel, Z, et al. Akineto–rigid vs.tremor syndromes in Parkinsonism. Curr Opin Neurol 2009;22:387393.CrossRefGoogle ScholarPubMed
Jankovic, J, Kapadia, AS. Functional decline in Parkinson disease. Arch Neurol 2001;56:16111615.CrossRefGoogle Scholar
Lemstra, AW, Metman, LV, Lee, JI, et al. Tremor frequency (3–6 Hz) activity in the sensorimotor arm representation of the internal segment of the globus pallidus in patients with Parkinson’s disease. Neurosci Lett 1999;267(2):129132.CrossRefGoogle ScholarPubMed
Hallett, M. Tremor: pathophysiology. Parkinsonism Relat Disord 2014;20(Suppl 1):S118122.CrossRefGoogle ScholarPubMed
Muralidharan, A, Zhang, J, Ghosh, D, et al. Modulation of neuronal activity in the motor thalamus during GPi-DBS in the MPTP nonhuman primate model of Parkinson’s disease. Brain Stimul 2017;10 (1):126138.CrossRefGoogle ScholarPubMed
Williams, D., Tijssen, M, Van Bruggen, G, et al. Dopamine-dependent changes in the functional connectivity between basal ganglia. Brain 2002;125:15581569.CrossRefGoogle ScholarPubMed
Feng, H, Zhuang, P, Hallett, M, et al. Characteristics of subthalamic oscillatory activity in parkinsonian akinetic–rigid type and mixed type. Int J Neurosci 2016;126(9):819828.CrossRefGoogle ScholarPubMed
Fabbrini, G, Brotchie, JM, Grandas, F, et al. Levodopa-induced dyskinesias. Mov Disord 2007;22:13791389.CrossRefGoogle ScholarPubMed
Krack, K, Pollak, P, Limousin, P. From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain 1999;122:11331146.CrossRefGoogle ScholarPubMed
Vitek, JL, Giroux, M. Physiology of hypokinetic and hyperkinetic movement disorders: model for dyskinesia. Ann Neurol 2000;47:131140.Google ScholarPubMed
Obeso, JA. Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model. Ann Neurol 2000;47:2234.Google ScholarPubMed
Papa, SM, Desimore, R, Fioroni, M, et al. Internal globus pallius discharge is nearly suppressed during levodopa-induced dyskinesia. Ann Neurol 1999;46:732738.3.0.CO;2-Q>CrossRefGoogle Scholar
Levy, R, Dostrovsky, JO, Lang, AE, et al. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J Neurophysiol 2001;86:249260.CrossRefGoogle ScholarPubMed
Lee, JI, Metman, LV, Ohara, S, et al. Internal pallidal neuronal activity during mild drug-related dyskinesia in Parkinson’s disease: decreased firing rates and altered firing patterns. J Neurophysiol 2007;97:26272641.CrossRefGoogle ScholarPubMed
Alonso-Frech, F, Zamarbide, I, Alegre, M, et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain 2006;129:17481757.CrossRefGoogle ScholarPubMed
Hashimoto, T, Tada, T, Nakazato, F, et al. Abnormal activity in the globus pallidus in off-period dystonia. Ann Neurol 2001;49:242245.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Li, X, Zhuang, P, Hallett, M, et al. Subthalamic oscillatory activity in parkinsonian patients with off-period dystonia. Acta Neurol Scand 2016;134:327338.CrossRefGoogle ScholarPubMed
Zhuang, P, Li, Y, Hallett, M. Neuronal activity in the basal ganglia and thalamus in patients with dystonia. Clin Neurophysiol 2004;115(11):25422557.CrossRefGoogle ScholarPubMed

References

Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30(12):15911601.CrossRefGoogle ScholarPubMed
Halliday, GM, Holton, JL, Revesz, T, Dickson, DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011;122(2):187204.CrossRefGoogle ScholarPubMed
Dickson, DW, Braak, H, Duda, JE, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol 2009;8(12):11501157.CrossRefGoogle ScholarPubMed
Greffard, S, Verny, M, Bonnet, AM, Beinis, JY, Gallinari, C, Meaume, S, et al. Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Arch Neurol 2006;63(4):584588.CrossRefGoogle ScholarPubMed
Buchman, AS, Shulman, JM, Nag, S, et al. Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann Neurol 2012;71(2):258266.CrossRefGoogle ScholarPubMed
Mitchell, T, Lehéricy, S, Chiu, SY, et al. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol 2021;78(10):12621272.CrossRefGoogle ScholarPubMed
Biondetti, E, Santin, MD, Valabrègue, R, et al. The spatiotemporal changes in dopamine, neuromelanin and iron characterizing Parkinson’s disease. Brain 2021;144(10):31143125.CrossRefGoogle ScholarPubMed
Biondetti, E, Gaurav, R, Yahia-Cherif, L, et al. Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease. Brain 2020;143(9):27572570.CrossRefGoogle ScholarPubMed
Kordower, JH, Olanow, CW, Dodiya, HB, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 2013;136(Pt 8):24192431.CrossRefGoogle ScholarPubMed
Huynh, B, Fu, Y, Kirik, D, Shine, JM, Halliday, GM. Comparison of locus coeruleus pathology with nigral and forebrain pathology in Parkinson’s disease. Mov Disord 2021;36(9):20852093.CrossRefGoogle ScholarPubMed
Song, YJ, Halliday, GM, Holton, JL, et al. Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. J Neuropathol Exp Neurol 2009;68(10):10731083.CrossRefGoogle ScholarPubMed
Braak, H, Sastre, M, Del Tredici, K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 2007;114(3):231241.CrossRefGoogle ScholarPubMed
Tanriover, G, Bacioglu, M, Schweighauser, M, et al. Prominent microglial inclusions in transgenic mouse models of alpha-synucleinopathy that are distinct from neuronal lesions. Acta Neuropathol Commun 2020;8(1):133.CrossRefGoogle ScholarPubMed
Greffard, S, Verny, M, Bonnet, AM, et al. A stable proportion of lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiol Aging 2010;31(1):99103.CrossRefGoogle Scholar
Hummel, T, Witt, M, Reichmann, H, Welge-Luessen, A, Haehner, A. Immunohistochemical, volumetric, and functional neuroimaging studies in patients with idiopathic Parkinson’s disease. J Neurol Sci 2010;289(1–2):119122.CrossRefGoogle ScholarPubMed
Beach, TG, Adler, CH, Sue, LI, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010;119(6):689702.CrossRefGoogle ScholarPubMed
Harding, AJ, Broe, GA, Halliday, GM. Visual hallucinations in lewy body disease relate to Lewy bodies in the temporal lobe. Brain 2002;125(Pt 2):391403.CrossRefGoogle ScholarPubMed
Smith, C, Malek, N, Grosset, K, et al. Neuropathology of dementia in patients with Parkinson’s disease: a systematic review of autopsy studies. J Neurol Neurosurg Psychiatry 2019;90(11):12341243.Google ScholarPubMed
Book, A, Guella, I, Candido, T, et al. A meta-analysis of alpha-synuclein multiplication in familial parkinsonism. Front Neurol 2018;9:1021.CrossRefGoogle ScholarPubMed
Tong, J, Wong, H, Guttman, M, et al. Brain alpha-synuclein accumulation in multiple system atrophy, Parkinson’s disease and progressive supranuclear palsy: a comparative investigation. Brain 2010;133(Pt 1):172188.CrossRefGoogle ScholarPubMed
Zhou, J, Broe, M, Huang, Y, et al. Changes in the solubility and phosphorylation of alpha-synuclein over the course of Parkinson’s disease. Acta Neuropathol 2011;121(6):695704.CrossRefGoogle ScholarPubMed
Malfertheiner, K, Stefanova, N, Heras-Garvin, A. The concept of alpha-synuclein strains and how different conformations may explain distinct neurodegenerative disorders. Front Neurol 2021;12:737195.CrossRefGoogle ScholarPubMed
de Boni, L, Hays Watson, A, Zaccagnini, L, Wallis, A, Zhelcheska, K, Kim, N, et al. Brain region-specific susceptibility of lewy body pathology in synucleinopathies is governed by alpha-synuclein conformations. Acta Neuropathol 2022;143(4):453469.CrossRefGoogle ScholarPubMed
Gadhe, L, Sakunthala, A, Mukherjee, S, et al. Intermediates of alpha-synuclein aggregation: implications in Parkinson’s disease pathogenesis. Biophys Chem 2022;281:106736.CrossRefGoogle ScholarPubMed
Auluck, PK, Caraveo, G, Lindquist, S. Alpha-synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol 2010;26:211233.CrossRefGoogle ScholarPubMed
Tozzi, A, de Iure, A, Bagetta, V, et al. Alpha-synuclein produces early behavioral alterations via striatal cholinergic synaptic dysfunction by interacting with GluN2D N-methyl-d-aspartate receptor subunit. Biol Psychiatry 2016;79(5):402414.CrossRefGoogle ScholarPubMed
Fonseca-Ornelas, L, Viennet, T, Rovere, M, et al. Altered conformation of alpha-synuclein drives dysfunction of synaptic vesicles in a synaptosomal model of Parkinson’s disease. Cell Rep 2021;36(1):109333.CrossRefGoogle Scholar
Awa, S, Suzuki, G, Masuda-Sazukake, M, et al. Phosphorylation of endogenous alpha-synuclein induced by extracellular seeds initiates at the pre-synaptic region and spreads to the cell body. Sci Rep 2022;12(1):1163.CrossRefGoogle Scholar
Moors, TE, Maat, CA, Niedieker, DN, et al. The subcellular arrangement of alpha-synuclein proteoforms in the Parkinson’s disease brain as revealed by multicolor STED microscopy. Acta Neuropathol 2021;142(3):423448.CrossRefGoogle ScholarPubMed
McFarland, MA, Ellis, CE, Markey, SP, Nussbaum, RL. Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 2008;7(11):21232137.CrossRefGoogle ScholarPubMed
Kanazawa, T, Uchihara, T, Takahashi, A, et al. Three-layered structure shared between lewy bodies and Lewy neurites – three-dimensional reconstruction of triple-labeled sections. Brain Pathol 2008;18(3):415422.CrossRefGoogle ScholarPubMed
Kanazawa, T, Adachi, E, Orimo, S, et al. Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 2012;22(1):6778.CrossRefGoogle ScholarPubMed
Raiss, CC, Braun, TS, Konings, IB, et al. Functionally different alpha-synuclein inclusions yield insight into Parkinson’s disease pathology. Sci Rep 2016;6:23116.CrossRefGoogle ScholarPubMed
Schaser, AJ, Osterberg, VR, Dent, SE, et al. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci Rep 2019;9(1):10919.CrossRefGoogle ScholarPubMed
Dent, SE, King, DP, Osterberg, VR, et al. Phosphorylation of the aggregate-forming protein alpha-synuclein on serine-129 inhibits its DNA-bending properties. J Biol Chem 2022;298(2):101552.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Tanji, K, Mori, F, Takahashi, H. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology 2007;27(5):494506.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Takahashi, H, Oyanagi, K, Ikuta, F. [Incidental occurrence of Lewy bodies in the brains of elderly patients – the relevance to aging and Parkinson’s disease]. No To Shinkei 1993;45(11):10331038.Google Scholar
Del Tredici, K, Rüb, U, De Vos, RAI, Bohl, JRE, Braak, H. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002;61(5):413426.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rüb, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24(2):197211.CrossRefGoogle ScholarPubMed
Mahlknecht, P, Marini, K, Werkmann, M, Poewe, W, Seppi, K. Prodromal Parkinson’s disease: hype or hope for disease-modification trials? Transl Neurodegener 2022;11(1):11.CrossRefGoogle ScholarPubMed
Attems, J, Toledo, JB, Walker, L, et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol 2021;141(2):159172.CrossRefGoogle ScholarPubMed
Halliday, GM, McCann, H. The progression of pathology in Parkinson’s disease. Ann N Y Acad Sci 2010;1184:188195.CrossRefGoogle ScholarPubMed
Geut, H, Hepp, DH, Foncke, E, et al. Neuropathological correlates of parkinsonian disorders in a large Dutch autopsy series. Acta Neuropathol Commun 2020;8(1):39.CrossRefGoogle Scholar
Toledo, JB, Gopal, P, Raible, K, et al. Pathological alpha-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathol 2016;131(3):393409.CrossRefGoogle ScholarPubMed
Raunio, A, Kaivola, K, Tuimala, J, et al. Lewy-related pathology exhibits two anatomically and genetically distinct progression patterns: a population-based study of Finns aged 85. Acta Neuropathol 2019;138(5):771782.CrossRefGoogle ScholarPubMed
Kordower, JH, Chu, Y, Hauser, RA, Freeman, TB, Olanow, CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008;14(5):504506.CrossRefGoogle ScholarPubMed
Li, JY, Englund, E, Holton, JL, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008;14(5):501503.CrossRefGoogle ScholarPubMed
Melki, R. How the shapes of seeds can influence pathology. Neurobiol Dis 2018;109(Pt B):201208.CrossRefGoogle ScholarPubMed
Jaunmuktane, Z, Brandner, S. Invited review: the role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020;46(6):522545.CrossRefGoogle ScholarPubMed
Tsunemi, T, Ishiguro, Y, Yoroisaka, A, et al. Astrocytes protect human dopaminergic neurons from alpha-synuclein accumulation and propagation. J Neurosci 2020;40(45):86188628.CrossRefGoogle ScholarPubMed
Rostami, J, Holmqvist, S, Lindström, V, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci 2017;37(49):1183511853.CrossRefGoogle ScholarPubMed
Lindström, V, Gustafsson, G, Sanders, LH, et al. Extensive uptake of alpha-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage. Mol Cell Neurosci 2017;82:143156.CrossRefGoogle ScholarPubMed
Lim, S, Kim, HJ, Kim, DK, Lee, SJ. Non-cell-autonomous actions of alpha-synuclein: implications in glial synucleinopathies. Prog Neurobiol 2018;169:158171.CrossRefGoogle ScholarPubMed
Xia, Y, Zhang, G, Kou, L, Yin, S, Han, C, Hu, J, et al. Reactive microglia enhance the transmission of exosomal alpha-synuclein via toll-like receptor 2. Brain 2021;144(7):20242037.CrossRefGoogle ScholarPubMed
Verma, DK, Seo, BA, Ghosh, A, et al. Alpha-synuclein preformed fibrils induce cellular senescence in Parkinson’s disease models. Cells 2021;10(7):1694.CrossRefGoogle ScholarPubMed
Day, JO, Mullin, S. The genetics of Parkinson’s disease and implications for clinical practice. Genes (Basel) 2021;12(7):1006.CrossRefGoogle ScholarPubMed
Vazquez-Velez, GE, Zoghbi, HY. Parkinson’s disease genetics and pathophysiology. Annu Rev Neurosci 2021;44:87108.CrossRefGoogle Scholar
Dawson, TM, Golde, TE, Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat Neurosci 2018;21(10):13701379.CrossRefGoogle ScholarPubMed
Hart, CG, Karimi-Abdolrezaee, S. Recent insights on astrocyte mechanisms in CNS homeostasis, pathology, and repair. J Neurosci Res 2021;99(10):24272462.CrossRefGoogle ScholarPubMed
Surmeier, DJ, Obeso, JA, Halliday, GM. Selective neuronal vulnerability in parkinson disease. Nat Rev Neurosci 2017;18(2):101113.CrossRefGoogle ScholarPubMed
Nadalutti, CA, Ayala-Peña, S, Santos, JH. Mitochondrial DNA damage as driver of cellular outcomes. Am J Physiol Cell Physiol 2022;322(2):C136C150.CrossRefGoogle Scholar
Morimoto, RI. Cell-nonautonomous regulation of proteostasis in aging and disease. Cold Spring Harb Perspect Biol 2020;12(4):a034074.CrossRefGoogle ScholarPubMed

References

Hughes, AJ, Daniel, SE, Kilford, L, Lees, AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181184.CrossRefGoogle ScholarPubMed
Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 2015;30:15911601.CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Lees, AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology 2001;57:14971499.CrossRefGoogle ScholarPubMed
Buchman, AS, Shulman, JM, Nag, S, et al. Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann Neurol 2012;71:258266.CrossRefGoogle ScholarPubMed
Lost, D, Tang, MX, Schupf, N, Mayeux, R. Functional correlates and prevalence of mild parkinsonian signs in a community population of older people. ArchNeurol 2005;62:297302.Google Scholar
Buchman, AS, Nag, S, Shulman, JM, et al. Locus coeruleus neuron density and parkinsonism in older adults without Parkinson’s disease. Mov Disord 2012;27:16251631.CrossRefGoogle ScholarPubMed
Adler, CH, Connor, DJ, Hentz, JG, et al. Incidental Lewy body disease: clinical comparison to a control cohort. Mov Disord 2010;25:642646.CrossRefGoogle ScholarPubMed
Ross, GW, Petrovitch, H, Abbott, RD, et al. Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol 2004;56:532539.CrossRefGoogle ScholarPubMed
Bennett, DA, Beckett, LA, Murray, AM, et al. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Engl J Med 1996;334:7176.CrossRefGoogle Scholar
Fearnley, JM, Lees, AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114:22832301.CrossRefGoogle ScholarPubMed
Bezard, E, Gross, CE, Brotchie, JM. Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated. Trends Neurosci 2003;26:215221.CrossRefGoogle Scholar
Postuma, RB, Lang, AE, Gagnon, JF, Pelletier, A, Montplaisir, JY. How does parkinsonism start? Prodromal parkinsonism motor changes in idiopathic REM sleep behaviour disorder. Brain 2012;135:18601870.CrossRefGoogle ScholarPubMed
Mirelman, A, Gurevich, T, Giladi, N, et al. Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann Neurol 2011;69(1):193197.CrossRefGoogle ScholarPubMed
Maetzler, W, Mancini, M, Liepelt-Scarfone, I, et al. Impaired trunk stability in individuals at high risk for Parkinson’s disease. PLoS One 2012;7:e32240.CrossRefGoogle ScholarPubMed
Chaudhuri, KR, Schapira, AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 2009;8:464474.CrossRefGoogle Scholar
Ross, GW, Petrovitch, H, Abbott, RD, et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 2008;63:167173.CrossRefGoogle ScholarPubMed
Tolosa, E, Compta, Y, Gaig, C. The premotor phase of Parkinson’s disease. Parkinsonism Relat Disord 2007;13(Suppl):S27.CrossRefGoogle ScholarPubMed
Leentjens, AF, Van den Akker, M, Metsemakers, JF, Lousberg, R, Verhey, FR. Higher incidence of depression preceding the onset of Parkinson’s disease: a register study. Mov Disord 2003;18:414418.CrossRefGoogle ScholarPubMed
Iranzo, A, Molinuevo, JL, Santamaria, J, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol 2006;5:572577.CrossRefGoogle Scholar
Liepelt, I, Behnke, S, Schweitzer, K, et al. Pre-motor signs of PD are related to SN hyperechogenicity assessed by TCS in an elderly population. Neurobiol Aging 2011;32:15991606.CrossRefGoogle Scholar
Berg, D, Poewe, W. Can we define ‘pre-motor’ Parkinson’s disease? Mov Disord 2012;27:595596.CrossRefGoogle ScholarPubMed
Berg, D, Postuma, RB, Adler, CH, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015;30:16001611.CrossRefGoogle ScholarPubMed
Spillantini, MG, Schmidt, ML, Lee, VM, Trojanowski, JQ, Jakes, R, Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997;388:839840.CrossRefGoogle ScholarPubMed
Lesage, S, Brice, A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Molec Genet 2009;18(R1):R48–59.CrossRefGoogle ScholarPubMed
Healy, DG, Falchi, M, O’Sullivan, SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case–control study. Lancet Neurol 2008;7:583590.CrossRefGoogle ScholarPubMed
Brockmann, K, Groger, A, Di Santo, A, et al. Clinical and brain imaging characteristics in leucine-rich repeat kinase 2-associated PD and asymptomatic mutation carriers. Mov Disord 2011;26:23352342.CrossRefGoogle ScholarPubMed
Hasegawa, K, Stoessl, AJ, Yokoyama, T, et al. Familial parkinsonism: study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat Disord 2009;15:300306.CrossRefGoogle ScholarPubMed
Lücking, CB, Dürr, A, Bonifati, V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 2000;342:15601567.CrossRefGoogle ScholarPubMed
Valente, EM, Bentivoglio, AR, Dixon, PH, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001;6:895900.CrossRefGoogle Scholar
van de Warrenburg, BP, Lammens, M, Lücking, CB, et al. Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology 2001;56:555557.CrossRefGoogle Scholar
Farrer, M, Chan, P, Chen, R, et al. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001;50:293300.CrossRefGoogle ScholarPubMed
Samaranch, L, Lorenzo-Betancor, O, Arbelo, JM, et al. PINK1-linked parkinsonism is associated with Lewy body pathology. Brain 2010;133:11281142.CrossRefGoogle ScholarPubMed
Park, J, Lee, SB, Lee, S, Kim, Y, Song, S, Kim, S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006;441:11571161.CrossRefGoogle ScholarPubMed
International Parkinson Disease Genome Consortium; Nalls, MA, Plagnol, V, Hernandez, DG, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 2011;377:641649.Google ScholarPubMed
Sharma, M, Ioannidis, JP, Aasly, JO, et al. Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology 2012;79:659667.CrossRefGoogle ScholarPubMed
Simon-Sanchez, J, Schulte, C, Bras, JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genet 2009;41:13081312.CrossRefGoogle ScholarPubMed
Sidransky, E, Nalls, MA, Aasly, JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361:16511661.CrossRefGoogle ScholarPubMed
Brockmann, K, Schulte, C, Hauser, AK, et al. SNCA: major genetic modifier of age at onset of Parkinson’s disease. Mov Disord 2013;28(9):12171221.CrossRefGoogle ScholarPubMed
Ritz, B, Rhodes, SL, Bordelon, Y, Bronstein, J. Alpha-synuclein genetic variants predict faster motor symptom progression in idiopathic Parkinson disease. PLoS One 2012;7:e36199.CrossRefGoogle ScholarPubMed
Hardy, J. Genetic analysis of pathways to Parkinson disease. Neuron 2010;68:201206.CrossRefGoogle ScholarPubMed
Stoessl, AJ. Neuroimaging in Parkinson’s disease. Neurotherapeutics 2011;8:7281.CrossRefGoogle ScholarPubMed
Stoessl, AJ, Martin, WW, McKeown, MJ, Sossi, V. Advances in imaging in Parkinson’s disease. Lancet Neurol 2011;10:9871001.CrossRefGoogle ScholarPubMed
Piccini, P, Burn, DJ, Ceravolo, R, Maraganore, D, Brooks, DJ. The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 1999;45:577582.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Cho, ZH, Oh, SH, Kim, JM, et al. Direct visualization of Parkinson’s disease by in vivo human brain imaging using 7.0T magnetic resonance imaging. Mov Disord 2011;26:713718.CrossRefGoogle ScholarPubMed
Kwon, DH, Kim, JM, Oh, SH, et al. Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 2012;71:267277.CrossRefGoogle ScholarPubMed
Berg, D, Godau, J, Walter, U. Transcranial sonography in movement disorders. Lancet Neurol 2008;7:10441055.CrossRefGoogle ScholarPubMed
Berg, D, Seppi, K, Behnke, S, et al. Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch Neurol 2011;68:932937.CrossRefGoogle ScholarPubMed
Brockmann, K, Hagenah, J. TCS in monogenic forms of Parkinson’s disease. Int Rev Neurobiol 2010;90:157164.CrossRefGoogle ScholarPubMed
Berg, D, Behnke, S, Seppi, K, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 2013;28:216219.CrossRefGoogle ScholarPubMed
Goedert, M, Spillantini, MG, Del Tredici, K, Braak, H. 100 years of Lewy pathology. Nat Rev Neurol 2013;9:1324.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rub, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197211.CrossRefGoogle ScholarPubMed
Buchman, AS, Shulman, JM, Nag, S, et al. Nigral pathology and parkinsonian signs in elders without Parkinson disease. Ann Neurol 2012;71:258266.CrossRefGoogle ScholarPubMed
Perez, F, Helmer, C, Dartigues, JF, Auriacombe, S, Tison, F. A 15-year population-based cohort study of the incidence of Parkinson’s disease and dementia with Lewy bodies in an elderly French cohort. J Neurol Neurosurg Psychiatry 2010;81:742746.CrossRefGoogle Scholar
Olanow, CW, Perl, DP, DeMartino, GN, McNaught, KS. Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 2004;3:496503.CrossRefGoogle Scholar
Milber, JM, Noorigian, JV, Morley, JF, et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology 2012;79:23072314.CrossRefGoogle Scholar
Kramer, ML, Schulz-Schaeffer, WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 2007;27:14051410.CrossRefGoogle Scholar
Schulz-Schaeffer, WJ. The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 2010;120:131143.CrossRefGoogle ScholarPubMed
Hattori, N, Shimura, H, Kubo, S, et al. Autosomal recessive juvenile parkinsonism: a key to understanding nigral degeneration in sporadic Parkinson’s disease. Neuropathology 2000;20(Suppl):S8590.CrossRefGoogle ScholarPubMed
Martí-Massó, JF, Ruiz-Martinez, J, Bolano, MJ, et al. Neuropathology of Parkinson’s disease with the R1441G mutation in LRRK2. Mov Disord 2009;24:19982001.CrossRefGoogle ScholarPubMed
Kordower, JH, Chu, Y, Hauser, RA, Freeman, TB, Olanow, CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008;14:504506.CrossRefGoogle ScholarPubMed
Luk, KC, Kehm, V, Carroll, J, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012;338:949953.CrossRefGoogle ScholarPubMed
Berg, D, Adler, CH, Bloem, BR, et al. Movement disorder society criteria for clinically established early Parkinson’s disease. Mov Disord 2018;33(10):16431646.CrossRefGoogle ScholarPubMed
Brockmann, K, Berg, D. Diagnosis of Parkinson’s disease. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press, 2014; 229242.Google Scholar

References

Hoehn, MM, Yahr, MD. Parkinsonism. Onset, progression and mortality. Neurology 1967;17:565568.CrossRefGoogle ScholarPubMed
Jellinger, KA. Formation and development of Lewy pathology: a critical update. J Neurol 2009;256:270279.CrossRefGoogle Scholar
Braak, H, Del Tredici, K, Rüb, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197211.CrossRefGoogle ScholarPubMed
Braak, H, de Vos, RA, Blhl, J, Del Tredici, K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006;396:6772.CrossRefGoogle ScholarPubMed
Polymeropoulos, MH, Lavedan, C, Leroy, E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276:20452047.CrossRefGoogle ScholarPubMed
Heinzel, S, Berg, D, Gasser, T, et al. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2019;34:14641470.CrossRefGoogle ScholarPubMed
Shill, HA, Hentz, JG, Caviness, JN, et al. Unawareness of hyposmia in elderly people with and without Parkinson’s disease. Mov Disord Clin Practice 2015;17:4347.Google Scholar
Kang, SH, Lee, HM, Seo, W-K, Kim, JH, Koh, SB. The combined effect of REM sleep behavior disorder and hyposmia on cognition and motor phenotype in Parkinson’s disease. J Neurol Sci 2016;368:374378.CrossRefGoogle ScholarPubMed
Pont-Sunyer, C, Hotter, A, Gaig, C, et al. The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 2015;30:229237.CrossRefGoogle ScholarPubMed
Ross, GW, Petrovitch, H, Abbott, RD, Tanner, CM, Popper, J, Masaki, K, et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann Neurol 2008;63:167173.CrossRefGoogle ScholarPubMed
Haehner, A, Boesveldt, S, Berendse, HW, et al. Prevalence of smell loss in Parkinson’s disease – a multicenter study. Parkinsonism Relat Disord 2009;15:490494.CrossRefGoogle ScholarPubMed
Berg, D, Postuma, RB, Bloem, B, et al. Time to redefine PD? Introductory statement of the MDS task force on the definition of Parkinson’s disease. Mov Disord 2014;29:454462.CrossRefGoogle ScholarPubMed
Ansari, KA, Johnson, A. Olfactory function in patients with Parkinson’s disease. J Chronic Dis 1975;28:493497.CrossRefGoogle ScholarPubMed
Doty, RL, Deems, DA, Stellar, S. Olfactory dysfunction in parkinsonism: a general deficit unrelated to neurologic signs, disease stage, or disease duration. Neurology 1988;38:12371244.CrossRefGoogle ScholarPubMed
Hummel, T, Sekinger, B, Wolf, SR, Pauli, E, Kobal, G. “Sniffin’ sticks”: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem Senses 1997;22:3952.CrossRefGoogle ScholarPubMed
Bohnen, NI, Studenski, SA, Constantine, GM, Moore, RY. Diagnostic performance of clinical motor and non-motor tests of Parkinson’s disease. Eur J Neurol 2008;15:685691.CrossRefGoogle Scholar
Katzenschlager, R, Lees, AJ. Olfaction and Parkinson’s syndromes: its role in differential diagnosis. Curr Opin Neurol 2004;17:417423.CrossRefGoogle ScholarPubMed
Marin, C, Vilas, D, Langdon, C, et al. Olfactory dysfunction in neurodegenerative disease. Curr Allergy Asthma Reports 2018;18:4261.CrossRefGoogle Scholar
Barz, S, Hummel, T, Pauli, E, et al. Chemosensory event-related potentials in response to trigeminal and olfactory stimulation in idiopathic Parkinson’s disease. Neurology 1997;49:14241431.CrossRefGoogle ScholarPubMed
Herting, B, Bietenbeck, S, Scholz, K, et al. Olfactory dysfunction in Parkinson’s disease: its role as a new cardinal sign in early and differential diagnosis. Nervenarzt 2008;79:175184.CrossRefGoogle ScholarPubMed
Müller, A, Abolmaali, N, Hakimi, AR, et al. Olfactory bulb volumes in patients with idiopathic Parkinson’s disease – a pilot study. J Neural Transm 2005;112:13631370.CrossRefGoogle Scholar
Sommer, U, Hummel, T, Cormann, K, et al. Detection of presymptomatic Parkinson’s disease: combining smell tests, transcranial sonography, and SPECT. Mov Disord 2004;19:11961202.CrossRefGoogle ScholarPubMed
Becker, G, Seufert, J, Bogdahn, U, Reichmann, H, Reiners, KH. Degeneration of substantia nigra in chronic Parkinson’s disease visualized by transcranial color-coded real-time sonography. Neurology 1995;45:182184.CrossRefGoogle ScholarPubMed
Haehner, A, Hummel, T, Hummel, C, et al. Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Mov Disord 2007;22:839842.CrossRefGoogle ScholarPubMed
Stiasny-Kolster, K, Doerr, Y, Moeller, JC, et al. Combination of “idiopathic” REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain 2005;128:126137.CrossRefGoogle ScholarPubMed
Berendse, HW, Booij, J, Francot, CM, et al. Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with decreased sense of smell. Ann Neurol 2001;50:3441.CrossRefGoogle ScholarPubMed
Ponsen, MM, Stoffers, D, Booij, J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol 2004;56:173181.CrossRefGoogle ScholarPubMed
Haehner, A, Masala, C, Walter, S, Reichmann, H, Hummel, T. Incidence of Parkinson’s disease in a large cohort with idiopathic smell and taste loss. J Neurol 2019;266:339345.CrossRefGoogle Scholar
Siderowf, A, Jennings, D, Eberly, S, et al. Impaired olfaction and other prodromal features in the Parkinson At-Risk Syndrome Study. Mov Disord 2012;27:406412.CrossRefGoogle ScholarPubMed
Jennings, D, Siderow, A, Stern, M, et al. Conversion to Parkinson disease in the PARS hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurol 2017;74:933940.CrossRefGoogle ScholarPubMed
Gaenslen, A, Wurster, I, Brockmann, K, et al. Prodromal features for Parkinson’s disease-baseline data from the TREND study. Eur J Neurol 2014;21:766772.CrossRefGoogle ScholarPubMed
Mahlknecht, P, Stockner, H, Marini, K, et al. Midbrain hyperechogenicity, hyposmia, mild parkinsonian signs and risk for incident PD over 10 years: a prospective population-based study. Parkinsonism Relat Disord 2020;70:5154.CrossRefGoogle Scholar
Marrero-Gonzalez, P, Iranzo, A, Bedoya, D, et al. Prodromal Parkinson disease in patients with idiopathic hyposmia. J Neurol 2020;267:36733682.CrossRefGoogle ScholarPubMed
Travers, JB, Akey, KR, Chen, SC, et al. Taste preferences in Parkinson’s disease patients. Chem Senses 1993;18:4755.CrossRefGoogle Scholar
Wolz, M, Kaminsky, A, Löhle, M, et al. Chocolate consumption is increased in Parkinson’s disease. Results from a self-questionnaire. J Neurol 2009;256:488492.CrossRefGoogle ScholarPubMed
Abbott, RD, Petrovitch, H, White, LR, et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 2001;57:456462.CrossRefGoogle ScholarPubMed
Chaudhuri, KR, Martinez-Martin, P, Schapira, AHV, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov Disord 2006;21:916923.CrossRefGoogle ScholarPubMed
Cersosimo, MG, Raina, GB, Pecci, C, et al. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 2013;260:13321338.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Takahashi, H, Takeda, S, Ohama, E, Ikuta, F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 1988;76:217221.CrossRefGoogle ScholarPubMed
Braak, H, de Vos, RAI, Bohl, J, Del Tredici, K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006;396:6772.CrossRefGoogle ScholarPubMed
Shannon, KM, Keshavarzian, A, Mutlu, E, et al. Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease. Mov Disord 2021;27:709715.CrossRefGoogle Scholar
Peter, I, Dubinsky, M, Bressman, S, et al. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol 2018;75:939946.CrossRefGoogle ScholarPubMed
Shannon, KM, Keshavarzian, A, Dodiya, H, Jakate, S, Kordower, JH. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 2012;27:716719.CrossRefGoogle Scholar
Pan Montojo, F, Anichtchik, O, Dening, Y, et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 2010;e8762.CrossRefGoogle Scholar
Postuma, RB, Berg, D. Prodromal Parkinson’s disease: the decade past, the decade to come. Mov Disord 2019; 34: 665675.CrossRefGoogle ScholarPubMed
Kurtis, MM, Balestrino, R, Rodriuez-Blazquez, C, et al. A review of scales to evaluate sleep disturbances in movement disorders. Front Neurol 2018;9:369.CrossRefGoogle ScholarPubMed
Arnulf, I, Leu, S, Oudiette, D. Abnormal sleep and sleepiness in Parkinson’s disease. Curr Opin Neurol 2008;21:472477.CrossRefGoogle ScholarPubMed
Roth, T, Rye, DB, Borchert, LD, et al. Assessment of sleepiness and unintended sleep in Parkinson’s disease patients taking dopamine agonists. Sleep Med 2003;4:275280.CrossRefGoogle ScholarPubMed
Brown, RG, Landau, S, Hindel, JV, et al. Depression and anxiety related subtypes in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2011;82:803809.CrossRefGoogle ScholarPubMed
Abbott, RD, Ross, GW, White, LR, et al. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 2005;65:14421446.CrossRefGoogle ScholarPubMed
Dauvilliers, Y, Schenck, CH, Postuma, RB, et al. REM sleep behaviour disorder. Nat Rev Dis Primers 2018;4:19.CrossRefGoogle ScholarPubMed
Schenck, CH, Montplaisir, JY, Frauscher, B, et al. Rapid eye movement sleep behavior disorder: devising controlled active treatment studies for symptomatic and neuroprotective therapy – a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Med 2013;14:795806.CrossRefGoogle ScholarPubMed
Valencia Garcia, S, Fort, P. [A restless REM sleep may be sign of emerging neurodegenerative diseases]. Med Sci (Paris) 2018;34:771773.CrossRefGoogle ScholarPubMed
Iranzo, A, Stockner, H, Serradell, M, et al. Five-year follow-up of substantia nigra echogenicity in idiopathic REM sleep behavior disorder. Mov Disord 2014;29:17741780.CrossRefGoogle ScholarPubMed
Mahlknecht, P, Seppi, K, Frauscher, B, et al. Probable RBD and association with neurodegenerative disease markers: a population-based study. Mov Disord 2015;30(10):14171421.CrossRefGoogle ScholarPubMed
Postuma, RB, Gagnan, JF, Vendette, M, Charland, K, Montplaisir, J. REM sleep behaviour disorder in Parkinson’s disease is associated with specific motor features. J Neurol Neurosurg Psychiatry 2008;79:11171121.CrossRefGoogle ScholarPubMed
Fereshtehnejad, SM, Yao, C, Pelletier, A, et al. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: a prospective study. Brain 2019;142(7):20512067.CrossRefGoogle ScholarPubMed
Bhidayasiri, R, Sringean, J, Trenkwalder, C. Mastering nocturnal jigsaws in Parkinson’s disease: a dusk-to-dawn review of night-time symptoms. J Neural Transm 2020;127:763777.CrossRefGoogle ScholarPubMed
Postuma, RB, Iranzo, A, Hu, M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142:744759.CrossRefGoogle ScholarPubMed
Baumann-Vogel, H, Hor, H, Poryazova, R, et al. REM sleep behavior in Parkinson disease: frequent, particularly with higher age. PLoS One 2020;15:e0243454.CrossRefGoogle ScholarPubMed
Pagano, G, De Micco, R, Yousaf, T, et al. REM behavior disorder predicts motor progression and cognitive decline in Parkinson disease. Neurology 2018;91:e894e905.CrossRefGoogle ScholarPubMed
Assogna, F, Liguori, C, Cravello, L, et al. Cognitive and neuropsychiatric profiles in idiopathic rapid eye movement sleep behavior disorder and Parkinson’s disease. J Pers Med 2021;11:51.CrossRefGoogle ScholarPubMed
Barber, TR, Lawton, M, Rolinski, M, et al. Prodromal Parkinsonism and neurodegenerative risk stratification in REM sleep behavior disorder. Sleep 2017;40:zsx071.CrossRefGoogle ScholarPubMed
Kogan, RV, Janzen, A, Meles, SK, et al. Four-year follow-up of [18F]fluorodeoxyglucose positron emission tomography-based Parkinson’s disease-related pattern expression in 20 patients with isolated rapid eye movement sleep behavior disorder shows prodromal progression. Mov Disord 2021;36:230235.CrossRefGoogle ScholarPubMed
Marras, C, Ray Chaudhuri, K. Nonmotor features of Parkinson’s disease subtypes Mov Disord 2016;31:10951102.CrossRefGoogle ScholarPubMed
Schrag, A, Taddei, RN. Depression and anxiety in Parkinson’s disease. Int Rev Neurobiol 2017;133:623655.CrossRefGoogle ScholarPubMed
Szatmári, S Jr, Ajtay, A, Oberfrank, F, Dobi, B, Bereckzi, D. The prevalence of psychiatric symptoms before the diagnosis of Parkinson’s disease in a nationwide cohort: a comparison to patients with cerebral infarction. PLoS One 2020;15(8):e0236728.CrossRefGoogle Scholar
Marinus, J, Leentjens, AF, Visser, M, Stiggelbout, AM, van Hilten, JJ. Evaluation of the hospital anxiety and depression scale in patients with Parkinson’ s disease. Clin Neuropharmacol 2002;25:318324.CrossRefGoogle ScholarPubMed
Rodriguez-Blazquez, C, Frades-Payo, B, Forjaz, MJ, et al. Psychometric attributes of the Hospital Anxiety and Depression Scale in Parkinson’s disease. Mov Disord 2009;24:519525.CrossRefGoogle ScholarPubMed
Schrag, A, Anastasiou, Z, Ambler, G, Noyce, A, Walters, K. Predicting diagnosis of Parkinson’s disease: a risk algorithm based on primary care presentations. Mov Disord 2019;34:480486.CrossRefGoogle ScholarPubMed
Gaenslen, A, Wurster, I, Brockmann, K, et al. Prodromal features for Parkinson’s disease – baseline data from the TREND study. Eur J Neurol 2014;21:766772.CrossRefGoogle ScholarPubMed
Walter, U, Heilmann, R, Kaulitz, L, et al. Prediction of Parkinson’s disease subsequent to severe depression: a ten-year follow-up study. J Neural Transm 2015;122:789797.CrossRefGoogle ScholarPubMed
Nègre‐Pagès, L, Grandjean, H, Lapeyre‐Mestre, M, et al. Anxious and depressive symptoms in Parkinson’s disease: the French cross‐sectionnal DoPaMiP study. Mov Disord 2010;25:157166.CrossRefGoogle ScholarPubMed
Hinkle, JT, Perepezko, K, Gonzale, LL, Mills, KA, Pontone, GM. Apathy and anxiety in de novo Parkinson’s disease predict the severity of motor complications. Mov Disord Clin Pract 2020;8:7684.CrossRefGoogle ScholarPubMed
Santangelo, G, Garramone, F, Baiano, C, et al. Personality and Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord 2018;49:6774.CrossRefGoogle ScholarPubMed
Darweesh, SKL, Wolters, EJ, Postuma, RB, et al. Association between poor cognitive functioning and risk of incident Parkinsonism. JAMA Neurol 2017;74:14311438.CrossRefGoogle ScholarPubMed
Weintraub, D, Chahine, LM, Hawkins, KA, et al. Cognition and the course of prodromal Parkinson’s disease. Mov Disord 2017;32:16401645.CrossRefGoogle ScholarPubMed

References

Deng, H, Wang, P, Jankovic, J. The genetics of Parkinson disease. Ageing Res Rev 2018;42:7285.CrossRefGoogle ScholarPubMed
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: Recommendations of the International Parkinson and Movement Disorder Society task force. Mov Disord 2016;31(4):436457.CrossRefGoogle ScholarPubMed
Polymeropoulos, MH, Lavedan, C, Leroy, E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997;276(5321):20452047.CrossRefGoogle ScholarPubMed
Lunati, A, Lesage, S, Brice, A. The genetic landscape of Parkinson’s disease. Rev Neurol (Paris) 2018;174(9):628643.CrossRefGoogle ScholarPubMed
Xu, W, Tan, L, Yu, JT. Link between the SNCA gene and parkinsonism. Neurobiol Aging 2015;36(3):15051518.CrossRefGoogle ScholarPubMed
Atik, A, Stewart, T, Zhang, J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 2016;26(3):410418.CrossRefGoogle ScholarPubMed
Paisán-Ruíz, C, Jain, S, Evans, EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004;44(4):595600.CrossRefGoogle ScholarPubMed
Zimprich, A, Biskup, S, Leitner, P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004;44(4):601607.CrossRefGoogle ScholarPubMed
Rubio, JP, Topp, S, Warren, L, et al. Deep sequencing of the LRRK2 gene in 14,002 individuals reveals evidence of purifying selection and independent origin of the p.Arg1628Pro mutation in Europe. Hum Mutat 2012;33(7):10871098.CrossRefGoogle ScholarPubMed
Bardien, S, Lesage, S, Brice, A, Carr, J. Genetic characteristics of leucine-rich repeat kinase 2 (LRRK2) associated Parkinson’s disease. Parkinsonism Relat Disord 2011;17(7):501508.CrossRefGoogle ScholarPubMed
Correia Guedes, L, Ferreira, JJ, Rosa, MM, et al. Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 2010;16(4):237242.CrossRefGoogle ScholarPubMed
Trinh, J, Guella, I, Farrer, MJ. Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol 2014;71(12):15351539.CrossRefGoogle ScholarPubMed
Saunders-Pullman, R, Raymond, D, Elango, S. LRRK2 Parkinson disease. In: Adam, MP, Ardinger, HH, Pagon, RA, et al., eds. GeneReviews. Seattle (WA): University of Washington; 2006.Google Scholar
Jeong, GR, Lee, BD. Pathological functions of LRRK2 in Parkinson’s disease. Cells 2020;9(12):2565.CrossRefGoogle ScholarPubMed
Vilariño-Güell, C, Rajput, A, Milnerwood, AJ, et al. DNAJC13 mutations in Parkinson disease. Hum Mol Genet 2014;23(7):17941801.CrossRefGoogle ScholarPubMed
Deng, HX, Shi, Y, Yang, Y, et al. Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 2016;48(7):733739.CrossRefGoogle ScholarPubMed
Kilarski, LL, Pearson, JP, Newsway, V, et al. Systematic review and UK-based study of PARK2 (parkin), PINK1, PARK7 (DJ-1) and LRRK2 in early-onset Parkinson’s disease. Mov Disord 2012;27(12):15221529.CrossRefGoogle ScholarPubMed
Kasten, M, Hartmann, C, Hampf, J, et al. Genotype–phenotype relations for the Parkinson’s disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov Disord 2018;33(5):730741.CrossRefGoogle ScholarPubMed
Valente, EM, Abou-Sleiman, PM, Caputo, V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004;304(5674):11581160.CrossRefGoogle ScholarPubMed
Abou-Sleiman, PM, Healy, DG, Quinn, N, Lees, AJ, Wood, NW. The role of pathogenic DJ-1 mutations in Parkinson’s disease. Ann Neurol 2003;54(3):283286.CrossRefGoogle ScholarPubMed
Bonifati, V, Rizzu, P, van Baren, MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003;299(5604):256259.CrossRefGoogle ScholarPubMed
Morgan, NV, Westaway, SK, Morton, JE, et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006;38(7):752754.CrossRefGoogle ScholarPubMed
Shojaee, S, Sina, F, Banihosseini, SS, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008;82(6):13751384.CrossRefGoogle ScholarPubMed
Krebs, CE, Karkheiran, S, Powell, JC, et al. The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 2013;34(9):12001207.CrossRefGoogle Scholar
Mamais, A, Cookson, MR. Parkinson’s disease: genetics. In: Heinz, S, Kuei, YT, eds. Handbook of Behavioral Neuroscience. Amsterdam: Elsevier; 2016: 839855.Google Scholar
Gan-Or, Z, Liong, C, Alcalay, RN. GBA-associated Parkinson’s disease and other synucleinopathies. Curr Neurol Neurosci Rep 2018;18(8):44.CrossRefGoogle ScholarPubMed
Stirnemann, J, Belmatoug, N, Camou, F, et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int J Mol Sci 2017;18(2):441.CrossRefGoogle ScholarPubMed
Sidransky, E, Nalls, MA, Aasly, JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009;361(17):16511661.CrossRefGoogle ScholarPubMed
Mao, X, Wang, T, Peng, R, et al. Mutations in GBA and risk of Parkinson’s disease: a meta-analysis based on 25 case-control studies. Neurol Res 2013;35(8):873878.CrossRefGoogle ScholarPubMed
Huang, Y, Deng, L, Zhong, Y, Yi, M. The association between E326K of GBA and the risk of Parkinson’s disease. Parkinsons Dis 2018;2018:1048084.Google ScholarPubMed
Gan-Or, Z, Amshalom, I, Kilarski, LL, et al. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 2015;84(9):880887.CrossRefGoogle ScholarPubMed
Riboldi, GM, Di Fonzo, AB. GBA, Gaucher disease, and Parkinson’s disease: From genetic to clinic to new therapeutic approaches. Cells 2019;8(4):364.CrossRefGoogle ScholarPubMed
Zhang, Y, Shu, L, Zhou, X, et al. A meta-analysis of GBA-related clinical symptoms in Parkinson’s disease. Parkinsons Dis 2018;2018:3136415.Google ScholarPubMed
Stojkovska, I, Krainc, D, Mazzulli, JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson’s disease. Cell Tissue Res 2018;373(1):5160.CrossRefGoogle ScholarPubMed
Behl, T, Kaur, G, Fratila, O, Buhas, C, et al. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: a comprehensive review. Transl Neurodegener 2021;10(1):4.CrossRefGoogle ScholarPubMed
Massey, LA, Jager, HR, Paviour, DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80(20):18561861.CrossRefGoogle ScholarPubMed
Madhyastha, TM, Askren, MK, Boord, P, et al. Cerebral perfusion and cortical thickness indicate cortical involvement in mild Parkinson’s disease. Mov Disord 2015;30(14):18931900.CrossRefGoogle ScholarPubMed
Teune, LK, Renken, RJ, de Jong, BM, et al. Parkinson’s disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging. Neuroimage Clin 2014;5:240244.CrossRefGoogle ScholarPubMed
Melzer, TR, Watts, R, MacAskill, MR, et al. Arterial spin labelling reveals an abnormal cerebral perfusion pattern in Parkinson’s disease. Brain 2011;134(3):845855.CrossRefGoogle ScholarPubMed
Wang, X, Zhang, Y, Zhu, C, et al. The diagnostic value of SNpc using NM-MRI in Parkinson’s disease: meta-analysis. Neurol Sci 2019;40(12):24792489.CrossRefGoogle Scholar
Mahlknecht, P, Krismer, F, Poewe, W, Seppi, K. Meta-analysis of dorsolateral nigral hyperintensity on magnetic resonance imaging as a marker for Parkinson’s disease. Mov Disord 2017;32(4):619623.CrossRefGoogle ScholarPubMed
Tolosa, E, Garrido, A, Scholz, SW, Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 2021;20(5):385397.CrossRefGoogle ScholarPubMed
Deng, XY, Wang, L, Yang, TT, Li, R, Yu, G. A meta-analysis of diffusion tensor imaging of substantia nigra in patients with Parkinson’s disease. Sci Rep 2018;8:2941.CrossRefGoogle ScholarPubMed
Vaillancourt, DE, Spraker, MB, Prodoehl, J, et al. High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009;72(16):13781384.CrossRefGoogle ScholarPubMed
Du, G, Lewis, MM, Sen, S, et al. Imaging nigral pathology and clinical progression in Parkinson’s disease. Mov Disord 2012;27(13):16361643.CrossRefGoogle ScholarPubMed
Guan, J, Rong, Y, Wen, Y, et al. Detection and application of neurochemical profile by multiple regional 1H-MRS in Parkinson’s disease. Brain Behav 2017;7(9):e00792.CrossRefGoogle ScholarPubMed
Ciurleo, R, Bonanno, L, Di Lorenzo, G, Bramanti, P, Marino, S. Metabolic changes in de novo Parkinson’s disease after dopaminergic therapy: a proton magnetic resonance spectroscopy study. Neurosci Lett 2015;599:5560.CrossRefGoogle ScholarPubMed
Yoshii, F, Ryo, M, Baba, Y, Koide, T, Hashimoto, J. Combined use of dopamine transporter imaging (DAT-SPECT) and 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy for diagnosing Parkinson’s disease. J Neurol Sci 2017;375:8085.CrossRefGoogle Scholar
Lauretani, F, Longobucco, Y, Ravazzoni, G, et al. Imaging the functional neuroanatomy of Parkinson’s disease: clinical applications and future directions. Int J Environ Res Public Health 2021;18(5):2356.CrossRefGoogle ScholarPubMed
Meles, SK, Oertel, WH, Leenders, KL. Circuit imaging biomarkers in preclinical and prodromal Parkinson’s disease. Mol Med 2021;27(1):111.CrossRefGoogle ScholarPubMed
Berg, D, Behnke, S, Seppi, K, et al. Enlarged hyperechogenic substantia nigra as a risk marker for Parkinson’s disease. Mov Disord 2013;28(2):216219.CrossRefGoogle ScholarPubMed
Berg, D, Godau, J, Walter, U. Transcranial sonography in movement disorders. Lancet Neurol 2008;7(11):10441055.CrossRefGoogle ScholarPubMed
Li, DH, He, YC, Liu, J, Chen, SD. Diagnostic accuracy of transcranial sonography of the substantia nigra in Parkinson’s disease: a systematic review and meta-analysis. Sci Rep 2016;6:20863.CrossRefGoogle ScholarPubMed
Sakakibara, R, Tateno, F, Kishi, M, et al. MIBG myocardial scintigraphy in pre-motor Parkinson’s disease: a review. Parkinsonism Relat Disord 2014;20(3):267273.CrossRefGoogle ScholarPubMed
Krashia, P, Cordella, A, Nobili, A, et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat Commun 2019;10:3945.CrossRefGoogle Scholar
Yan, D, Zhang, Y, Yan, H, Shi, N, Yan, H. Pesticide exposure and risk of Parkinson’s disease: dose-response meta-analysis of observational studies. Regul Toxicol Pharmacol 2018;96:5763.CrossRefGoogle ScholarPubMed
Le, W, Rowe, DB, Jankovic, J, Xie, W, Appel, SH. Effects of cerebrospinal fluid from patients with Parkinson disease on dopaminergic cells. Arch Neurol 1999;56(2):194200.CrossRefGoogle ScholarPubMed
Li, T, Yang, Z, Li, S, et al. Alterations of NURR1 and cytokines in the peripheral blood mononuclear cells: combined biomarkers for Parkinson’s disease. Front Aging Neurosci 2018;10:392.CrossRefGoogle ScholarPubMed
Martin-Ruiz, C, Williams-Gray, C, Yarnall, A, et al. Senescence and inflammatory markers for predicting clinical progression in Parkinson’s disease: the ICICLE-PD study. J Parkinsons Dis 2020;10(1):193206.CrossRefGoogle ScholarPubMed
Jensen, MP, Jacobs, BM, Dobson, R, et al. Lower lymphocyte count is associated with increased risk of Parkinson’s disease. Ann Neurol 2021;89(4):803812.CrossRefGoogle ScholarPubMed
Cui, SS, Du, JJ, Liu, SH, et al. Serum soluble lymphocyte activation gene‐3 as a diagnostic biomarker in Parkinson’s disease: a pilot multicenter study. Mov Disord 2019;34(1):138141.CrossRefGoogle ScholarPubMed
Nissen, SK, Ferreira, SA, Nielsen, MC, et al. Soluble CD163 changes indicate monocyte association with cognitive deficits in Parkinson’s disease. Mov Disord 2021;36(4):963976.CrossRefGoogle ScholarPubMed
Dong, J, Liu, X, Wang, Y, Cai, H, Le, W. Nurr1Cd11bcre conditional knockout mice display inflammatory injury to nigrostriatal dopaminergic neurons. Glia 2020;68(10):20572069.CrossRefGoogle ScholarPubMed
Petrillo, S, Schirinzi, T, Di Lazzaro, G, et al. Systemic activation of Nrf2 pathway in Parkinson’s disease. Mov Disord 2020;35(1):180184.CrossRefGoogle ScholarPubMed
Lin, JC, Lin, CS, Hsu, CW, Lin, CL, Kao, CH. Association between Parkinson’s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 2016;22(5):10491055.CrossRefGoogle ScholarPubMed
Perez-Pardo, P, Dodiya, HB, Engen, PA, et al. Role of TLR4 in the gut–brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019;68(5):829843.CrossRefGoogle ScholarPubMed
Akhtar, RS, Licata, JP, Luk, KC, et al. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson’s disease. J Neurochem 2018;145(6):489503.CrossRefGoogle ScholarPubMed
Sabatino, JJ, Probstel, AK, Zamvil, S. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci 2019;20(12):728745.CrossRefGoogle ScholarPubMed
Fan, Z, Pan, YT, Zhang, ZY, et al. Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson’s disease. J Neuroinflammation 2020;17(1):11.CrossRefGoogle ScholarPubMed
Belloli, S, Morari, M, Murtaj, V, et al. Translation imaging in Parkinson’s disease: focus on neuroinflammation. Front Aging Neurosci 2020;12:152.CrossRefGoogle ScholarPubMed
Eidson, LN, Kannarkat, GT, Barnum, CJ, et al. Candidate inflammatory biomarkers display unique relationships with alpha-synuclein and correlate with measures of disease severity in subjects with Parkinson’s disease. J Neuroinflammation 2017;14(1):164.CrossRefGoogle ScholarPubMed
Borsche, M, König, IR, Delcambre, S, et al. Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain 2020;143(10):30413051.CrossRefGoogle ScholarPubMed
Goldstein, DS, Holmes, C, Sharabi, Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 2012;135(6):19001913.CrossRefGoogle ScholarPubMed
LeWitt, P, Schultz, L, Auinger, P, Lu, M; Parkinson Study Group DATATOP Investigators. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res 2011;1408:8897.CrossRefGoogle ScholarPubMed
Kim, AR, Nodel, MR, Pavlenko, TA, et al. Tear fluid catecholamines as biomarkers of the Parkinson’s disease: a clinical and experimental study. Acta Naturae 2019;11(4):99103.CrossRefGoogle ScholarPubMed
Von Seggern, M, Szarowicz, C, Swanson, M, et al. Purine molecules in Parkinson’s disease: analytical techniques and clinical implications. Neurochem Int 2020;139:104793.CrossRefGoogle ScholarPubMed
Bolner, A, Pilleri, M, De Riva, V, Nordera, GP. Plasma and urinary HPLC-ED determination of the ratio of 8-OHdG/2-dG in Parkinson’s disease. Clin Lab 2011;57(11–12):859866.Google ScholarPubMed
Fujimaki, M, Saiki, S, Li, Y, et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018;90(5):e404e411.CrossRefGoogle ScholarPubMed
Luan, H, Liu, LF, Tang, Z, et al. Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Sci Rep 2015;5:13888.CrossRefGoogle ScholarPubMed
Zhang, Q, Gao, Y, Zhang, J, et al. L-Asparaginase exerts neuroprotective effects in an SH-SY5Y-A53T model of Parkinson’s disease by regulating glutamine metabolism. Front Mol Neurosci 2020;13:563054.CrossRefGoogle Scholar
Rosario, D, Bidkhori, G, Lee, S, et al. Systematic analysis of gut microbiome reveals the role of bacterial folate and homocysteine metabolism in Parkinson’s disease. Cell Rep 2021;34(9):108807.CrossRefGoogle ScholarPubMed
Hertel, J, Harms, AC, Heinken, A, et al. Integrated analyses of microbiome and longitudinal metabolome data reveal microbial–host interactions on sulfur metabolism in Parkinson’s disease. Cell Rep 2019;29(7):17671777.08.CrossRefGoogle ScholarPubMed
Graham, SF, Rey, NL, Ugur, Z, et al. Metabolomic profiling of bile acids in an experimental model of prodromal Parkinson’s disease. Metabolites 2018;8(4):71.CrossRefGoogle Scholar
Shao, Y, Li, T, Liu, Z, et al. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol Neurodegener 2021;16(1):4.CrossRefGoogle ScholarPubMed
Cirstea, MS, Yu, AC, Golz, E, et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov Disord 2020;35(7):12081217.CrossRefGoogle ScholarPubMed
Xicoy, H, Wieringa, B, Martens, GJM. The role of lipids in Parkinson’s disease. Cells 2019;8(1):27.CrossRefGoogle ScholarPubMed
Burté, F, Houghton, D, Lowes, H, et al. Metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord 2017;32(6):927932.CrossRefGoogle ScholarPubMed
Sinclair, E, Trivedi, DK, Sarkar, D, et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 2021;12:1592.CrossRefGoogle ScholarPubMed
Sinclair, E, Walton-Doyle, C, Sarkar, D, et al. Validating differential volatilome profiles in Parkinson’s disease. ACS Cent Sci 2021;7(2):300306.CrossRefGoogle ScholarPubMed
Ammal Kaidery, N, Ahuja, M, Thomas, B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol Cell Neurosci 2019;101:103413.CrossRefGoogle ScholarPubMed
Margis, R, Margis, R, Rieder, CR. Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 2011;152(3):96101.CrossRefGoogle Scholar
Khoo, SK, Petillo, D, Kang, UJ, et al. Plasma-based circulating microRNA biomarkers for Parkinson’s disease. J Parkinsons Dis 2012;2(4):321331.CrossRefGoogle ScholarPubMed
Burgos, K, Malenica, I, Metpally, R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One 2014;9(5):e94839.CrossRefGoogle ScholarPubMed
Serafin, A, Foco, L, Zanigni, S, et al. Overexpression of blood microRNAs 103a, 30b, and 29a in l-dopa-treated patients with PD. Neurology 2015;84(7):645653.CrossRefGoogle ScholarPubMed
Yang, Z, Li, T, Cui, Y, et al. Elevated plasma microRNA-105-5p level in patients with idiopathic Parkinson’s disease: a potential disease biomarker. Front Neurosci 2019;13:218.CrossRefGoogle ScholarPubMed
Schulz, J, Takousis, P, Wohlers, I, et al. Meta-analyses identify differentially expressed micrornas in Parkinson’s disease. Ann Neurol 2019;85(6):835.CrossRefGoogle ScholarPubMed
Dos Santos, MCT, Barreto-Sanz, MA, Correia, BRS, et al. miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget 2018;9(25):17455.CrossRefGoogle ScholarPubMed
Nies, YH, Mohamad Najib, NH, Lim, WL, et al. MicroRNA dysregulation in Parkinson’s disease: a narrative review. Front Neurosci 2021;15:660379.CrossRefGoogle ScholarPubMed
Kim, J, Inoue, K, Ishii, J, et al. A microRNA feedback circuit in midbrain dopamine neurons. Science 2007;317(5842):12201224.CrossRefGoogle ScholarPubMed
Alvarez-Erviti, L, Seow, Y, Schapira, AH, et al. Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson’s disease. Cell Death Dis 2013;4(3):e545.CrossRefGoogle ScholarPubMed
Cardo, LF, Coto, E, Ribacoba, R, et al. MiRNA profile in the substantia nigra of Parkinson’s disease and healthy subjects. J Mol Neurosci 2014;54(4):830836.CrossRefGoogle ScholarPubMed
Wang, Y, Yang, Z, Le, W. Tiny but mighty: promising roles of microRNAs in the diagnosis and treatment of Parkinson’s disease. Neurosci Bull 2017;33(5):543551.CrossRefGoogle ScholarPubMed
Yang, D, Li, T, Wang, Y, et al. miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression. J Cell Sci 2012;125(7):16731682.Google ScholarPubMed
Yang, Z, Li, T, Li, S, et al. Altered expression levels of microRNA-132 and Nurr1 in peripheral blood of Parkinson’s disease: potential disease biomarkers. ACS Chem Neurosci 2019;10(5):22432249.CrossRefGoogle ScholarPubMed
Botta-Orfila, T, Morató, X, Compta, Y, et al. Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson’s disease. J Neurosci Res 2014;92(8):10711077.CrossRefGoogle ScholarPubMed
Gui, Y, Liu, H, Zhang, L, Lv, W, Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015;6(35): 3704337053.CrossRefGoogle ScholarPubMed
Ma, W, Li, Y, Wang, C, et al. Serum miR-221 serves as a biomarker for Parkinson’s disease. Cell Biochem Funct 2016;34(7):511515.CrossRefGoogle ScholarPubMed
Bai, X, Tang, Y, Yu, M, et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci Rep 2017;7:5411.CrossRefGoogle ScholarPubMed
Yang, Y, Li, Y, Yang, H, Guo, J, Li, N. Circulating microRNAs and long non-coding RNAs as potential diagnostic biomarkers for Parkinson’s disease. Front Mol Neurosci 2021;14:631553.CrossRefGoogle ScholarPubMed
Kern, F, Fehlmann, T, Violich, I, et al. Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson’s disease progression. Nat Aging 2021;1(3):309322.CrossRefGoogle ScholarPubMed
Schilling, M, Lill, CM. MicroRNAs as molecular biomarkers for Parkinson’s disease progression. Mov Disord 2021;36(8):1793.CrossRefGoogle ScholarPubMed
Parnetti, L, Gaetani, L, Eusebi, P, et al. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol 2019;18(6):573586.CrossRefGoogle ScholarPubMed
Li, N, Pan, X, Zhang, J, et al. Plasma levels of miR-137 and miR-124 are associated with Parkinson’s disease but not with Parkinson’s disease with depression. Neurol Sci 2017;38(5):761767.CrossRefGoogle Scholar
Schwienbacher, C, Foco, L, Picard, A, et al. Plasma and white blood cells show different miRNA expression profiles in Parkinson’s disease. J Mol Neurosci 2017;62(2):244254.CrossRefGoogle ScholarPubMed
Zhang, X, Yang, R, Hu, BL, et al. Reduced circulating levels of miR-433 and miR-133b are potential biomarkers for Parkinson’s disease. Front Cell Neurosci 2017;11:170.CrossRefGoogle ScholarPubMed
Jin, L, Wan, W, Wang, L, et al. Elevated microRNA-520d-5p in the serum of patients with Parkinson’s disease, possibly through regulation of cereloplasmin expression. Neurosci Lett 2018;687:8893.CrossRefGoogle ScholarPubMed
Dong, H, Wang, C, Lu, S, et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers 2016;21(2):129137.CrossRefGoogle ScholarPubMed
Ding, H, Huang, Z, Chen, M, et al. Identification of a panel of five serum miRNAs as a biomarker for Parkinson’s disease. Parkinsonism Relat Disord 2016;22:6873.CrossRefGoogle ScholarPubMed
Cressatti, M, Juwara, L, Galindez, JM, et al. Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 2020;35(3):468477.CrossRefGoogle ScholarPubMed

References

Lidstone, SC, Bayley, M, Lang, AE. The evidence for multidisciplinary care in Parkinson’s disease. Expert Rev Neurother 2020;20(6):539549.CrossRefGoogle ScholarPubMed
Deane, KH, Jones, D, Ellis-Hill, C, et al. A comparison of physiotherapy techniques for patients with Parkinson’s disease. Cochrane Database Syst Rev 2001;1:CD002815.Google Scholar
Deane, KH, Jones, D, Playford, ED, Ben-Shlomo, Y, Clarke, CE. Physiotherapy for patients with Parkinson’s Disease. Cochrane Database Syst Rev 2001;1:CD002817.Google Scholar
Deane, KH, Ellis-Hill, C, Jones, D, et al. Systematic review of paramedical therapies for Parkinson’s disease. Mov Disord 2002;17(5):984991.CrossRefGoogle ScholarPubMed
Keus, SH, Bloem, BR, Hendriks, EJ, Bredero-Cohen, AB, Munneke, M. Evidence-based analysis of physical therapy in Parkinson’s disease with recommendations for practice and research. Mov Disord 2007;22(4):451460.CrossRefGoogle ScholarPubMed
Tomlinson, CL, Patel, S, Meek, C, et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst Rev 2013;2013(9):CD002817.Google ScholarPubMed
Radder, DLM, Lígia Silva de Lima, A, Domingos, J, et al. Physiotherapy in Parkinson’s disease: a meta-analysis of present treatment modalities. Neurorehabil Neural Repair 2020;34(10):871880.CrossRefGoogle ScholarPubMed
Hirsch, MA, Sanjak, M, Englert, D, Iyer, S, Quinlan, MM. Parkinson patients as partners in care. Parkinsonism Relat Disord 2014;20(Suppl 1):S174179.CrossRefGoogle ScholarPubMed
Lim, LIIK, van Wegen, EEH, de Goede, CJT, et al. Measuring gait and gait-related activities in Parkinson’s patients own home environment: a reliability, responsiveness and feasibility study. Parkinsonism Relat Disord 2005;11(1):1924.CrossRefGoogle ScholarPubMed
Bronte-Stewart, HM, Minn, AY, Rodrigues, K, Buckley, EL, Nashner, LM. Postural instability in idiopathic Parkinson’s disease: the role of medication and unilateral pallidotomy. Brain 2002;125(9):21002114.CrossRefGoogle ScholarPubMed
Berg, KO, Wood-Dauphinee, SL, Williams, JI, Maki, B. Measuring balance in the elderly: validation of an instrument. Can J Public Health 1992;83(Suppl 2):S711.Google ScholarPubMed
Smithson, F, Morris, ME, Iansek, R. Performance on clinical tests of balance in Parkinson’s disease. Phys Ther 1998;78(6):577592.CrossRefGoogle ScholarPubMed
Giladi, N, Shabtai, H, Simon, ES, et al. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord 2000;6(3):165170.CrossRefGoogle ScholarPubMed
Ancona, S, Faraci, FD, Khatab, E, et al. Wearables in the home-based assessment of abnormal movements in Parkinson’s disease: a systematic review of the literature. J Neurol 2022;269(1):100110.CrossRefGoogle ScholarPubMed
van Wegen, EEH, Burgers, IAL, de Goede, CJT. Mobility in Parkinson’s Disease: Home Exercises, Transfers and Movement Advice. Amsterdam: VU University Press; 2017.Google Scholar
Subramanian, I, Mathur, S, Oosterbaan, A, et al. Unmet needs of women living with Parkinson’s disease: gaps and controversies. Mov Disord 2022;37(3):444455.CrossRefGoogle ScholarPubMed
Snijders, AH, Bloem, BR. Cycling for freezing of gait. N Engl J Med 2010;362:e46.CrossRefGoogle ScholarPubMed
Islam, MS, Azim, F, Saju, H, et al. Pesticides and Parkinson’s disease: current and future perspective. J Chem Neuroanat 2021;115:101966.CrossRefGoogle ScholarPubMed
Burini, D, Farabollini, B, Iacucci, S, et al. A randomised controlled cross-over trial of aerobic training versus Qigong in advanced Parkinson’s disease. Eura Medicophys 2006;42(3):231238.Google ScholarPubMed
Bergen, JL, Toole, T, Elliott, RG, III, et al. Aerobic exercise intervention improves aerobic capacity and movement initiation in Parkinson’s disease patients. NeuroRehabilitation 2002;17(2):161168.Google ScholarPubMed
Tiihonen, M, Westner, BU, Butz, M, Dalal, SS. Parkinson’s disease patients benefit from bicycling – a systematic review and meta-analysis. NPJ Parkinsons Dis 2021;7(1):86.CrossRefGoogle ScholarPubMed
Ellis, T, de Goede, CJ, Feldman, RG, et al. Efficacy of a physical therapy program in patients with Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil 2005;86(4):626632.CrossRefGoogle ScholarPubMed
Rodrigues, DP, Teixeira-Salmela, LF, Coelho de Morais Faria, CD, Rocha, dB, Cardoso, F. Impact of an exercise program on physical, emotional, and social aspects of quality of life of individuals with Parkinson’s disease. Mov Disord 2006;21(8):10731077.CrossRefGoogle Scholar
Pellecchia, MT, Grasso, A, Biancardi, LG, et al. Physical therapy in Parkinson’s disease: an open long-term rehabilitation trial. J Neurol 2004;251(5):595598.CrossRefGoogle ScholarPubMed
Fabbri, M, Kauppila, LA, Ferreira, JJ, Rascol, O. Challenges and perspectives in the management of late-stage Parkinson’s disease. J Parkinsons Dis 2020;10(S1):S75S83.CrossRefGoogle ScholarPubMed
Nieuwboer, A, De Weerdt, W, Dom, R, et al. The effect of a home physiotherapy program for persons with Parkinson’s disease. J Rehabil Med 2001;33(6):266272.CrossRefGoogle ScholarPubMed
Nieuwboer, A, Kwakkel, G, Rochester, L, et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry 2007;78(2):134140.CrossRefGoogle ScholarPubMed
Vaartio-Rajalin, H, Rauhala, A, Fagerström, L. Person-centered home-based rehabilitation for persons with Parkinson’s disease: a scoping review. Int J Nurs Stud 2019;99:103395.CrossRefGoogle ScholarPubMed
Steendam-Oldekamp, TE, Rutgers, AW, Buskens, E, van Laar, T. Short-term rehabilitation of Parkinson’s disease patients delays nursing home placement. Ned Tijdschr Geneeskd 2012;156(42):A4776.Google ScholarPubMed
Canning, CG, Ada, L, Johnson, JJ, McWhirter, S. Walking capacity in mild to moderate Parkinson’s disease. Arch Phys Med Rehabil 2006;87(3):371375.CrossRefGoogle ScholarPubMed
Sofuwa, O, Nieuwboer, A, Desloovere, K, et al. Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch Phys Med Rehabil 2005;86(5):10071013.CrossRefGoogle ScholarPubMed
Hirsch, MA, Sood, P, Hein, A, et al. In-home falls risk assessment in Parkinson disease: a guide for clinicians. Arch Phys Med Rehabil 2021;102(10):20512054.CrossRefGoogle ScholarPubMed
de Goede, CJ, Keus, SH, Kwakkel, G, Wagenaar, RC. The effects of physical therapy in Parkinson’s disease: a research synthesis. Arch Phys Med Rehabil 2001;82(4):509515.CrossRefGoogle ScholarPubMed
Lehman, DA, Toole, T, Lofald, D, Hirsch, MA. Training with verbal instructional cues results in near-term improvement of gait in people with Parkinson’s disease. J Neur Phys Ther 2005;29(1):28.CrossRefGoogle Scholar
Willems, AM, Nieuwboer, A, Chavret, F, et al. Turning in Parkinson’s disease patients and controls: the effect of auditory cues. Mov Disord 2007;22(13):18711878.CrossRefGoogle ScholarPubMed
Hirsch, MA, Hammond, FM. Cueing training in persons with Parkinson’s disease. J Neurol Neurosurg Psychiatry 2007;78(2):111.CrossRefGoogle ScholarPubMed
van Wegen, EE, Hirsch, MA, Huiskamp, M, Kwakkel, G. Harnessing cueing training for neuroplasticity in Parkinson disease. Top Geriatr Rehabil 2014;30(1):4657.CrossRefGoogle Scholar
van Wegen, E, de Goede, C, Lim, I, et al. The effect of rhythmic somatosensory cueing on gait in patients with Parkinson’s disease. J Neurol Sci 2006;248(1–2):210214.CrossRefGoogle ScholarPubMed
van Wegen, EEH, Lim, I, de Goede, C, et al. The effects of visual rhythms and optic flow on stride patterns of patients with Parkinson’s disease. Parkinsonism Relat Disord 2006;12(1):2127.CrossRefGoogle ScholarPubMed
Muthukrishnan, N, Abbas, JJ, Shill, HA, Krishnamurthi, N. Cueing paradigms to improve gait and posture in Parkinson’s disease: a narrative review. Sensors (Basel) 2019;19(24):5468.CrossRefGoogle ScholarPubMed
Fox, C, Ebersbach, G, Ramig, L, Sapir, S. LSVT LOUD and LSVT BIG: behavioral treatment programs for speech and body movement in Parkinson disease. Parkinsons Dis 2012;2012:391946.Google ScholarPubMed
McDonnell, MN, Rischbieth, B, Schammer, TT, et al. Lee Silverman Voice Treatment (LSVT)-BIG to improve motor function in people with Parkinson’s disease: a systematic review and meta-analysis. Clin Rehabil 2018;32(5):607618.CrossRefGoogle Scholar
Schaible, F, Maier, F, Buchwitz, TM, et al. Effects of Lee Silverman Voice Treatment BIG and conventional physiotherapy on non-motor and motor symptoms in Parkinson’s disease: a randomized controlled study comparing three exercise models. Ther Adv Neurol Disord 2021;14:1756286420986744.CrossRefGoogle Scholar
Mehrholz, J, Kugler, J, Storch, A, et al. Treadmill training for patients with Parkinson disease. An abridged version of a Cochrane Review. Eur J Phys Rehabil Med 2016;52(5):704713.Google ScholarPubMed
Wu, HK, Chen, HR, Chen, WY, et al. A novel instrumented walker for individualized visual cue setting for gait training in patients with Parkinson’s disease. Assist Technol 2020;32(4):203213.CrossRefGoogle ScholarPubMed
Bunting-Perry, L, Spindler, M, Robinson, KM, et al. Laser light visual cueing for freezing of gait in Parkinson disease: a pilot study with male participants. J Rehabil Res Dev 2013;50(2):223230.CrossRefGoogle ScholarPubMed
Rogers, MW. Disorders of posture, balance, and gait in Parkinson’s disease. Clin Geriatr Med 1996;12(4):825845.CrossRefGoogle ScholarPubMed
van Wegen, EEH, van Emmerik, RE, Wagenaar, RC, Ellis, T. Stability boundaries and lateral postural control in Parkinson’s disease. Motor Control 2001;5(3):254269.CrossRefGoogle ScholarPubMed
Pickering, RM, Grimbergen, YA, Rigney, U, et al. A meta-analysis of six prospective studies of falling in Parkinson’s disease. Mov Disord 2007;22(13):18921900.CrossRefGoogle ScholarPubMed
Pouwels, S, Bazelier, MT, de Boer, A, et al. Risk of fracture in patients with Parkinson’s disease. Osteoporos Int 2013;24(8):22832290.CrossRefGoogle ScholarPubMed
Blaszczyk, JW, Orawiec, R, Duda-Klodowska, D, Opala, G. Assessment of postural instability in patients with Parkinson’s disease. Exp Brain Res 2007;183(1):107114.CrossRefGoogle ScholarPubMed
Fishel, SC, Hotchkiss, ME, Brown, SA. The impact of LSVT BIG therapy on postural control for individuals with Parkinson disease: a case series. Physiother Theory Pract 2020;36(7):834843.CrossRefGoogle Scholar
van Wegen, EEH, de Goede, CJT, Kwakkel, G, van Kordelaar, J. Sensor assisted self-management in Parkinson’s disease: a feasibility study of ambulatory posture detection and feedback to treat stooped posture. Parkinsonism Relat Disord 2018;46(Suppl 1):S57S61.CrossRefGoogle ScholarPubMed
Stuart, S, Godfrey, A, Mancini, M. Staying UpRight in Parkinson’s disease: a pilot study of a novel wearable postural intervention. Gait Posture 2021;91:8693.CrossRefGoogle ScholarPubMed
Constantinescu, R, Leonard, C, Deeley, C, Kurlan, R. Assistive devices for gait in Parkinson’s disease. Parkinsonism Relat Disord 2007;13(3):133138.CrossRefGoogle ScholarPubMed
Rochester, L, Hetherington, V, Jones, D, et al. Attending to the task: interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Arch Phys Med Rehabil 2004;85(10):15781585.CrossRefGoogle Scholar
Raffegeau, TE, Krehbiel, LM, Kang, N, et al. A meta-analysis: Parkinson’s disease and dual-task walking. Parkinsonism Relat Disord 2019;62:2835.CrossRefGoogle ScholarPubMed
Strouwen, C, Molenaar, EALM, Münks, L, et al. Training dual tasks together or apart in Parkinson’s disease: results from the DUALITY trial. Mov Disord 2017;32(8):12011210.CrossRefGoogle ScholarPubMed
San Martín Valenzuela, C, Moscardó, LD, López-Pascual, J, Serra-Añó, P, Tomás, JM. Effects of dual-task group training on gait, cognitive executive function, and quality of life in people with Parkinson disease: results of randomized controlled DUALGAIT trial. Arch Phys Med Rehabil 2020;101(11):18491856.CrossRefGoogle ScholarPubMed
Rochester, L, Hetherington, V, Jones, D, et al. The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch Phys Med Rehabil 2005;86(5):9991006.CrossRefGoogle ScholarPubMed
Keus, SHJ, Munneke, M, Graziano, M, et al. European Physiotherapy Guideline for Parkinson’s Disease. The Netherlands: KNGF/ParkinsonNet; 2014.Google Scholar
Nieuwboer, A, De Weerdt, W, Dom, R, Lesaffre, E. A frequency and correlation analysis of motor deficits in Parkinson patients. Disabil Rehabil 1998;20(4):142150.CrossRefGoogle ScholarPubMed
Kamsma, Y, Brouwer, WH, Lakke, JPW. Training of compensation strategies for impaired gross motor skills in Parkinson’s disease. Physiother Theory Practice 1995;11:209229.CrossRefGoogle Scholar
Bertram, CP, Lemay, M, Stelmach, GE. The effect of Parkinson’s disease on the control of multi-segmental coordination. Brain Cogn 2005;57(1):1620.CrossRefGoogle ScholarPubMed
Vanbellingen, T, Nyffeler, T, Nef, T, et al. Reliability and validity of a new dexterity questionnaire (DextQ-24) in Parkinson’s disease. Parkinsonism Relat Disord 2016;33:7883.CrossRefGoogle ScholarPubMed
Vanbellingen, T, Nyffeler, T, Nigg, J, et al. Home based training for dexterity in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord 2017;41:9298.CrossRefGoogle ScholarPubMed
Farley, BG, Koshland, GF. Training BIG to move faster: the application of the speed–amplitude relation as a rehabilitation strategy for people with Parkinson’s disease. Exp Brain Res 2005;167(3):462467.CrossRefGoogle ScholarPubMed
Okada, Y, Ohtsuka, H, Kamata, N, et al. Effectiveness of long-term physiotherapy in Parkinson’s disease: a systematic review and meta-analysis. J Parkinsons Dis 2021;11(4):16191630.CrossRefGoogle ScholarPubMed
Lina, C, Guoen, C, Huidan, W, et al. The effect of virtual reality on the ability to perform activities of daily living, balance during gait, and motor function in Parkinson disease patients: a systematic review and meta-analysis. Am J Phys Med Rehabil 2020;99(10):917924.CrossRefGoogle ScholarPubMed
Domingos, J, Keus, SHJ, Dean, J, et al. The European physiotherapy guideline for Parkinson’s disease: implications for neurologists. J Parkinsons Dis 2018;8(4):499502.CrossRefGoogle ScholarPubMed
Deane, KH, Ellis-Hill, C, Playford, ED, Ben Shlomo, Y, Clarke, CE. Occupational therapy for patients with Parkinson’s disease. Cochrane Database Syst Rev 2001;(3):CD002813.CrossRefGoogle Scholar
Sturkenboom, IHWM, Thijssen, MCE, Gons-van Elsacker, JJ, et al. Guidelines for Occupational Therapy in Parkinson’s Disease Rehabilitation. Nijmegen/Miami: ParkinsonNet/NPF; 2011.Google Scholar
Elbers, RG, Verhoef, J, van Wegen, EE, Berendse, HW, Kwakkel, G. Interventions for fatigue in Parkinson’s disease. Cochrane Database Syst Rev 2015;(10):CD010925.CrossRefGoogle Scholar
Schrag, A, Jahanshahi, M, Quinn, N. How does Parkinson’s disease affect quality of life? A comparison with quality of life in the general population. Mov Disord 2000;15(6):11121118.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Murphy, S, Tickle-Degnen, L. The effectiveness of occupational therapy-related treatments for persons with Parkinson’s disease: a meta-analytic review. Am J Occup Ther 2001;55(4):385392.CrossRefGoogle ScholarPubMed
Steultjens, EM, Dekker, J, Bouter, LM, Leemrijse, CJ, van den Ende, CH. Evidence of the efficacy of occupational therapy in different conditions: an overview of systematic reviews. Clin Rehabil 2005;19(3):247254.CrossRefGoogle ScholarPubMed
Welsby, E, Berrigan, S, Laver, K. Effectiveness of occupational therapy intervention for people with Parkinson’s disease: systematic review. Aust Occup Ther J 2019;66(6):731738.CrossRefGoogle ScholarPubMed
Deane, KH, Whurr, R, Playford, ED, Ben Shlomo, Y, Clarke, CE. A comparison of speech and language therapy techniques for dysarthria in Parkinson’s disease. Cochrane Database Syst Rev 2001;(2):CD002814.CrossRefGoogle Scholar
Clarke, CE, Gullaksen, E, Macdonald, S, Lowe, F. Referral criteria for speech and language therapy assessment of dysphagia caused by idiopathic Parkinson’s disease. Acta Neurol Scand 1998;97(1):2735.CrossRefGoogle ScholarPubMed
Dashtipour, K, Tafreshi, A, Lee, J, Crawley, B. Speech disorders in Parkinson’s disease: pathophysiology, medical management and surgical approaches. Neurodegener Dis Manag 2018;8(5):337348.CrossRefGoogle ScholarPubMed
Stewart, C, Winfield, L, Hunt, A, et al. Speech dysfunction in early Parkinson’s disease. Mov Disord 1995;10(5):562565.CrossRefGoogle ScholarPubMed
Trail, M, Fox, C, Ramig, LO, et al. Speech treatment for Parkinson’s disease. NeuroRehabilitation 2005;20(3):205221.Google ScholarPubMed
Mawdsley, C, Gamsu, CV. Periodicity of speech in Parkinsonism. Nature 1971;231(5301):315316.CrossRefGoogle ScholarPubMed
Thompson, AK. A clinical rating scale of speech dysfunction in Parkinson’s disease. S Afr J Commun Disord 1978;25:3952.Google ScholarPubMed
Enderby, P. Frenchay Dysarthria Assessment. San Diego: College Hill Press; 1983.Google Scholar
Wallace, GL. Assessment of oral peripheral structure and function in normal aging individuals with the Frenchay. J Commun Disord 1991;24(2):101109.CrossRefGoogle ScholarPubMed
Ramig, LO, Fox, C, Sapir, S. Parkinson’s disease: speech and voice disorders and their treatment with the Lee Silverman Voice Treatment. Semin Speech Lang 2004;25(2):169180.CrossRefGoogle ScholarPubMed
Sapir, S, Spielman, JL, Ramig, LO, Story, BH, Fox, C. Effects of intensive voice treatment (the Lee Silverman Voice Treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: acoustic and perceptual findings. J Speech Lang Hear Res 2007;50(4):899912.CrossRefGoogle Scholar
de Swart, BJ, Willemse, SC, Maassen, BA, Horstink, MW. Improvement of voicing in patients with Parkinson’s disease by speech therapy. Neurology 2003;60(3):498500.CrossRefGoogle ScholarPubMed
Mahler, LA, Ramig, LO, Fox, C. Evidence-based treatment of voice and speech disorders in Parkinson disease. Curr Opin Otolaryngol Head Neck Surg 2015;23(3):209215.CrossRefGoogle ScholarPubMed
Deane, KH, Whurr, R, Playford, ED, Ben Shlomo, Y, Clarke, CE. Speech and language therapy for dysarthria in Parkinson’s disease. Cochrane Database Syst Rev 2001;(2):CD002812.CrossRefGoogle Scholar
Schindler, A, Pizzorni, N, Cereda, E, et al. Consensus on the treatment of dysphagia in Parkinson’s disease. J Neurol Sci 2021;430:120008.CrossRefGoogle ScholarPubMed
Marks, L, Weinreich, J. Drooling in Parkinson’s disease: a novel tool for assessment of swallow frequency. Int J Lang Commun Disord 2001;36(Suppl):288291.CrossRefGoogle ScholarPubMed
Goetz, CG, Tilley, BC, Shaftman, SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord 2008;23(15):21292170.CrossRefGoogle ScholarPubMed
Peto, V, Jenkinson, C, Fitzpatrick, R, Greenhall, R. The development and validation of a short measure of functioning and well-being for individuals with Parkinson’s disease. Qual Life Res 1995;4(3):241248.CrossRefGoogle Scholar
Muñoz-Vigueras, N, Prados-Román, E, Valenza, MC, et al. Speech and language therapy treatment on hypokinetic dysarthria in Parkinson disease: systematic review and meta-analysis. Clin Rehabil 2021;35(5):639655.CrossRefGoogle ScholarPubMed
Yuan, F, Guo, X, Wei, X, et al. Lee Silverman Voice Treatment for dysarthria in patients with Parkinson’s disease: a systematic review and meta-analysis. Eur J Neurol 2020;27(10):19571970.CrossRefGoogle Scholar
Claus, I, Muhle, P, Czechowski, J, et al. Expiratory muscle strength training for therapy of pharyngeal dysphagia in Parkinson’s disease. Mov Disord 2021;36(8):18151824.CrossRefGoogle ScholarPubMed
Kalf, JG, de Swart, BJM, Bonnier, M, et al. Guidelines for Speech-Language Therapy in Parkinson’s Disease. Nijmegen/Miami: ParkinsonNet/NPF; 2011.Google Scholar
Cusso, ME, Donald, KJ, Khoo, TK. The impact of physical activity on non-motor symptoms in Parkinson’s disease: a systematic review. Front Med (Lausanne) 2016;3:35.Google ScholarPubMed
Cristini, J, Weiss, M, De Las Heras, B, et al. The effects of exercise on sleep quality in persons with Parkinson’s disease: a systematic review with meta-analysis. Sleep Med Rev 2021;55:101384.CrossRefGoogle ScholarPubMed
Qureshi, AR, Jamal, MK, Rahman, E, et al. Non-pharmacological therapies for pain management in Parkinson’s disease: a systematic review. Acta Neurol Scand 2021;144(2):115131.CrossRefGoogle ScholarPubMed
de Lima, TA, Ferreira-Moraes, R, Alves, WMGDC, et al. Resistance training reduces depressive symptoms in elderly people with Parkinson disease: a controlled randomized study. Scand J Med Sci Sports 2019;29(12):19571967.CrossRefGoogle ScholarPubMed
Dauwan, M, Begemann, M, Slot, M, et al. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: a transdiagnostic systematic review and meta-analysis of randomized controlled trials. J Neurol 2021;268(4):12221246.CrossRefGoogle ScholarPubMed
Kwok, JYY, Kwan, JCY, Auyeung, M, et al. Effects of mindfulness yoga vs stretching and resistance training exercises on anxiety and depression for people with Parkinson disease: a randomized clinical trial. JAMA Neurol 2019;76(7):755763.CrossRefGoogle ScholarPubMed
Ghielen, I, van Wegen, EEH, Rutten, S, et al. Body awareness training in the treatment of wearing-off related anxiety in patients with Parkinson’s disease: results from a pilot randomized controlled trial. J Psychosom Res 2017;103:18.CrossRefGoogle ScholarPubMed
Guglietti, B, Hobbs, D, Collins-Praino, LE. Optimizing cognitive training for the treatment of cognitive dysfunction in Parkinson’s disease: current limitations and future directions. Front Aging Neurosci 2021;13:709484.CrossRefGoogle ScholarPubMed
Stuckenschneider, T, Askew, CD, Menêses, AL, et al. The effect of different exercise modes on domain-specific cognitive function in patients suffering from Parkinson’s disease: a systematic review of randomized controlled trials. J Parkinsons Dis 2019;9(1):7395.CrossRefGoogle ScholarPubMed
Policastro, G, Brunelli, M, Tinazzi, M, et al. Cytokine-, neurotrophin-, and motor rehabilitation-induced plasticity in Parkinson’s disease. Neural Plast 2020;2020:8814028.CrossRefGoogle ScholarPubMed
Fisher, BE, Wu, AD, Salem, GJ, et al. The effect of exercise training in improving motor performance and corticomotor excitability in persons with early Parkinson’s disease. Arch Phys Med Rehabil 2008;89:12211229.CrossRefGoogle ScholarPubMed
Fisher, BE, Li, Q, Nacca, A, et al. Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson’s disease. NeuroReport 2013;24:509514.CrossRefGoogle ScholarPubMed
Daviet, JC, Roy, X, Quelven-Bertin, I, et al. Parkinson’s patient runs an ultra-marathon: a case report. Eur J Phys Rehabil Med 2014;50(4):447–51.Google ScholarPubMed
Sacheli, MA, Neva, JL, Lakhani, B, et al. Exercise increases caudate dopamine release and ventral striatal activation in Parkinson’s disease. Mov Disord 2019;34(12):18911900.CrossRefGoogle ScholarPubMed
Segura, C, Eraso, M, Bonilla, J, et al. Effect of a high-intensity tandem bicycle exercise program on clinical severity, functional magnetic resonance imaging, and plasma biomarkers in Parkinson’s disease. Front Neurol 2020;11;656.CrossRefGoogle ScholarPubMed
Shih, CH, Moore, K, Browner, N, Sklerov, M, Dayan, E. Physical activity mediates the association between striatal dopamine transporter availability and cognition in Parkinson’s disease. Parkinsonism Relat Disord 2019;62:6872.CrossRefGoogle ScholarPubMed
Toldo, JMP, Arjona, M, Neto, JCC, et al. Virtual rehabilitation in Parkinson disease: a dopamine transporter imaging study. Am J Phys Med Rehabil 2021;100(4):359366.CrossRefGoogle ScholarPubMed
van der Kolk, NM, de Vries, NM, Kessels, RPC, et al. Effectiveness of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind, randomised controlled trial. Lancet Neurol 2019;18(11):9981008.CrossRefGoogle ScholarPubMed
Johansson, ME, Cameron, IGM, Van der Kolk, NM, et al. Aerobic exercise alters brain function and structure in Parkinson’s disease: a randomized controlled trial. Ann Neurol 2022;91(2):203216.CrossRefGoogle ScholarPubMed
Hackney, ME, Bay, AA, Jackson, JM, et al. Rationale and design of the PAIRED trial: partnered dance aerobic exercise as a neuroprotective, motor, and cognitive intervention in Parkinson’s disease. Front Neurol 2020;11:943.CrossRefGoogle ScholarPubMed
van Wegen, EEH, Hirsch, MA, van de Berg, WDJ, et al. High-intensity interval cycle ergometer training in Parkinson’s disease: protocol for identifying individual response patterns using a single-subject research design. Front Neurol 2020;11:569880.CrossRefGoogle ScholarPubMed
Gomes, ESA, Van den Heuvel, OA, Rietberg, MB, De Groot, V, Hirsch, MA, Van de Berg, WDJ, Jaspers, RT, Vriend, C, Vanbellingen, T, Van Wegen, EEH. (HIIT-The Track) High-Intensity Interval Training for People with Parkinson’s Disease: Individual Response Patterns of (Non-)Motor Symptoms and Blood-Based Biomarkers-A Crossover Single-Case Experimental Design. Brain Sci. 2023 May 24;13(6):849.Google Scholar

References

Stoker, TB, Barker, RA. Recent developments in the treatment of Parkinson’s disease. F1000Res 2020;9:F1000 Faculty Rev-862.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rüb, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24(2):197211.CrossRefGoogle ScholarPubMed
Klawans, HL, Goetz, C, Nausieda, PA, Weiner, WJ. Levodopa-induced dopamine receptor hypersensitivity. Trans Am Neurol Assoc 1977;102:8083.Google ScholarPubMed
Rylander, D, Parent, M, O’Sullivan, SS, et al. Maladaptive plasticity of serotonin axon terminals in levodopa-induced dyskinesia. Ann Neurol 2010;68(5):619628.CrossRefGoogle ScholarPubMed
Cenci, MA, Lundblad, M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 2006;99(2):381392.CrossRefGoogle ScholarPubMed
Cenci, MA. Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 2014;5:242.CrossRefGoogle ScholarPubMed
Mukherjee, S, Thrasher, AJ. Gene therapy for PIDs: progress, pitfalls and prospects. Gene 2013;525(2):174181.CrossRefGoogle ScholarPubMed
Iarkov, A, Barreto, GE, Grizzell, JA, Echeverria, V. Strategies for the treatment of Parkinson’s disease: beyond dopamine. Front Aging Neurosci 2020;12:4.CrossRefGoogle ScholarPubMed
Penaud-Budloo, M, Le Guiner, C, Nowrouzi, A, et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 2008;82(16):78757885.CrossRefGoogle ScholarPubMed
Naso, MF, Tomkowicz, B, Perry, WL, Strohl, WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017;31(4):317334.CrossRefGoogle ScholarPubMed
Wu, Z, Yang, H, Colosi, P. Effect of genome size on AAV vector packaging. Mol Ther 2010;18(1):8086.CrossRefGoogle ScholarPubMed
Palfi, S, Gurruchaga, JM, Ralph, GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014;383(9923):11381146.CrossRefGoogle ScholarPubMed
Maes, ME, Colombo, G, Schulz, R, Siegert, S. Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neurosci Lett 2019;707:134310.CrossRefGoogle ScholarPubMed
Marks, WJ, Ostrem, JL, Verhagen, L, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 2008;7(5):400408.CrossRefGoogle ScholarPubMed
Marks, WJ, Bartus, RT, Siffert, J, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010;9(12):11641172.CrossRefGoogle ScholarPubMed
Warren Olanow, C, Bartus, RT, Baumann, TL, et al. Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 2015;78(2):248257.CrossRefGoogle ScholarPubMed
Heiss, JD, Lungu, C, Hammoud, DA, et al. Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease. Mov Disord 2019;34(7):10731078.CrossRefGoogle ScholarPubMed
Redmond, DE, McEntire, CR, Kingsbery, JP, et al. Comparison of fetal mesencephalic grafts, AAV-delivered GDNF, and both combined in an MPTP-induced nonhuman primate Parkinson’s model. Mol Ther 2013;21(12):21602168.CrossRefGoogle Scholar
Bankiewicz, KS, Forsayeth, J, Eberling, JL, et al. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006;14(4):564570.CrossRefGoogle ScholarPubMed
Christine, CW, Starr, PA, Larson, PS, et al. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009;73(20):16621669.CrossRefGoogle ScholarPubMed
Muramatsu, S, Fujimoto, K, Kato, S, et al. A phase I study of aromatic l-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 2010;18(9):17311735.CrossRefGoogle ScholarPubMed
Palfi, S, Gurruchaga, JM, Lepetit, H, et al. Long-term follow-up of a phase I/II Study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum Gene Ther Clin Dev 2018;29(3):148155.CrossRefGoogle ScholarPubMed
Christine, CW, Bankiewicz, KS, Van Laar, AD, et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol 2019;85(5):704714.CrossRefGoogle ScholarPubMed
Kaplitt, MG, Feigin, A, Tang, C, et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 2007;369(9579):20972105.CrossRefGoogle ScholarPubMed
LeWitt, PA, Rezai, AR, Leehey, MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011;10(4):309319.CrossRefGoogle ScholarPubMed
Niethammer, M, Tang, CC, LeWitt, PA, et al. Long-term follow-up of a randomized AAV2-GAD gene therapy trial for Parkinson’s disease. JCI Insight 2017;2(7):e90133.CrossRefGoogle ScholarPubMed
Niethammer, M, Tang, CC, Vo, A, et al. Gene therapy reduces Parkinson’s disease symptoms by reorganizing functional brain connectivity. Sci Transl Med 2018;10(469):eaau0713.CrossRefGoogle ScholarPubMed
Vierbuchen, T, Ostermeier, A, Pang, ZP, et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010;463(7284):10351041.CrossRefGoogle ScholarPubMed
Rivetti di Val Cervo, P, Romanov, RA, Spigolon, G, et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol 2017;35(5):444452.CrossRefGoogle Scholar
Zharikov, AD, Cannon, JR, Tapias, V, et al. shRNA targeting α-synuclein prevents neurodegeneration in a Parkinson’s disease model. J Clin Invest 2015;125(7):27212735.CrossRefGoogle Scholar
Kim, YC, Miller, A, Lins, LC, et al. RNA interference of human α-synuclein in mouse. Front Neurol 2017;8:13.CrossRefGoogle Scholar
Burré, J, Sharma, M, Südhof, TC. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb Perspect Med 2018;8(3):a024091.CrossRefGoogle ScholarPubMed
Chmielarz, P, Konovalova, J, Najam, SS, et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis 2017;8(5):e2813.CrossRefGoogle ScholarPubMed
Guo, CH, Cao, T, Zheng, LT, Waddington, JL, Zhen, XC. Development and characterization of an inducible Dicer conditional knockout mouse model of Parkinson’s disease: validation of the antiparkinsonian effects of a sigma-1 receptor agonist and dihydromyricetin. Acta Pharmacol Sin 2020;41(4):499507.CrossRefGoogle ScholarPubMed
Uehara, T, Choong, CJ, Nakamori, M, et al. Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson’s disease. Sci Rep 2019;9(1):7567.CrossRefGoogle ScholarPubMed
Cole, TA, Zhao, H, Collier, T, et al. Alpha-synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson’s disease. JCI Insight 2021;6(5):e135633.CrossRefGoogle ScholarPubMed
Martin, I, Kim, JW, Dawson, VL, Dawson, TM. LRRK2 pathobiology in Parkinson’s disease. J Neurochem 2014;131(5):554565.CrossRefGoogle ScholarPubMed
Zhao, HT, John, N, Delic, V, et al. LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson’s disease mouse model. Mol Ther Nucleic Acids 2017;8:508519.CrossRefGoogle Scholar
Frangoul, H, Altshuler, D, Cappellini, MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021;384(3):252260.CrossRefGoogle ScholarPubMed
Lino, CA, Harper, JC, Carney, JP, Timlin, JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 2018;25(1):12341257.CrossRefGoogle ScholarPubMed
Zhou, H, Su, J, Hu, X, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 2020;181(3):590603.CrossRefGoogle ScholarPubMed
Li, W, Englund, E, Widner, H, et al. Extensive graft-derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci U S A 2016;113(23):65446549.CrossRefGoogle ScholarPubMed
Thompson, WG. Successful brain grafting. N Y Med J 1890;51:701702.Google Scholar
Freed, WJ, Morihisa, JM, Spoor, E, et al. Transplanted adrenal chromaffin cells in rat brain reduce lesion-induced rotational behaviour. Nature 1981;292(5821):351352.CrossRefGoogle ScholarPubMed
Barker, R, Dunnett, S. The biology and behaviour of intracerebral adrenal transplants in animals and man. Rev Neurosci 1993;4(2):113146.CrossRefGoogle Scholar
Madrazo, I, Drucker-Colín, R, Díaz, V, et al. Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 1987;316(14):831834.CrossRefGoogle Scholar
Björklund, A, Stenevi, U, Dunnett, SB, Iversen, SD. Functional reactivation of the deafferented neostriatum by nigral transplants. Nature 1981;289(5797):497499.CrossRefGoogle ScholarPubMed
Lindvall, O, Brundin, P, Widner, H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247(4942):574577.CrossRefGoogle ScholarPubMed
Barker, RA, Drouin-Ouellet, J, Parmar, M. Cell-based therapies for Parkinson disease – past insights and future potential. Nat Rev Neurol 2015;11(9):492503.CrossRefGoogle ScholarPubMed
Langston, JW, Ballard, P, Tetrud, JW, Irwin, I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219(4587):979980.CrossRefGoogle ScholarPubMed
Olanow, CW, Goetz, CG, Kordower, JH, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54(3):403414.CrossRefGoogle ScholarPubMed
Freed, CR, Greene, PE, Breeze, RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344(10):710719.CrossRefGoogle ScholarPubMed
Gross, RE, Watts, RL, Hauser, RA, et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 2011;10(6):509519.CrossRefGoogle ScholarPubMed
Arjona, V, Mínguez-Castellanos, A, Montoro, RJ, et al. Autotransplantation of human carotid body cell aggregates for treatment of Parkinson’s disease. Neurosurgery 2003;53(2):321328; discussion 328–330.CrossRefGoogle ScholarPubMed
Mínguez-Castellanos, A, Escamilla-Sevilla, F, Hotton, GR, et al. Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry 2007;78(8):825831.CrossRefGoogle ScholarPubMed
Schumacher, JM, Ellias, SA, Palmer, EP, et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology 2000;54(5):10421050.CrossRefGoogle ScholarPubMed
Thomson, JA, Itskovitz-Eldor, J, Shapiro, SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282(5391):11451147.CrossRefGoogle ScholarPubMed
Takahashi, K, Tanabe, K, Ohnuki, M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861872.CrossRefGoogle ScholarPubMed
Chen, Y, Dolt, KS, Kriek, M, et al. Engineering synucleinopathy-resistant human dopaminergic neurons by CRISPR-mediated deletion of the SNCA gene. Eur J Neurosci 2019;49(4):510524.CrossRefGoogle ScholarPubMed
Tabar, V, Studer, L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 2014;15(2):8292.CrossRefGoogle ScholarPubMed
Cooper, O, Hargus, G, Deleidi, M, et al. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci 2010;45(3):258266.CrossRefGoogle ScholarPubMed
Ono, Y, Nakatani, T, Sakamoto, Y, et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 2007;134(17):32133225.CrossRefGoogle ScholarPubMed
Chambers, SM, Fasano, CA, Papapetrou, EP, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27(3):275280.CrossRefGoogle ScholarPubMed
Kirkeby, A, Nolbrant, S, Tiklova, K, et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 2017;20(1):135148.CrossRefGoogle ScholarPubMed
Sonntag, KC, Pruszak, J, Yoshizaki, T, et al. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 2007;25(2):411418.CrossRefGoogle ScholarPubMed
Takahashi, J. IPS cell-based therapy for Parkinson’s disease: a Kyoto trial. Regen Ther 2020;13:1822.CrossRefGoogle ScholarPubMed
Taylor, CJ, Peacock, S, Chaudhry, AN, Bradley, JA, Bolton, EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 2012;11(2):147152.CrossRefGoogle ScholarPubMed
Offen, D, Barhum, Y, Levy, YS, et al. Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease. J Neural Transm Suppl. 2007(72):133–143.CrossRefGoogle Scholar
Hayashi, T, Wakao, S, Kitada, M, et al. Autologous mesenchymal stem cell-derived dopaminergic neurons function in parkinsonian macaques. J Clin Invest 2013;123(1):272284.CrossRefGoogle ScholarPubMed
Venkataramana, NK, Kumar, SK, Balaraju, S, et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease. Transl Res 2010;155(2):6270.CrossRefGoogle ScholarPubMed
Gonzalez, R, Garitaonandia, I, Poustovoitov, M, et al. Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of Parkinson’s disease. Cell Transplant 2016;25(11):19451966.CrossRefGoogle Scholar

References

Birkmayer, W, Hornykiewicz, O. The l-3,4-dioxyphenylalanine (l-DOPA) effect in Parkinson–akinesia. Wien Klin Wochenschrift 1961;73:787788.Google Scholar
Hornykiewicz, O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev 1966;18:925964.Google ScholarPubMed
Uitti, RJ, Ahlskog, JE, Maraganore, DM, et al. Levodopa therapy and survival in idiopathic Parkinson’s disease: Olmsted County Project. Neurology 1993;43:19181926.CrossRefGoogle ScholarPubMed
Pandey, S, Srivanitchapoom, P. Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol 2017;20:190198.CrossRefGoogle ScholarPubMed
Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 2008;9:665677.CrossRefGoogle ScholarPubMed
Braak, H, Del Tredici, K, Rüb, U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197211.CrossRefGoogle ScholarPubMed
Wolters, ECh, Braak, H. Parkinson’s disease: premotor clinicopathological correlations. J Neural Transm 2006;S70:309320.Google Scholar
Henchcliffe, C, Parmar, M. Repairing the brain: cell replacement using stem cell-based technologies. J Parkinson’s Disease 2018;8:S131S137.CrossRefGoogle ScholarPubMed
Bjorklund, P. Repairing the brain: gene therapy. J Parkinson’s Disease 2018;8:S123S130.CrossRefGoogle ScholarPubMed
Wolters, EC, Strekalova, T, de Munter, JPJM, Kramer, BW. Naive BM-derived stem cells (Neuro-Cells) may modify acute and chronic neurodegenerative disorders by modulating macrophage behaviors. Ageing Neur Dis 2021;1:3.Google Scholar
Goudreau, JL, Ahlskog, JE. Symptomatic treatment of Parkinson’s disease: levodopa. In: Pfeiffer, RF, Wszolek, ZK, Ebadi, M, eds. Parkinson’s Disease, 2nd ed. Boca Raton: CRC Press; 2013: 847859.Google Scholar
Pinder, RM, Brogden, RN, Sawyer, PR, Speight, TM, Avery, GS. Levodopa and decarboxylase inhibitors: a review of their clinical pharmacology and use in the treatment of parkinsonism. Drugs 1976;11:329377.CrossRefGoogle ScholarPubMed
Grosset, DG, Dhall, R, GurevichcJ, A, et al. Inhaled levodopa in Parkinson’s disease patients with OFF periods: a randomized 12-month pulmonary safety study. Parkinsonism Relat Dis 2020;71:410.CrossRefGoogle ScholarPubMed
Valldeoriola, F, Catalán, MJ, Escamilla-Sevilla, F, et al. Patient and caregiver outcomes with levodopa–carbidopa intestinal gel in advanced Parkinson’s disease. NPJ Parkinsons Dis 2021;7:108.CrossRefGoogle ScholarPubMed
Giladi, N, Gurevich, T, Djaldetti, R, et al. ND0612 (levodopa/carbidopa for subcutaneous infusion: a randomized, placebo-controlled phase 2 study. Parkinsonism Relat Dis 2021;91:139145.CrossRefGoogle ScholarPubMed
Olanow, CW, Espay, AJ, Stocchi, F. Continuous subcutaneous levodopa delivery for Parkinson’s disease: a randomized study. J Parkinsons Dis 2021;11:177186.CrossRefGoogle ScholarPubMed
Siddiqi, SH, Abraham, NK, Geiger, CL, et al. The human experience with intravenous levodopa. Front Pharmacol 2016;6:307.CrossRefGoogle ScholarPubMed
Brooks, DJ. Dopamine agonists: their role in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2000;68:685690.CrossRefGoogle ScholarPubMed
Zanettini, R, Antonini, A, Gatto, G, et al. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 2007;356:3946.CrossRefGoogle ScholarPubMed
Yamamoto, M, Uesugi, T, Nakayama, T. Dopamine agonists and cardiac valvulopathy in Parkinson disease: a case–control study. Neurology 2006;67:12251229.CrossRefGoogle ScholarPubMed
Ruan, X, Lin, F, Wu, D, et al. Comparative efficacy and safety of dopamine agonists in advanced Parkinson’s disease with motor fluctuations: a systematic review and network meta-analysis of double-blind randomized controlled trials. Front Neurosci 2021;15:728083.CrossRefGoogle ScholarPubMed
Gerlach, M, Double, K, Arzberger, T, et al. Dopamine receptor agonists in current clinical use: comparative dopamine receptor binding profiles defined in the human striatum. J Neural Transm 2003;110:11191127.CrossRefGoogle ScholarPubMed
Calne, DB, Teychenne, PF, Claveria, LE, et al. Bromocriptine in Parkinsonism. BMJ 1974;4:442444.CrossRefGoogle ScholarPubMed
Gershanik, OS. Cabergoline. In: Pahwa, R, Lyons, KE, Koller, W, eds., Therapy of Parkinson’s Disease, 3rd ed. Boca Raton: CRC Press; 2004.Google Scholar
Li, B-D, Cui, J-J, Song, J, et al. Comparison of the efficacy of different drugs on non-motor symptoms of Parkinson’s disease: a network meta-analysis. Cell Physiol Biochem 2018;45:119130.CrossRefGoogle ScholarPubMed
Carbone, F, Djamshidian, A, Seppi, K, Poewe, W. Apomorphine for Parkinson’s disease: efficacy and safety of current and new formulations. CNS Drugs 2019;33:905918.CrossRefGoogle ScholarPubMed
Hattori, N, Mochizuki, H, Hasegawa, K, et al. Ropinirole patch versus placebo, ropinirole extended-release tablet in advanced Parkinson’s disease. Mov Disord 2020;35:15651573.CrossRefGoogle ScholarPubMed
Fishman, PS. Pramipexole and its extended release formulation for Parkinson’s disease. J Cent Nerv Syst Dis 2011;23:169178.Google Scholar
Olanow, CW, Kieburtz, K, Leinonen, M, et al. A randomized trial of a low-dose rasagiline and pramipexole combination (P2B001) in early Parkinson’s disease. Mov Disord 2017;32:783789.CrossRefGoogle ScholarPubMed
Md, S, Karim, S, Saker, SR, et al. Current status and challenges in rotigotine delivery. Curr Pharm Des 2020;26(19):22222232.CrossRefGoogle ScholarPubMed
Antonini, A, Bernardi, L, Calandrella, D, Mancini, F, Plebani, M. Rotigotine transdermal patch in the management of Parkinson’s disease (PD) and its night-time use for PD-related sleep disorders. Funct Neurol 2010;25:2125.Google ScholarPubMed
Rizek, P, Kumar, N, Jog, MS. An update on the diagnosis and treatment of Parkinson disease. CMAJ 2016;188:11571165.CrossRefGoogle ScholarPubMed
Yazdchi Marandi, M, Ayromlou, H, Najmi, S, et al. Prevalence of levodopa-induced peripheral neuropathy in patients with Parkinson’s disease and vitamin B12 deficiency. Galen Med J 2021;10:e1837.CrossRefGoogle Scholar
Feng Qiu, F, Wu, Y, Cao, H, et al. Changes of peripheral nerve function and vitamin B12 level in people with Parkinson’s disease. Front Neurol 2020;11:549159.Google Scholar
Poewe, W, Antonini, A, Zijlmans, JC, Burkhard, PR, Vingerhoets, F. Levodopa in the treatment of Parkinson’s disease: an old drug still going strong. Clin Interv Aging 2010;5:229238.Google ScholarPubMed
Shetty, AS, Bhatia, KP, Lang, AE. Dystonia and Parkinson’s disease: what is the relationship? Neurobiol Dis 2019;132:104462.CrossRefGoogle ScholarPubMed
Gao, C, Liu, J, Tan, Y, Chen, S. Freezing of gait in Parkinson’s disease: pathophysiology, risk factors and treatments. Transl Neurodegener 2020;9:12.CrossRefGoogle ScholarPubMed
Fabbrini, A, Guerra, A. Pathophysiological mechanisms and experimental pharmacotherapy for l-DOPA-induced dyskinesia. J Exp Pharmacol 2021;13:469485.CrossRefGoogle ScholarPubMed
Wolters, EC, van der Werf, YD, van den Heuvel, OA. Parkinson’s disease-related disorders in the impulsive–compulsive spectrum. J Neurol 2008;255:4856.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Hauser, RA. Sleep attacks and dopamine agonists for Parkinson’s disease. CNS Drugs 2003;17:593600.CrossRefGoogle ScholarPubMed
Koschel, J, Ray Chaudhuri, K, Tönges, L, et al. Implications of dopaminergic medication withdrawal in Parkinson’s disease. J Neural Transm (Vienna) 2022;129:11691178.CrossRefGoogle ScholarPubMed
Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 2002;59:19371943.CrossRefGoogle Scholar
Parkinson Study Group. Does levodopa slow or hasten the rate of progression of Parkinson disease? The results of the Elldopa trial. Neurology 2003;60(S1):A80.Google Scholar
Stocchi, F, Borgohain, R, Onofrj, M, et al. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov Disord 2012;27:106112.CrossRefGoogle ScholarPubMed
Schapira, AH, Stocchi, F, Borgohain, R, et al. Long-term efficacy and safety of safinamide as add-on therapy in early Parkinson’s disease. Eur J Neurol 2013;20:271280.CrossRefGoogle ScholarPubMed
Calabresi, P, Kulisevsky, J. Safinamide as add-on therapy – moving beyond dopamine for a multifaceted approach in Parkinson’s disease. Eur Neurol Rev 2017;12(S5):26.Google Scholar
Cattaneo, C, Jost, WH, Bonizzoni, E. Long-term efficacy of safinamide on symptoms severity and quality of life in fluctuating Parkinson’s disease patients. J Parkinsons Dis 2020;10:8997.CrossRefGoogle ScholarPubMed
Müller, T. Safinamide: an add-on treatment for managing Parkinson’s disease. Clin Pharmacol 2018;10:3141.Google ScholarPubMed
Parkinson Study Group. Entacapone improves motor fluctuations in levodopa-treated Parkinson’s disease patients. Ann Neurol 1997;42:747755.CrossRefGoogle Scholar
Fabbri, M, Ferreira, JJ, Lees, A, et al. Opicapone for the treatment of Parkinson’s disease: A review of a new licensed medicine. Mov Disord 2018;33:15281539.CrossRefGoogle ScholarPubMed
Rascol, O, Fabbri, M, Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol 2021;20:9691056.CrossRefGoogle ScholarPubMed
Lee, TK, Yankee, EL. A review on Parkinson’s disease treatment. Neuroimmunol Neuroinflamm 2021;8:222244.CrossRefGoogle Scholar
Saeedi, Y, Ghadimi, M, Rohani, M, et al. Impact of anticholinergic drugs withdrawal on motor function in patients with Parkinson’s disease. Clin Neurol Neurosurg 2021;202:106480.CrossRefGoogle ScholarPubMed
Berger, AA, Winnick, A, Welschmeyer, A, et al. Istradefylline to treat patients with Parkinson’s disease experiencing “off” episodes: a comprehensive review. Neurol Int 2020;12:109129.CrossRefGoogle ScholarPubMed
Fox, S. Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs 2013;73:14051415.CrossRefGoogle ScholarPubMed
Jenner, P, Caccia, C. The role of glutamate in the healthy brain and in the pathophysiology of Parkinson’s disease. Eur Neurol Rev 2019;14(S2):212.Google Scholar
Thom, R, Silbersweig, DA, Boland, RJ. Major depressive disorder in medical illness: a review of assessment, prevalence, and treatment options. Psychosom Med 2019;81:246255.CrossRefGoogle Scholar
Emre, M, Aarsland, D, Albanese, A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med 2004;351:25092518.CrossRefGoogle ScholarPubMed
Chen, JJ. Treatment of psychotic symptoms in patients with Parkinson disease. Ment Health Clin 2017;7:262270.CrossRefGoogle ScholarPubMed
Armstrong, MJ, Okun, MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323:548560.CrossRefGoogle ScholarPubMed
Ruan, X, Lin, F, Wu, D, et al. Comparative efficacy and safety of dopamine agonists in advanced Parkinson’s disease with motor fluctuations: a systematic review and network meta-analysis of double-blind randomized controlled trials. Front Neurosci 2021;15:728083.CrossRefGoogle ScholarPubMed
Stocchi, F. Conventional treatment-related motor complications: their prevention and treatment. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 255270.Google Scholar

References

Antonini, A, Odin, P. Pros and cons of apomorphine and L-dopa continuous infusion in advanced Parkinson’s disease. Parkinsonism Relat Disord 2009;15(Suppl 4):S97100.CrossRefGoogle ScholarPubMed
Poewe, W, Antonini, A. Novel formulations and modes of delivery of levodopa. Mov Disord 2015;30(1):114120.CrossRefGoogle ScholarPubMed
Olanow, CW, Obeso, JA, Stocchi, F. Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 2006;5(8):677687.CrossRefGoogle ScholarPubMed
Deuschl, G, Antonini, A, Costa, J, et al. European Academy of Neurology/Movement Disorder Society–European Section Guideline on the Treatment of Parkinson’s Disease: I. Invasive therapies. Mov Disord 2022;37(7):13601374.CrossRefGoogle ScholarPubMed
Katzenschlager, R, Poewe, W, Rascol, O, et al. Long-term safety and efficacy of apomorphine infusion in Parkinson’s disease patients with persistent motor fluctuations: results of the open-label phase of the TOLEDO study. Parkinsonism Relat Disord 2021;83:7985.CrossRefGoogle ScholarPubMed
Katzenschlager, R, Poewe, W, Rascol, O, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol 2018;17(9):749759.CrossRefGoogle Scholar
García Ruiz, PJ, Ignacio, ÁS, Pensado, BA, et al. Efficacy of long-term continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease with motor fluctuations: A multicenter study. Mov Disord 2008;23(8):11301136.CrossRefGoogle ScholarPubMed
Trenkwalder, C, Chaudhuri, KR, García Ruiz, PJ, et al. Expert Consensus Group report on the use of apomorphine in the treatment of Parkinson’s disease – clinical practice recommendations. Parkinsonism Relat Disord 2015;21(9):10231030.CrossRefGoogle Scholar
Borgemeester, RWK, Drent, M, van Laar, T. Motor and non-motor outcomes of continuous apomorphine infusion in 125 Parkinson’s disease patients. Parkinsonism Relat Disord 2016;23:1722.CrossRefGoogle ScholarPubMed
Sesar, Á, Fernández-Pajarín, G, Ares, B, Rivas, MT, Castro, A. Continuous subcutaneous apomorphine infusion in advanced Parkinson’s disease: 10-year experience with 230 patients. J Neurol 2017;264(5):946954.CrossRefGoogle ScholarPubMed
Fernández-Pajarín, G, Sesar, Á, Ares, B, Castro, A. Evaluating the efficacy of nocturnal continuous subcutaneous apomorphine infusion in sleep disorders in advanced Parkinson’s disease: the APO-NIGHT study. J Parkinsons Dis 2016;6(4):787792.CrossRefGoogle ScholarPubMed
Nyholm, D, Nilsson Remahl, AIM, Dizdar, N, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 2005;64(2):216223.CrossRefGoogle ScholarPubMed
Olanow, WC, Kieburtz, K, Odin, P, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol 2014;13:141149.CrossRefGoogle ScholarPubMed
Fernandez, HH, Standaert, DG, Hauser, RA, et al. Levodopa–carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord 2015;30(4):500509.CrossRefGoogle ScholarPubMed
Antonini, A, Poewe, W, Chaudhuri, KR, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s: final results of the GLORIA registry. Parkinsonism Relat Disord 2017;45:1320.CrossRefGoogle ScholarPubMed
Müller, T, van Laar, T, Cornblath, DR, et al. Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord 2013;19(5):501507.CrossRefGoogle ScholarPubMed
Chang, FCF, Tsui, DS, Mahant, N, et al. 24 h Levodopa–carbidopa intestinal gel may reduce falls and “unresponsive” freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 2015;21(3):317320.CrossRefGoogle ScholarPubMed
Cossu, G, Ricchi, V, Pilleri, M, et al. Levodopa–carbidopa intrajejunal gel in advanced Parkinson disease with “on” freezing of gait. Neurol Sci 2015;36(9):16831686.CrossRefGoogle Scholar
Morales-Briceño, H, Tsui, D, Griffith, J, et al. “On-state” freezing of gait: insights and treatment with levodopa intestinal gel infusion. Mov Disord 2020;35(5):895896.CrossRefGoogle ScholarPubMed
Antonini, A, Abbruzzese, G, Berardelli, A, et al. The TANDEM investigation: efficacy and tolerability of levodopa–carbidopa intestinal gel in (LCIG) advanced Parkinson’s disease patients. J Neural Transm (Vienna) 2020;127(6):881891.CrossRefGoogle ScholarPubMed
Antonini, A, Robieson, WZ, Bergmann, L, Yegin, A, Poewe, W. Age/disease duration influence on activities of daily living and quality of life after levodopa-carbidopa intestinal gel in Parkinson’s disease. Neurodegener Dis Manag 2018;8(3):161170.CrossRefGoogle ScholarPubMed
Lew, MF, Slevin, JT, Krüger, R, et al. Initiation and dose optimization for levodopa–carbidopa intestinal gel: Insights from phase 3 clinical trials. Parkinsonism Relat Disord 2015;21(7):742748.CrossRefGoogle ScholarPubMed
Espay, AJ, Morgante, F, Merola, A, et al. Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol 2018;84(6):797811.CrossRefGoogle ScholarPubMed
Giladi, N, Gurevich, T, Djaldetti, R, et al. ND0612 (levodopa/carbidopa for subcutaneous infusion) in patients with Parkinson’s disease and motor response fluctuations: a randomized, placebo-controlled phase 2 study. Parkinsonism Relat Disord 2021;91:139145.CrossRefGoogle ScholarPubMed
Poewe, W, Stocchi, F, Arkadir, D, et al. Subcutaneous levodopa infusion for Parkinson’s disease: 1-year data from the open-label BeyoND study. Mov Disord 2021;36(11):26872692.CrossRefGoogle ScholarPubMed
Rosebraugh, M, Liu, W, Neenan, M, Facheris, MF. Foslevodopa/foscarbidopa is well tolerated and maintains stable levodopa and carbidopa exposure following subcutaneous infusion. J Parkinsons Dis 2021;11(4):16951702.CrossRefGoogle ScholarPubMed
Rosebraugh, M, Voight, EA, Moussa, EM, et al. Foslevodopa/foscarbidopa: a new subcutaneous treatment for Parkinson’s disease. Ann Neurol 2021;90(1):5261.CrossRefGoogle ScholarPubMed
Soileau, MJ, Aldred, J, Budur, K, et al. Safety and efficacy of continuous subcutaneous foslevodopa–foscarbidopa in patients with advanced Parkinson’s disease: a randomised, double-blind, active-controlled, phase 3 trial. Lancet Neurol 2022;21(12):10991109.CrossRefGoogle ScholarPubMed
Martinez-Martin, P, Reddy, P, Katzenschlager, R, et al. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov Disord 2015;30(4):510516.CrossRefGoogle ScholarPubMed
Dafsari, HS, Reddy, P, Herchenbach, C, et al. Beneficial effects of bilateral subthalamic stimulation on non-motor symptoms in Parkinson’s disease. Brain Stimul 2016;9(1):7885.CrossRefGoogle ScholarPubMed
Volkmann, J, Albanese, A, Antonini, A, et al. Selecting deep brain stimulation or infusion therapies in advanced Parkinson’s disease: an evidence-based review. J Neurol 2013;260(11):27012714.CrossRefGoogle ScholarPubMed
Timpka, J, Henriksen, T, Odin, P. Non-oral continuous drug delivery techniques in Parkinson’s disease: for whom, when, and how? Mov Disord Clin Pract 2016;3(3):221229.CrossRefGoogle Scholar
Odin, P, Chaudhuri, KR, Slevin, JTT, et al. Collective physician perspectives on non-oral medication approaches for the management of clinically relevant unresolved issues in Parkinson’s disease: consensus from an international survey and discussion program. Parkinsonism Relat Disord 2015;21(10):11331144.CrossRefGoogle ScholarPubMed
Antonini, A, Mancini, F. Continuous dopaminergic stimulation in Parkinson’s disease. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Motor Behavioural Disorders and Behavioural Motor Disorders. Amsterdam: VU University Press; 2014: 287302.Google Scholar

References

Dorsey, ER, Sherer, T, Okun, MS, Bloem, BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 2018;8(s1:S3S8.CrossRefGoogle ScholarPubMed
Armstrong, MJ, Okun, MS. Diagnosis and treatment of Parkinson disease: a review. JAMA 2020;323(6):548560.CrossRefGoogle ScholarPubMed
Lotharius, J, Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 2002;3(12):932942.CrossRefGoogle ScholarPubMed
Hirsch, EC, Vyas, S, Hunot, S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 2012;18(Suppl 1):S210212.CrossRefGoogle ScholarPubMed
Seppi, K, Ray Chaudhuri, K, Coelho, M, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease – an evidence-based medicine review. Mov Disord 2019;34(2):180198.CrossRefGoogle ScholarPubMed
McFarthing, K, Buff, S, Rafaloff, G, et al.Parkinson’s disease drug therapies in the clinical trial pipeline: 2020. J Parkinsons Dis 2020;10(3):757774.CrossRefGoogle ScholarPubMed
Masliah, E, Rockenstein, E, Adame, A, et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 2005;46(6):857868.CrossRefGoogle Scholar
Games, D, Valera, E, Spencer, B, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 2014;34(28):94419454.CrossRefGoogle ScholarPubMed
Meissner, WG, Traon, AP, Foubert-Samier, A, et al. A phase 1 randomized trial of specific active α-synuclein immunotherapies PD01A and PD03A in multiple system atrophy, Mov Disord 2020;35(11):19571965.CrossRefGoogle ScholarPubMed
Volc, D, Poewe, W, Kutzelnigg, A, et al. Safety and immunogenicity of the α-synuclein active immunotherapeutic PD01A in patients with Parkinson’s disease: a randomised, single-blinded, phase 1 trial, The Lancet. Neurology 2020;19(7):591600.Google Scholar
Nimmo, JT, Smith, H, Wang, CY, et al. Immunisation with UB-312 in the Thy1SNCA mouse prevents motor performance deficits and oligomeric α-synuclein accumulation in the brain and gut. Acta Neuropathol 2022;143(1):5573.CrossRefGoogle ScholarPubMed
Schenk, DB, Koller, M, Ness, DK, et al. First-in-human assessment of PRX002, an anti-α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 2017;32(2):211218.CrossRefGoogle ScholarPubMed
Jankovic, J, Goodman, I, Safirstein, B, et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with Parkinson disease: a randomized clinical trial. JAMA Neurol 2018;75(10):12061214.CrossRefGoogle ScholarPubMed
Pagano, G, Zanigni, S, Monnet, A, et al. Delayed-start analysis of PASADENA: a randomized phase 2 study to evaluate the safety and efficacy of prasinezumab in early Parkinson’s disease; Part 2 week 104 results. Presented at: MDS Virtual Congress; September 17–22, 2021. Poster LBA 5.Google Scholar
Fleming, SM, Davis, A, Simons, E. Targeting alpha-synuclein via the immune system in Parkinson’s disease: current vaccine therapies. Neuropharmacology 2022:202:108870.CrossRefGoogle ScholarPubMed
Brys, M, Fanning, L, Hung, S, et al. Randomized phase I clinical trial of anti-α-synuclein antibody BIIB054. Mov Disord 2019;34(8):11541163.CrossRefGoogle ScholarPubMed
Wrasidlo, W, Tsigelny, IF, Price, DL, et al. A de novo compound targeting α-synuclein improves deficits in models of Parkinson’s disease. Brain 2016:139(Pt 12):32173236.CrossRefGoogle Scholar
Price, DL, Koike, MA, Khan, A, et al. The small molecule alpha-synuclein misfolding inhibitor, NPT200–11, produces multiple benefits in an animal model of Parkinson’s disease. Sci Rep 2018;8(1):16165.CrossRefGoogle Scholar
Perni, M, Galvagnion, C, Maltsev, A, et al. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci U S A 2017;114(6):E1009E1017.CrossRefGoogle ScholarPubMed
Hauser, RA, Sutherland, D, Madrid, JA, et al. Targeting neurons in the gastrointestinal tract to treat Parkinson’s disease. Clin Parkinsonism Relat Disord 2019;1:27.CrossRefGoogle ScholarPubMed
Wagner, J, Ryazanov, S, Leonov, A, et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson’s disease. Acta Neuropathol 2013;125(6):795813.CrossRefGoogle ScholarPubMed
Lemos, M, Venezia, S, Refolo, V, et al. Targeting α-synuclein by PD03 AFFITOPE® and Anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance. Transl Neurodegener 2020;9(1):38.CrossRefGoogle Scholar
Paul, A, Zhang, BD, Mohapatra, S, et al. Novel mannitol-based small molecules for inhibiting aggregation of α-synuclein amyloids in Parkinson’s disease. Front Mol Biosci 2019;6:16.CrossRefGoogle ScholarPubMed
Shaltiel-Karyo, R, Frenkel-Pinter, M, Rockenstein, E, et al. A blood–brain barrier (BBB) disrupter is also a potent α-synuclein (α-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J Biol Chem 2013;288(24):1757917588.CrossRefGoogle ScholarPubMed
Lahiri, DK, Chen, D, Maloney, B, et al. The experimental Alzheimer’s disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Therap 2007;320(1):386396.CrossRefGoogle ScholarPubMed
Kuo, YM, Nwankwo, EI, Nussbaum, RL, Rogers, J, Maccecchini, ML. Translational inhibition of α-synuclein by Posiphen normalizes distal colon motility in transgenic Parkinson mice. Am J Neurodegener Dis 2019;8(1):115.Google ScholarPubMed
Maccecchini, ML, Chang, MY, Pan, C, et al. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-β peptide and τ levels: target engagement, tolerability and pharmacokinetics in humans. J Neurol Neurosurg Psychiatry 2012;83(9):894902.CrossRefGoogle ScholarPubMed
Krishnan, R, Tsubery, H, Proschitsky, MY, et al. A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J Mol Biol 2014;426(13):25002519.CrossRefGoogle ScholarPubMed
Levenson, JM, Schroeter, S, Carroll, JC, et al. NPT088 reduces both amyloid-β and tau pathologies in transgenic mice. Alzheimers Dement (N Y) 2016;2(3):141155.CrossRefGoogle ScholarPubMed
Michelson, D, Grundman, M, Magnuson, K, et al. Randomized, placebo controlled trial of NPT088, a phage-derived, amyloid-targeted treatment for Alzheimer’s disease. J Prev Alzheimers Dis 2019;6(4):228231.Google ScholarPubMed
Lee, JE, Kim, HN, Kim, DY, et al. Memantine exerts neuroprotective effects by modulating α-synuclein transmission in a parkinsonian model. Exp Neurol 2021;344:113810.CrossRefGoogle Scholar
Chen, Y, Sam, R, Sharma, P, et al. Glucocerebrosidase as a therapeutic target for Parkinson’s disease. Exp Opin Therap Targets 2020;24(4):287294.CrossRefGoogle ScholarPubMed
Abeliovich, A, Hefti, F, Sevigny, J. Gene therapy for Parkinson’s disease associated with GBA1 mutations. J Parkinsons Dis 2021;11(s2):S183S188.CrossRefGoogle ScholarPubMed
Peterschmitt, MJ, Crawford, NPS, Gaemers, SJM, et al. Pharmacokinetics, pharmacodynamics, safety, and tolerability of oral venglustat in healthy volunteers. Clin Pharmacol Drug Devel 2021;10(1):8698.CrossRefGoogle ScholarPubMed
Peterschmitt, MJ, Saiki, H, Hatano, T, et al. Safety, pharmacokinetics, and pharmacodynamics of oral venglustat in patients with Parkinson’s disease and a GBA mutation: results from part 1 of the randomized, double-blinded, placebo-controlled MOVES-PD trial. J Parkinsons Dis 2022;12(2):557570.CrossRefGoogle Scholar
Schneider, SA, Hizli, B, Alcalay, RN. Emerging targeted therapeutics for genetic subtypes of parkinsonism. Neurotherapeutics 2020;17(4):13781392.CrossRefGoogle ScholarPubMed
Migdalska-Richards, A, Daly, L, Bezard, E, Schapira, AH. Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice. Ann Neurol 2016;80(5):766775.CrossRefGoogle ScholarPubMed
Mullin, S, Smith, L, Lee, K, et al. Ambroxol for the treatment of patients with Parkinson disease with and without glucocerebrosidase gene mutations: a nonrandomized, noncontrolled trial. JAMA Neurol 2020;77(4):427434.CrossRefGoogle ScholarPubMed
den Heijer, JM, Kruithof, AC, van Amerongen, G, et al. A randomized single and multiple ascending dose study in healthy volunteers of LTI-291, a centrally penetrant glucocerebrosidase activator. Br J Clin Pharmacol 2021;87(9):35613573.CrossRefGoogle ScholarPubMed
Kinghorn, KJ, Asghari, AM, Castillo-Quan, JI. The emerging role of autophagic–lysosomal dysfunction in Gaucher disease and Parkinson’s disease. Neural Regener Res 2017;12(3):380384.CrossRefGoogle ScholarPubMed
Werner, M.H., Olanow, C.W., Parkinson’s disease modification through Abl kinase inhibition: an opportunity. Mov Disord 2022;37(1):615.CrossRefGoogle ScholarPubMed
Pagan, FL, Hebron, ML, Wilmarth, B, et al. Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol 2020;77(3):309317.CrossRefGoogle ScholarPubMed
Simuni, T, Fiske, B, Merchant, K, et al. Efficacy of nilotinib in patients with moderately advanced Parkinson disease: a randomized clinical trial. JAMA Neurol 2021;78(3):312320.CrossRefGoogle ScholarPubMed
Fowler, AJ, Hebron, M, Missner, AA, et al. Multikinase Abl/DDR/Src inhibition produces optimal effects for tyrosine kinase inhibition in neurodegeneration. Drugs R D 2019;19(2):149166.CrossRefGoogle ScholarPubMed
Tolosa, E, Vila, M, Klein, C, Rascol, O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020;16(2):97107.CrossRefGoogle ScholarPubMed
Blanca Ramírez, M, Madero-Perez, J, Rivero-Rios, P, et al. LRRK2 and Parkinson’s disease: from lack of structure to gain of function. Curr Protein Peptide Sci 2017;18(7):677686.CrossRefGoogle ScholarPubMed
Wojewska, DN, Kortholt, A. LRRK2 targeting strategies as potential treatment of Parkinson’s disease. Biomolecules 2021;11(8):1101.CrossRefGoogle ScholarPubMed
Brauer, R, Wei, L, Ma, T, et al. Diabetes medications and risk of Parkinson’s disease: a cohort study of patients with diabetes. Brain 2020;143(10):30673076.CrossRefGoogle ScholarPubMed
Grieco, M, Giorgi, A, Gentile, MC, et al. Glucagon-like peptide-1: a focus on neurodegenerative diseases. Front Neurosci 2019;13:1112.CrossRefGoogle ScholarPubMed
Zhang, L, Zhang, L, Li, L, Hölscher, C. Semaglutide is neuroprotective and reduces α-synuclein levels in the chronic MPTP mouse model of Parkinson’s disease. J Parkinsons Dis 2019;9(1):157171.CrossRefGoogle ScholarPubMed
Athauda, D, Maclagan, K, Skene, SS, et al. Exenatide once weekly versus placebo in Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet 2017;390(10103):16641675.CrossRefGoogle ScholarPubMed
Liu, W, Jalewa, J, Sharma, M, et al. Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 2015;303:4250.CrossRefGoogle ScholarPubMed
Svenningsson, P, Wirdefeldt, K, Yin, L, et al. Reduced incidence of Parkinson’s disease after dipeptidyl peptidase-4 inhibitors – a nationwide case–control study. Mov Disord 2016;31(9):14221423.CrossRefGoogle ScholarPubMed
Craft, S, Raman, R, Chow, TW, et al. Safety, efficacy, and feasibility of intranasal insulin for the treatment of mild cognitive impairment and Alzheimer disease dementia: a randomized clinical trial. JAMA Neurol 2020;77(9):10991109.CrossRefGoogle ScholarPubMed
Novak, P, Pimentel Maldonado, DA, Novak, V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: a double-blinded placebo-controlled pilot study. PLoS One 2019;14(4):e0214364.CrossRefGoogle ScholarPubMed
Riesenberg, R, Werth, J, Zhang, Y, Duvvuri, S, Gray, D. PF-06649751 efficacy and safety in early Parkinson’s disease: a randomized, placebo-controlled trial. Therap Adv Neurol Disord 2020;13:1756286420911296.CrossRefGoogle ScholarPubMed
Brice, NL, Schiffer, HH, Monenschein, H, et al. Development of CVN424: a selective and novel GPR6 inverse agonist effective in models of Parkinson disease. J Pharmacol Exp Therap 2021;377(3):407416.CrossRefGoogle ScholarPubMed
Olanow, CW, Standaert, DG, Kieburtz, K, Viegas, TX, Moreadith, R. Once-weekly subcutaneous delivery of polymer-linked rotigotine (SER-214) provides continuous plasma levels in Parkinson’s disease patients. Mov Disord 2020;35(6):10551061.CrossRefGoogle ScholarPubMed
Olanow, CW, Kieburtz, K, Leinonen, M, et al. A randomized trial of a low-dose rasagiline and pramipexole combination (P2B001) in early Parkinson’s disease. Mov Disord 2017;32(5):783789.CrossRefGoogle ScholarPubMed
Schuepbach, WM, Rau, J, Knudsen, K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368(7):610622.CrossRefGoogle ScholarPubMed
Olanow, CW, Factor, SA, Espay, AJ, et al. Apomorphine sublingual film for off episodes in Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 study. Lancet Neurol 2020;19(2):135144.CrossRefGoogle ScholarPubMed
Poewe, W, Antonini, A. Novel formulations and modes of delivery of levodopa. Mov Disord 2015;30(1):114120.CrossRefGoogle ScholarPubMed
Rosebraugh, M, Voight, EA, Moussa, EM, et al. Foslevodopa/foscarbidopa: a new subcutaneous treatment for Parkinson’s disease. Ann Neurol 2021;90(1):5261.CrossRefGoogle ScholarPubMed
Olanow, CW, Espay, AJ, Stocchi, F, et al. Continuous subcutaneous levodopa delivery for Parkinson’s disease: a randomized study. J Parkinsons Dis 2021;11(1):177186.CrossRefGoogle ScholarPubMed
Laloux, C, Gouel, F, Lachaud, C, et al. Continuous cerebroventricular administration of dopamine: a new treatment for severe dyskinesia in Parkinson’s disease? Neurobiol Dis 2017;103:2431.CrossRefGoogle ScholarPubMed
Fabbrini, A, Guerra, A. Pathophysiological mechanisms and experimental pharmacotherapy for L-dopa-induced dyskinesia. J Exp Pharmacol 2021;13:469485.CrossRefGoogle ScholarPubMed
Wolf, E, Seppi, K, Katzenschlager, R, et al. Long-term antidyskinetic efficacy of amantadine in Parkinson’s disease. Mov Disord 2010;25(10):13571363.CrossRefGoogle ScholarPubMed
Natoli, S. The multiple faces of ketamine in anaesthesia and analgesia. Drugs Context 2021;10:2020-12-8.CrossRefGoogle ScholarPubMed
Park, LT, Kadriu, B, Gould, TD, et al. A randomized trial of the N-methyl-d-aspartate receptor glycine site antagonist prodrug 4-chlorokynurenine in treatment-resistant depression. Int J Neuropsychopharmacol 2020;23(7):417425.CrossRefGoogle ScholarPubMed
Wallace, M, White, A, Grako, KA, et al. Randomized, double-blind, placebo-controlled, dose-escalation study: Investigation of the safety, pharmacokinetics, and antihyperalgesic activity of l-4-chlorokynurenine in healthy volunteers. Scand J Pain 2017;17:243251.CrossRefGoogle ScholarPubMed
Rascol, O, Fox, S, Gasparini, F, et al. Use of metabotropic glutamate 5-receptor antagonists for treatment of levodopa-induced dyskinesias. Parkinsonism Relat Disord 2014;20(9):947956.CrossRefGoogle ScholarPubMed
Trenkwalder, C, Stocchi, F, Poewe, W, et al. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: two randomized phase 2 studies. Mov Disord 2016;31(7):10541058.CrossRefGoogle ScholarPubMed
Tison, F, Keywood, C, Wakefield, M, et al. A phase 2A trial of the novel mGluR5-negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 2016;31(9):13731380.CrossRefGoogle ScholarPubMed
Cavallone, LF, Montana, MC, Frey, K, et al. The metabotropic glutamate receptor 5 negative allosteric modulator fenobam: pharmacokinetics, side effects, and analgesic effects in healthy human subjects. Pain 2020;161(1):135146.CrossRefGoogle ScholarPubMed
Haass-Koffler, CL, Goodyear, K, Long, VM, et al. A phase I randomized clinical trial testing the safety, tolerability and preliminary pharmacokinetics of the mGluR5 negative allosteric modulator GET 73 following single and repeated doses in healthy volunteers. Eur J Pharmaceut Sci 2017;109:7885.CrossRefGoogle ScholarPubMed
Kågedal, M, Cselényi, Z, Nyberg, S, et al. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 – estimating occupancy in the absence of a reference region. NeuroImage 2013;82:160169.CrossRefGoogle ScholarPubMed
Zerbib, F, Bruley des Varannes, S, Roman, S, et al. Randomised clinical trial: effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2011;33(8):911921.CrossRefGoogle ScholarPubMed
Youssef, EA, Berry-Kravis, E, Czech, C, et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results. Neuropsychopharmacology 2018;43(3):503512.CrossRefGoogle Scholar
Barth, AL, Schneider, JS, Johnston, TH, et al. NYX-458 improves cognitive performance in a primate Parkinson’s disease model. Mov Disord 2020;35(4):640649.CrossRefGoogle Scholar
Kawazoe, T, Park, HK, Iwana, S, Tsuge, H, Fukui, K. Human d-amino acid oxidase: an update and review. Chem Rec 2007;7(5):305315.CrossRefGoogle ScholarPubMed
Bonifati, V, Fabrizio, E, Cipriani, R, Vanacore, N, Meco, G. Buspirone in levodopa-induced dyskinesias. Clin Neuropharmacol 1994;17(1):7382.CrossRefGoogle ScholarPubMed
Depoortere, R, Johnston, TH, Fox, SH, Brotchie, JM, Newman-Tancredi, A. The selective 5-HT(1A) receptor agonist, NLX-112, exerts anti-dyskinetic effects in MPTP-treated macaques. Parkinsonism Relat Disord 2020;78;151157.CrossRefGoogle ScholarPubMed
Zoldan, J, Friedberg, G, Livneh, M, Melamed, E. Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 1995;45(7):13051308.CrossRefGoogle ScholarPubMed
Zeiss, R, Gahr, M, Graf, H. Rediscovering psilocybin as an antidepressive treatment strategy. Pharmaceuticals (Basel) 2021;14(10):985.CrossRefGoogle Scholar
Lowe, H, Toyang, N, Steele, B, Bryant, J, Ngwa, W. The endocannabinoid system: a potential target for the treatment of various diseases. Int J Mol Sci 2021;22(17):9472.CrossRefGoogle ScholarPubMed
Carroll, CB, Bain, PG, Teare, L, Liu, X, Joint, C, Wroath, C, et al. Cannabis for dyskinesia in Parkinson disease: a randomized double-blind crossover study. Neurology 2004;63(7):12451250.CrossRefGoogle ScholarPubMed
Sieradzan, KA, Fox, SH, Hill, M, et al. Cannabinoids reduce levodopa-induced dyskinesia in Parkinson’s disease: a pilot study. Neurology 2001;57(11):21082111.CrossRefGoogle ScholarPubMed
Peball, M, Krismer, F, Knaus, HG, et al. Non-motor symptoms in Parkinson’s disease are reduced by nabilone. Ann Neurol 2020;88(4):712722.CrossRefGoogle ScholarPubMed
de Almeida, CMO, Brito, MMC, Bosaipo, NB, et al. Cannabidiol for rapid eye movement sleep behavior disorder. Mov Disord 2021;36(7):17111715.CrossRefGoogle ScholarPubMed
Perez-Lloret, S, Barrantes, FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. NPJ Parkinsons Dis 2016;2:16001.CrossRefGoogle ScholarPubMed
Henderson, EJ, Lord, SR, Brodie, MA, et al. Rivastigmine for gait stability in patients with Parkinson’s disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016;15(3):249258.CrossRefGoogle ScholarPubMed
Sydserff, S, Sutton, EJ, Song, D, et al. Selective alpha7 nicotinic receptor activation by AZD0328 enhances cortical dopamine release and improves learning and attentional processes. Biochem Pharmacol 2009;78(7):880888.CrossRefGoogle ScholarPubMed
Castner, SA, Smagin, GN, Piser, TM, et al. Immediate and sustained improvements in working memory after selective stimulation of α7 nicotinic acetylcholine receptors. Biol Psychiatry 2011;69(1):1218.CrossRefGoogle ScholarPubMed
Yonguc, T, Sefik, E, Inci, I, et al. Randomized, controlled trial of fesoterodine fumarate for overactive bladder in Parkinson’s disease. World J Urol 2020;38(8):20132019.CrossRefGoogle ScholarPubMed
Zesiewicz, TA, Evatt, M, Vaughan, CP, et al. Randomized, controlled pilot trial of solifenacin succinate for overactive bladder in Parkinson’s disease. Parkinsonism Relat Disord 2015;21(5):514520.CrossRefGoogle ScholarPubMed
Oertel, WH, Henrich, MT, Janzen, A, Geibl, FF. The locus coeruleus: another vulnerability target in Parkinson’s disease. Mov Disord 2019;34(10):14231429.CrossRefGoogle ScholarPubMed
Kaufmann, H, Freeman, R, Biaggioni, I, et al. Droxidopa for neurogenic orthostatic hypotension: a randomized, placebo-controlled, phase 3 trial. Neurology 2014;83(4):328335.CrossRefGoogle ScholarPubMed
Cho, SY, Jeong, SJ, Lee, S, et al. Mirabegron for treatment of overactive bladder symptoms in patients with Parkinson’s disease: a double-blind, randomized placebo-controlled trial (Parkinson’s Disease Overactive bladder Mirabegron, PaDoMi Study). Neurourol Urodyn 2021;40(1):286294.CrossRefGoogle ScholarPubMed
Zhang, XL, Wang, GB, Zhao, LY, et al. Clonidine improved laboratory-measured decision-making performance in abstinent heroin addicts. PLoS One 2012;7(1):e29084.CrossRefGoogle ScholarPubMed
Tasker, NR, Wipf, P. Biosynthesis, total synthesis, and biological profiles of ergot alkaloids. Alkaloids Chem Biol 2021;85:1112.CrossRefGoogle ScholarPubMed
Li, H, Kim, J, Tran, HNK, et al. Extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan reduces behavioral defect and enhances autophagy in experimental models of Parkinson’s disease. Neuromolec Med 2021;23(3):428443.CrossRefGoogle ScholarPubMed
Shi, J, Tian, J, Li, T, et al. Efficacy and safety of SQJZ herbal mixtures on nonmotor symptoms in Parkinson disease patients: protocol for a randomized, double-blind, placebo-controlled trial. Medicine 2017;96(50):e8824.CrossRefGoogle ScholarPubMed
Zhang, R, Xu, S, Cai, Y, et al. Ganoderma lucidum protects dopaminergic neuron degeneration through inhibition of microglial activation. Evid Based Complement Alternat Med 2011;2011:156810.CrossRefGoogle ScholarPubMed
Kuypers, KPC. Self-medication with Ganoderma lucidum (“Reishi”) to combat Parkinson’s disease symptoms: a single case study. J Med Food 2021;24(7):766773.CrossRefGoogle ScholarPubMed
Sun, P, Su, L, Zhu, H, et al. Gut microbiota regulation and their implication in the development of neurodegenerative disease. Microorganisms 2021:9(11):2281.CrossRefGoogle ScholarPubMed
Hegelmaier, T, Lebbing, M, Duscha, A, et al. Interventional influence of the intestinal microbiome through dietary intervention and bowel cleansing might improve motor symptoms in Parkinson’s disease. Cells 2020;9(2):376.CrossRefGoogle ScholarPubMed
Chen, C, Turnbull, DM, Reeve, AK. Mitochondrial dysfunction in Parkinson’s disease – cause or consequence? Biology 2019;8(2):38.CrossRefGoogle ScholarPubMed
Avcı, B, Günaydın, C, Güvenç, T, et al. Idebenone ameliorates rotenone-induced Parkinson’s disease in rats through decreasing lipid peroxidation. Neurochem Res 2021;46(3):513522.CrossRefGoogle ScholarPubMed
Yan, A, Liu, Z, Song, L, et al. Idebenone alleviates neuroinflammation and modulates microglial polarization in LPS-stimulated BV2 cells and MPTP-induced Parkinson’s disease mice. Front Cell Neurosci 2018;12:529.CrossRefGoogle ScholarPubMed
Monti, DA, Zabrecky, G, Kremens, D, et al. N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin Pharmacol Ther 2019;106(4):884890.CrossRefGoogle ScholarPubMed
Sathe, AG, Tuite, P, Chen, C, et al. Pharmacokinetics, safety, and tolerability of orally administered ursodeoxycholic acid in patients with Parkinson’s disease – a pilot study. J Clin Pharmacol 2020;60(6):744750.CrossRefGoogle ScholarPubMed
Kim, J. Pre-clinical neuroprotective evidences and plausible mechanisms of sulforaphane in Alzheimer’s disease. Int J Mol Sci 2021;22(6):6929.Google ScholarPubMed
Gendelman, HE, Zhang, Y, Santamaria, P, et al. Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson’s disease trial. NPJ Parkinson’s Dis 2017;3:10.CrossRefGoogle Scholar
Olson, KE, Namminga, KL, Lu, Y, et al. Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson’s disease. EBioMedicine 2021;67:103380.CrossRefGoogle ScholarPubMed
Zhou, X, Lu, J, Wei, K, et al. Neuroprotective effect of ceftriaxone on MPTP-induced Parkinson’s disease mouse model by regulating inflammation and intestinal microbiota. Oxid Med Cell Longev 2021;2021:9424582.CrossRefGoogle ScholarPubMed
Yimer, EM, Hishe, HZ, Tuem, KB. Repurposing of the β-lactam antibiotic, ceftriaxone for neurological disorders: a review. Front Neurosci 2019;13:236.CrossRefGoogle ScholarPubMed
Reading, CL, Ahlem, CN, Murphy, MF. NM101 Phase III study of NE3107 in Alzheimer’s disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener Dis Manag 2021;11(4):289298.CrossRefGoogle ScholarPubMed
Zhou, W, Bercury, K, Cummiskey, J, et al. Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J Biol Chem 2011;286(17):1494114951.CrossRefGoogle ScholarPubMed
Mahoney-Sánchez, L, Bouchaoui, H, Ayton, S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease. Progr Neurobiol 2021;196:101890.CrossRefGoogle ScholarPubMed
Devos, D, Moreau, C, Devedjian, JC, et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 2014;21(2):195210.CrossRefGoogle ScholarPubMed
Martin-Bastida, A, Ward, RJ, Newbould, R, et al. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson’s disease. Sci Rep 2017;7(1):1398.CrossRefGoogle Scholar
Salehi, Z, Rajaei, F. Expression of hepatocyte growth factor in the serum and cerebrospinal fluid of patients with Parkinson’s disease. J Clin Neurosci 2010;17(12):15531556.CrossRefGoogle ScholarPubMed
Schneider, JS, Gollomp, SM, Sendek, S, et al. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 2013;324(1–2):140148.CrossRefGoogle ScholarPubMed
Schneider, JS, Cambi, F, Gollomp, SM, et al. GM1 ganglioside in Parkinson’s disease: pilot study of effects on dopamine transporter binding. J Neurol Sci 2015;356(1–2):118123.CrossRefGoogle ScholarPubMed
Lahmy, V, Long, R, Morin, D, Villard, V, Maurice, T. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2–73, a tetrahydrofuran derivative, in Aβ25–35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Front Cell Neurosci 2014;8:463.Google ScholarPubMed
Björklund, T, Davidsson, M. Next-generation gene therapy for Parkinson’s disease using engineered viral vectors. J Parkinsons Dis 2021;11(s2):S209S217.CrossRefGoogle ScholarPubMed
Palfi, S, Gurruchaga, JM, Ralph, GS, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 2014;383(9923):11381146.CrossRefGoogle ScholarPubMed
Palfi, S, Gurruchaga, JM, Lepetit, H, et al. Long-term follow-up of a phase I/II study of ProSavin, a lentiviral vector gene therapy for Parkinson’s disease. Hum Gene Ther Clin Dev 2018;29(3):148155.CrossRefGoogle ScholarPubMed
Marks, WJ Jr, Baumann, TL, Bartus, RT. Long-term safety of patients with Parkinson’s disease receiving rAAV2-neurturin (CERE-120) gene transfer. Hum Gene Ther 2016;27(7):522527.CrossRefGoogle ScholarPubMed

References

Poewe, W, Seppi, K, Tanner, CM, et al. Parkinson disease. Nat Rev Dis Primers 2017;3:17013.CrossRefGoogle ScholarPubMed
Kalia, LV, Lang, AE. Parkinson’s disease. Lancet 2015;386:896912.CrossRefGoogle ScholarPubMed
Espay, AJ, Brundin, P, Lang, AE. Precision medicine for disease modification in Parkinson disease. Nat Rev Neurol 2017;13:119126.CrossRefGoogle ScholarPubMed
Okun, MS. Deep-brain stimulation for Parkinson’s disease. N Engl J Med 2012;367:15291538.CrossRefGoogle ScholarPubMed
Lozano, AM, Dostrovsky, J, Chen, R, Ashby, A. Deep brain stimulation for Parkinson’s disease: disrupting the disruption. Lancet Neurol 2002;1:225231.CrossRefGoogle ScholarPubMed
Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016;539:180186.CrossRefGoogle ScholarPubMed
Polania, R, Nitsche, MA, Ruff, CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci 2018;21:174187.CrossRefGoogle ScholarPubMed
Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 2000;406:147150.CrossRefGoogle ScholarPubMed
Eldaief, MC, Halko, MA, Buckner, RL, Pascual-Leone, A. Transcranial magnetic stimulation modulates the brain’s intrinsic activity in a frequency-dependent manner. Proc Natl Acad Sci U S A 2011;108:2122921234.CrossRefGoogle Scholar
Hallett, M. Clinical effects of non-invasive brain stimulation. Swiss Arch Neurol Psychiatr Psychother 2020;171:w03154.Google Scholar
Henley, JM, Wilkinson, KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci 2016;17:337350.CrossRefGoogle ScholarPubMed
Froemke, RC. Plasticity of cortical excitatory–inhibitory balance. Annu Rev Neurosci 2015;38:195219.CrossRefGoogle ScholarPubMed
Helfrich, RF, Schneider, TR, Rach, S, et al. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 2014;24:333339.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Antal, A, Ayache, SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017;128:5692.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000;527:633639.CrossRefGoogle ScholarPubMed
Turrigiano, GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 2008;135:422435.CrossRefGoogle ScholarPubMed
Pasley, BN, Allen, EA, Freeman, RD. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 2009;62:291303.CrossRefGoogle ScholarPubMed
Dayan, E, Censor, N, Buch, ER, Sandrini, M, Cohen, LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci 2013;16:838844.CrossRefGoogle ScholarPubMed
Barker, AT, Jalinous, R, Freeston, IL. Non-invasive stimulation of the human motor cortex. Lancet 1985;1(8437):11061107.CrossRefGoogle ScholarPubMed
Wassermann, EM. Risk and safety in repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 1998;108:116.CrossRefGoogle ScholarPubMed
Rossi, S, Hallett, M, Rossini, PM, Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:20082039.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Andre-Obadia, N, Antal, A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 2014;125:21502206.CrossRefGoogle ScholarPubMed
Chen, R, Classen, J, Gerloff, C, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48:13891403.CrossRefGoogle ScholarPubMed
Pascual-Leone, A, Valls-Solé, J, Wassermann, EM, Hallett, M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 1994;117:847858.CrossRefGoogle ScholarPubMed
Ni, Z, Müller-Dahlhaus, F, Chen, R, Ziemann, U. Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimul 2011;4:281293.CrossRefGoogle ScholarPubMed
Huang, YZ, Edwards, MJ, Rounis, E, Bhatia, KP, Rothwell, JC. Theta burst stimulation of the human motor cortex. Neuron 2005;45:201206.CrossRefGoogle ScholarPubMed
Hamada, M, Terao, Y, Hanajima, R, et al. Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J Physiol 2008;586:39273947.CrossRefGoogle ScholarPubMed
Stefan, K, Kunesch, E, Cohen, LG, Benecke, R, Classen, J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 2000;123:572584.CrossRefGoogle ScholarPubMed
Udupa, K, Bahl, N, Ni, Z, et al. Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson’s disease. J Neurosci 2016;36:396404.CrossRefGoogle ScholarPubMed
Ni, Z, Udupa, K, Hallett, M, Chen, R. Effects of deep brain stimulation on the primary motor cortex: insights from transcranial magnetic stimulation studies. Clin Neurophysiol 2019;130:558567.CrossRefGoogle ScholarPubMed
Strafella, AP, Paus, T, Fraraccio, M, Dagher, A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003;126:26092615.CrossRefGoogle ScholarPubMed
Strafella, AP, Ko, JH, Grant, J, Fraraccio, M, Monchi, O. Corticostriatal functional interactions in Parkinson’s disease: a rTMS/[11C]raclopride PET study. Eur J Neurosci 2005;22:29462952.CrossRefGoogle ScholarPubMed
Edwards, MJ, Talelli, P, Rothwell, JC. Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 2008;7:827840.CrossRefGoogle ScholarPubMed
Elahi, B, Elahi, B, Chen, R. Effect of transcranial magnetic stimulation on Parkinson motor function – systematic review of controlled clinical trials. Mov Disord 2009;24:357363.CrossRefGoogle ScholarPubMed
Khedr, EM, Mohamed, KO, Soliman, RK, et al. The effect of high-frequency repetitive transcranial magnetic stimulation on advancing Parkinson’s disease with dysphagia: double blind randomized clinical trial. Neurorehabil Neural Repair 2019;33:442452.CrossRefGoogle ScholarPubMed
Brys, M, Fox, MD, Agarwal, S, et al. Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: a randomized trial. Neurology 2016;87:19071915.CrossRefGoogle ScholarPubMed
Makkos, A, Pál, E, Aschermann, Z, et al. High-frequency repetitive transcranial magnetic stimulation can improve depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Neuropsychobiology 2016;73:169177.CrossRefGoogle ScholarPubMed
Okabe, S, Ugawa, Y, Kanazawa, I. 0.2-Hz repetitive transcranial magnetic stimulation has no add-on effects as compared to a realistic sham stimulation in Parkinson’s disease. Mov Disord 2003;18:382388.CrossRefGoogle ScholarPubMed
Strafella, AP, Ko, JH, Monchi, O. Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: the contribution of expectation. Neuroimage 2006;31:16661672.CrossRefGoogle ScholarPubMed
Benninger, DH, Iseki, K, Kranick, S, et al. Controlled study of 50-Hz repetitive transcranial magnetic stimulation for the treatment of Parkinson disease. Neurorehabil Neural Repair 2012;26:10961105.CrossRefGoogle ScholarPubMed
Buhmann, C, Gorsler, A, Bäumer, T, et al. Abnormal excitability of premotor-motor connections in de novo Parkinson’s disease. Brain 2004;127:27322746.CrossRefGoogle ScholarPubMed
Wagle-Shukla, A, Angel, MJ, Zadikoff, C, et al. Low-frequency repetitive transcranial magnetic stimulation for treatment of levodopa-induced dyskinesias. Neurology 2007;68:704705.CrossRefGoogle ScholarPubMed
Morgante, F, Espay, AJ, Gunraj, C, Lang, AE, Chen, R. Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 2006;129:10591069.CrossRefGoogle ScholarPubMed
Enomoto, H, Terao, Y, Kadowaki, S, et al. Effects of L-Dopa and pramipexole on plasticity induced by QPS in human motor cortex. J Neural Transm (Vienna) 2015;122:12531261.CrossRefGoogle ScholarPubMed
Blumberger, DM, Vila-Rodriguez, F, Thorpe, KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet 2018;391:16831692.CrossRefGoogle ScholarPubMed
Pal, E, Nagy, F, Aschermann, Z, Balazs, E, Kovacs, N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Mov Disord 2010;25:23112317.CrossRefGoogle ScholarPubMed
Benninger, DH, Berman, BD, Houdayer, E, et al. Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease. Neurology 2011;76:601609.CrossRefGoogle ScholarPubMed
Li, ZJ, Wu, Q, Yi, CJ. Clinical efficacy of istradefylline versus rTMS on Parkinson’s disease in a randomized clinical trial. Curr Med Res Opin 2015;31:20552058.CrossRefGoogle ScholarPubMed
Hamada, M, Ugawa, Y, Tsuji, S, Effectiveness of rTMS on Parkinson’s Disease Study Group J. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord 2008;23:15241531.CrossRefGoogle Scholar
Shirota, Y, Ohtsu, H, Hamada, M, et al. Supplementary motor area stimulation for Parkinson disease: a randomized controlled study. Neurology 2013;80:14001405.CrossRefGoogle ScholarPubMed
Bradberry, TJ, Metman, LV, Contreras-Vidal, JL, et al. Common and unique responses to dopamine agonist therapy and deep brain stimulation in Parkinson’s disease: an H(2)(15)O PET study. Brain Stimul 2012;5:605615.CrossRefGoogle Scholar
Ma, J, Gao, L, Mi, T, et al. Repetitive transcranial magnetic stimulation does not improve the sequence effect in freezing of gait. Parkinsons Dis 2019;2019:2196195.Google Scholar
Hurley, MJ, Mash, DC, Jenner, P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur J Neurosci 2003;18:26682672.CrossRefGoogle ScholarPubMed
Ni, Z, Pinto, AD, Lang, AE, Chen, R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol 2010;68:816824.CrossRefGoogle ScholarPubMed
Koch, G, Brusa, L, Carrillo, F, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology 2009;73:113119.CrossRefGoogle ScholarPubMed
Kishore, A, Popa, T, Balachandran, A, et al. Cerebellar sensory processing alterations impact motor cortical plasticity in Parkinson’s disease: clues from dyskinetic patients. Cereb Cortex 2014;24:20552067.CrossRefGoogle ScholarPubMed
Merton, PA, Morton, HB. Stimulation of the cerebral cortex in the intact human subject. Nature 1980;285:227.CrossRefGoogle ScholarPubMed
Nitsche, MA, Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57:18991901.CrossRefGoogle ScholarPubMed
Moret, B, Donato, R, Nucci, M, Cona, G, Campana, G. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci Rep 2019;9:15150.CrossRefGoogle ScholarPubMed
Terney, D, Chaieb, L, Moliadze, V, Antal, A, Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 2008;28:1414714155.CrossRefGoogle ScholarPubMed
Yotnuengnit, P, Bhidayasiri, R, Donkhan, R, Chaluaysrimuang, J, Piravej, K. Effects of transcranial direct current stimulation plus physical therapy on gait in patients with Parkinson disease: a randomized controlled trial. Am J Phys Med Rehabil 2018;97:715.CrossRefGoogle ScholarPubMed
Valentino, F, Cosentino, G, Brighina, F, et al. Transcranial direct current stimulation for treatment of freezing of gait: a cross-over study. Mov Disord 2014;29:10641069.CrossRefGoogle Scholar
Cosentino, G, Valentino, F, Todisco, M, et al. Effects of more-affected vs. less-affected motor cortex tDCS in Parkinson’s disease. Front Hum Neurosci 2017;11:309.CrossRefGoogle ScholarPubMed
Salimpour, Y, Mari, ZK, Shadmehr, R. Altering effort costs in Parkinson’s disease with noninvasive cortical stimulation. J Neurosci 2015;35:1228712302.CrossRefGoogle ScholarPubMed
Krause, V, Wach, C, Sudmeyer, M, et al. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci 2013;7:928.Google ScholarPubMed
Brittain, JS, Probert-Smith, P, Aziz, TZ, Brown, P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol 2013;23:436440.CrossRefGoogle ScholarPubMed
Benussi, A, Alberici, A, Cantoni, V, et al. Modulating risky decision-making in Parkinson’s disease by transcranial direct current stimulation. Eur J Neurol 2017;24:751754.CrossRefGoogle ScholarPubMed
Forogh, B, Rafiei, M, Arbabi, A, et al. Repeated sessions of transcranial direct current stimulation evaluation on fatigue and daytime sleepiness in Parkinson’s disease. Neurol Sci 2017;38:249254.CrossRefGoogle ScholarPubMed
Del Felice, A, Castiglia, L, Formaggio, E, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin 2019;22:101768.CrossRefGoogle ScholarPubMed
Shill, HA, Obradov, S, Katsnelson, Y, Pizinger, R. A randomized, double-blind trial of transcranial electrostimulation in early Parkinson’s disease. Mov Disord 2011;26:14771480.CrossRefGoogle ScholarPubMed
Benninger, DH, Lomarev, M, Lopez, G, et al. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 2010;81:11051111.CrossRefGoogle ScholarPubMed
Dagan, M, Herman, T, Harrison, R, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Mov Disord 2018;33:642646.CrossRefGoogle ScholarPubMed
Costa-Ribeiro, A, Maux, A, Bosford, T, et al. Transcranial direct current stimulation associated with gait training in Parkinson’s disease: a pilot randomized clinical trial. Dev Neurorehabil 2017;20:121128.CrossRefGoogle ScholarPubMed
Chang, WH, Kim, MS, Park, E, et al. Effect of dual-mode and dual-site noninvasive brain stimulation on freezing of gait in patients with Parkinson disease. Arch Phys Med Rehabil 2017;98:12831290.CrossRefGoogle ScholarPubMed
Bienenstock, EL, Cooper, LN, Munro, PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982;2:3248.CrossRefGoogle ScholarPubMed
Abraham, WC, Bear, MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 1996;19:126130.CrossRefGoogle ScholarPubMed
Siebner, HR, Lang, N, Rizzo, V, et al. Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 2004;24:33793385.CrossRefGoogle ScholarPubMed
Gruner, U, Eggers, C, Ameli, M, et al. 1 Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: effects on bradykinesia of arm and hand. J Neural Transm (Vienna) 2010;117:207216.CrossRefGoogle ScholarPubMed
Eggers, C, Gruner, U, Ameli, M, Sarfeld, AS, Nowak, DA. 1Hz rTMS preconditioned by tDCS over the primary motor cortex in Parkinson’s disease: absence of effect on arm lift and hand grip force control. Motor Control 2012;16:284292.CrossRefGoogle ScholarPubMed
von Papen, M, Fisse, M, Sarfeld, AS, Fink, GR, Nowak, DA. The effects of 1 Hz rTMS preconditioned by tDCS on gait kinematics in Parkinson’s disease. J Neural Transm (Vienna) 2014;121:743754.CrossRefGoogle ScholarPubMed
Ziemann, U, Siebner, HR. Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul 2008;1:6066.CrossRefGoogle ScholarPubMed
Chung, CL, Mak, MK, Hallett, M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann Neurol 2020;88:933945.CrossRefGoogle ScholarPubMed
Yang, YR, Tseng, CY, Chiou, SY, et al. Combination of rTMS and treadmill training modulates corticomotor inhibition and improves walking in Parkinson disease: a randomized trial. Neurorehabil Neural Repair 2013;27:7986.CrossRefGoogle ScholarPubMed
Manenti, R, Cotelli, MS, Cobelli, C, et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: A randomized, placebo-controlled study. Brain Stimul 2018;11:1251-1262.CrossRefGoogle ScholarPubMed
Huang, YZ, Rothwell, JC, Lu, CS, Chuang, WL. Reversal of plasticity-like effects in the human motor cortex. J Physiol 2010;588:36833693.CrossRefGoogle ScholarPubMed
Ni, Z, Gunraj, C, Kailey, P, Cash, RF, Chen, R. Heterosynaptic modulation of motor cortical plasticity in human. J Neurosci 2014;34:73147321.CrossRefGoogle ScholarPubMed
Huang, YZ, Rothwell, JC, Lu, CS, Chudakov, B, Chen, RS. Abnormal bidirectional plasticity-like effects in Parkinson’s disease. Brain 2011;134:23122320.CrossRefGoogle ScholarPubMed
Rossini, PM, Burke, D, Chen, R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015;126:10711107.CrossRefGoogle ScholarPubMed
Madrid, J, Benninger, DH. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals: a systematic review. J Neurosci Methods 2021;347:108957.CrossRefGoogle ScholarPubMed
Lefaucheur, JP, Aleman, A, Baeken, C, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin Neurophysiol 2020;131:474528.CrossRefGoogle ScholarPubMed
Latorre, A, Rocchi, L, Berardelli, A, Bhatia, KP, Rothwell, JC. The use of transcranial magnetic stimulation as a treatment for movement disorders: a critical review. Mov Disord 2019;34:769782.CrossRefGoogle ScholarPubMed
Fregni, F, Pascual-Leone, A. Technology insight: noninvasive brain stimulation in neurology – perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3:383393.CrossRefGoogle ScholarPubMed
Schulz, KF, Moher, D, Altman, DG. CONSORT 2010 comments. Lancet 2010;376:12221223.CrossRefGoogle ScholarPubMed
McKinnon, C, Gros, P, Lee, DJ, et al. Deep brain stimulation: potential for neuroprotection. Ann Clin Transl Neurol 2019;6:174185.CrossRefGoogle ScholarPubMed
Legon, W, Sato, TF, Opitz, A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 2014;17:322329.CrossRefGoogle ScholarPubMed
Folloni, D, Verhagen, L, Mars, RB, et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 2019;101:11091116.CrossRefGoogle ScholarPubMed
Xia, X, Fomenko, A, Nankoo, JF, et al. Time course of the effects of low-intensity transcranial ultrasound on the excitability of ipsilateral and contralateral human primary motor cortex. Neuroimage 2021;243:118557.CrossRefGoogle ScholarPubMed
Szablowski, JO, Lee-Gosselin, A, Lue, B, Malounda, D, Shapiro, MG. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2018;2:475484.CrossRefGoogle ScholarPubMed
Brown, P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 2003;18:357363.CrossRefGoogle Scholar
Brown, P, Oliviero, A, Mazzone, P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 2001;21:10331038.CrossRefGoogle ScholarPubMed
Kuhn, AA, Kempf, F, Brucke, C, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 2008;28:61656173.CrossRefGoogle ScholarPubMed
Pogosyan, A, Gaynor, LD, Eusebio, A, Brown, P. Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol 2009;19:16371641.CrossRefGoogle ScholarPubMed
Little, S, Pogosyan, A, Neal, S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 2013;74:449457.CrossRefGoogle ScholarPubMed
Gong, R, Wegscheider, M, Muhlberg, C, et al. Spatiotemporal features of beta-gamma phase-amplitude coupling in Parkinson’s disease derived from scalp EEG. Brain 2021;144:487503.CrossRefGoogle ScholarPubMed
Cash, RFH, Cocchi, L, Lv, J, Fitzgerald, PB, Zalesky, A. Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 2021;78:337339.CrossRefGoogle ScholarPubMed
Cash, RFH, Weigand, A, Zalesky, A, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol Psychiatry 2021;90:689-700.CrossRefGoogle ScholarPubMed
Kim, SJ, Udupa, K, Ni, Z, et al. Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease. Neurology 2015;85:425432.CrossRefGoogle ScholarPubMed

References

Laitinen, LV, Bergenheim, AT, Hariz, MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992;76(1):5361.CrossRefGoogle ScholarPubMed
Benabid, AL, Pollak, P, Louveau, A, Henry, S, de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987;50(1–6):344346.Google ScholarPubMed
Hariz, MI, Blomstedt, P, Zrinzo, L. Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg Focus 2010;29(2):E1.CrossRefGoogle ScholarPubMed
Bekhtereva, NP, Bondarchuk, AN, Smirnov, VM, Meliucheva, LA. [Therapeutic electric stimulation of deep brain structures]. Vopr Neirokhir 1972;36(1):712.Google ScholarPubMed
Shealy, CN, Mortimer, JT, Reswick, JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 1967;46(4):489491.CrossRefGoogle ScholarPubMed
Cotzias, GC. L-Dopa for Parkinsonism. N Engl J Med 1968;278(11):630.Google ScholarPubMed
Harary, M, Segar, DJ, Hayes, MT, Cosgrove, GR. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg 2019;126:e144–152.CrossRefGoogle ScholarPubMed
Deuschl, G, Schade-Brittinger, C, Krack, P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006;355(9):896908.CrossRefGoogle ScholarPubMed
Weaver, FM, Follett, KA, Stern, M, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 2012;79(1):5565.CrossRefGoogle ScholarPubMed
Follett, KA, Weaver, FM, Stern, M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010;362(22):20772091.CrossRefGoogle ScholarPubMed
Ramirez-Zamora, A, Ostrem, JL. Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease: a review. JAMA Neurol 2018;75(3):367372.CrossRefGoogle ScholarPubMed
Odekerken, VJJ, van Laar, T, Staal, MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013;12(1):3744.CrossRefGoogle ScholarPubMed
Stefani, A, Lozano, AM, Peppe, A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain J Neurol 2007;130(Pt 6):15961607.CrossRefGoogle ScholarPubMed
Garcia-Rill, E, Saper, CB, Rye, DB, et al. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019;130(6):925940.CrossRefGoogle ScholarPubMed
Fasano, A, Daniele, A, Albanese, A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 2012;11(5):429442.CrossRefGoogle ScholarPubMed
Okun, MS, Fernandez, HH, Wu, SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009;65(5):586595.CrossRefGoogle ScholarPubMed
Anderson, VC, Burchiel, KJ, Hogarth, P, Favre, J, Hammerstad, JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005;62(4):554560.CrossRefGoogle ScholarPubMed
Weaver, FM, Follett, K, Stern, M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009;301(1):6373.CrossRefGoogle ScholarPubMed
Odekerken, VJJ, Boel, JA, Schmand, BA, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology 2016;86(8):755761.CrossRefGoogle ScholarPubMed
Lang, AE, Houeto, J-L, Krack, P, et al. Deep brain stimulation: preoperative issues. Mov Disord 2006;21(Suppl 14):S171196.CrossRefGoogle ScholarPubMed
Azevedo, P, Aquino, CC, Fasano, A. Surgical management of Parkinson’s disease in the elderly. Mov Disord Clin Pract 2021;8(4):500509.CrossRefGoogle ScholarPubMed
Mitchell, KT, Ostrem, JL. Surgical treatment of Parkinson disease. Neurol Clin 2020;38(2):293307.CrossRefGoogle ScholarPubMed
Krishna, V, Sammartino, F, Rezai, A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol 2018;75(2):246254.CrossRefGoogle ScholarPubMed
Cilia, R, Akpalu, A, Sarfo, FS, et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain J Neurol 2014;137(Pt 10):27312742.CrossRefGoogle ScholarPubMed
de Bie, RMA, Clarke, CE, Espay, AJ, Fox, SH, Lang, AE. Initiation of pharmacological therapy in Parkinson’s disease: when, why, and how. Lancet Neurol 2020;19(5):452461.CrossRefGoogle Scholar
Schuepbach, WMM, Rau, J, Knudsen, K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368(7):610622.CrossRefGoogle ScholarPubMed
Fasano, A, Bhowmick, SS. Reader response: deep brain stimulation in early-stage Parkinson disease: five-year outcomes. Neurology 2021;96(12):590591.CrossRefGoogle ScholarPubMed
Boutet, A, Loh, A, Chow, CT, et al. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021;135(5):14451458.CrossRefGoogle ScholarPubMed
Patriat, R, Cooper, SE, Duchin, Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. NeuroImage 2018;178:198209.CrossRefGoogle ScholarPubMed
Engelhardt, J, Caire, F, Damon-Perrière, N, et al. A phase 2 randomized trial of asleep versus awake subthalamic nucleus deep brain stimulation for Parkinson’s disease. Stereotact Funct Neurosurg 2021;99(3):230240.CrossRefGoogle ScholarPubMed
Lafreniere-Roula, M, Hutchison, WD, Lozano, AM, Hodaie, M, Dostrovsky, JO. Microstimulation-induced inhibition as a tool to aid targeting the ventral border of the subthalamic nucleus. J Neurosurg 2009;111(4):724728.CrossRefGoogle ScholarPubMed
Rothlind, JC, York, MK, Carlson, K, et al. Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy. J Neurol Neurosurg Psychiatry 2015;86(6):622629.CrossRefGoogle ScholarPubMed
Nutt, JG, Bloem, BR, Giladi, N, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10(8):734744.CrossRefGoogle ScholarPubMed
Weiss, D, Walach, M, Meisner, C, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain J Neurol 2013;136(Pt 7):20982108.CrossRefGoogle ScholarPubMed
Baumann-Vogel, H, Imbach, LL, Sürücü, O, et al. The impact of subthalamic deep brain stimulation on sleep–wake behavior: a prospective electrophysiological study in 50 Parkinson patients. Sleep 2017;40(5). Available from: https://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsx033Google ScholarPubMed
Volkmann, J, Moro, E, Pahwa, R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 2006;21(Suppl 14):S284289.CrossRefGoogle ScholarPubMed
Reich, MM, Steigerwald, F, Sawalhe, AD, et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol 2015;2(4):427432.CrossRefGoogle ScholarPubMed
Soh, D, Lozano, AM, Fasano, A. Hybrid deep brain stimulation system to manage stimulation-induced side effects in essential tremor patients. Parkinsonism Relat Disord 2019;58:8586.CrossRefGoogle ScholarPubMed
Moreau, C, Defebvre, L, Destée, A, et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 2008;71(2):8084.CrossRefGoogle ScholarPubMed
Jia, F, Guo, Y, Wan, S, et al. Variable frequency stimulation of subthalamic nucleus for freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 2015;21(12):14711472.CrossRefGoogle ScholarPubMed
Harmsen, IE, Lee, DJ, Dallapiazza, RF, et al. Ultra-high-frequency deep brain stimulation at 10,000 Hz improves motor function. Mov Disord 2019;34(1):146148.CrossRefGoogle ScholarPubMed
Miocinovic, S, Khemani, P, Whiddon, R, et al. Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism Relat Disord 2014;20(12):14341437.CrossRefGoogle ScholarPubMed
Zhang, S, Zhou, P, Jiang, S, Wang, W, Li, P. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: a report of 12 cases. Medicine (Baltimore) 2016;95(49):e5575.CrossRefGoogle ScholarPubMed
Kern, DS, Picillo, M, Thompson, JA, et al. Interleaving stimulation in Parkinson’s disease, tremor, and dystonia. Stereotact Funct Neurosurg 2018;96(6):379391.CrossRefGoogle ScholarPubMed
Butson, CR, McIntyre, CC. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulat 2008;1(1):715.CrossRefGoogle ScholarPubMed
Zhang, S, Silburn, P, Pouratian, N, et al. Comparing current steering technologies for directional deep brain stimulation using a computational model that incorporates heterogeneous tissue properties. Neuromodulation 2020;23(4):469477.CrossRefGoogle ScholarPubMed
Chaturvedi, A, Foutz, TJ, McIntyre, CC. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimulat 2012;5(3):369377.CrossRefGoogle ScholarPubMed
Pavese, N, Tai, YF, Yousif, N, Nandi, D, Bain, PG. Traditional trial and error versus neuroanatomic 3-dimensional image software-assisted deep brain stimulation programming in patients with Parkinson disease. World Neurosurg 2020;134:e98102.CrossRefGoogle ScholarPubMed
BeMent, SL, Ranck, JB. A quantitative study of electrical stimulation of central myelinated fibers. Exp Neurol 1969;24(2):147170.CrossRefGoogle ScholarPubMed
Anderson, DN, Duffley, G, Vorwerk, J, Dorval, AD, Butson, CR. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural Eng 2019;16(1):016026.CrossRefGoogle ScholarPubMed
Kirsch, AD, Hassin-Baer, S, Matthies, C, Volkmann, J, Steigerwald, F. Anodic versus cathodic neurostimulation of the subthalamic nucleus: a randomized-controlled study of acute clinical effects. Parkinsonism Relat Disord 2018;55:6167.CrossRefGoogle ScholarPubMed
Keane, M, Deyo, S, Abosch, A, Bajwa, JA, Johnson, MD. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J Neural Eng 2012;9(4):046005.CrossRefGoogle ScholarPubMed
Martens, HCF, Toader, E, Decré, MMJ, et al. Spatial steering of deep brain stimulation volumes using a novel lead design. Clin Neurophysiol 2011;122(3):558566.CrossRefGoogle ScholarPubMed
Teplitzky, BA, Zitella, LM, Xiao, Y, Johnson, MD. Model-based comparison of deep brain stimulation array functionality with varying number of radial electrodes and machine learning feature sets. Front Comput Neurosci 2016;10:58.CrossRefGoogle ScholarPubMed
Dembek, TA, Reker, P, Visser-Vandewalle, V, et al. Directional DBS increases side-effect thresholds – a prospective, double-blind trial. Mov Disord 2017;32(10):13801388.CrossRefGoogle ScholarPubMed
Pollo, C, Kaelin-Lang, A, Oertel, MF, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 2014;137(7):20152026.CrossRefGoogle ScholarPubMed
Steigerwald, F, Müller, L, Johannes, S, Matthies, C, Volkmann, J. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord 2016;31(8):12401243.CrossRefGoogle ScholarPubMed
Contarino, MF, Bour, LJ, Verhagen, R, et al. Directional steering: a novel approach to deep brain stimulation. Neurology 2014;83(13):11631169.CrossRefGoogle ScholarPubMed
Schnitzler, A, Mir, P, Brodsky, MA, et al. Directional deep brain stimulation for Parkinson’s disease: results of an international crossover study with randomized, double-blind primary endpoint. Neuromodulation 2022;25(6):817828.CrossRefGoogle ScholarPubMed
Goyal, A, Goetz, S, Stanslaski, S, et al. The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens Bioelectron 2021;176:112888.CrossRefGoogle ScholarPubMed
Holewijn, RA, Verbaan, D, van den Munckhof, PM, et al. General anesthesia vs local anesthesia in microelectrode recording-guided deep-brain stimulation for Parkinson disease: the GALAXY randomized clinical trial. JAMA Neurol 2021;78(10):12121219.CrossRefGoogle ScholarPubMed
Krauss, P, Oertel, MF, Baumann-Vogel, H, et al. Intraoperative neurophysiologic assessment in deep brain stimulation surgery and its impact on lead placement. J Neurol Surg A Cent Eur Neurosurg 2021;82(1):1826.Google ScholarPubMed
Fasano, A, Appel-Cresswell, S, Jog, M, et al. Medical management of Parkinson’s disease after initiation of deep brain stimulation. Can J Neurol Sci 2016;43(5):626634.CrossRefGoogle ScholarPubMed
Picillo, M, Phokaewvarangkul, O, Poon, Y-Y, et al. Levodopa versus dopamine agonist after subthalamic stimulation in Parkinson’s disease. Mov Disord 2021;36(3):672680.CrossRefGoogle ScholarPubMed

References

Harary, M, Segar, DJ, Huang, KT, et al. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg Focus 2018;44(2):E2.CrossRefGoogle ScholarPubMed
Meyers, R, Fry, WJ, Fry, FJ, et al. Early experiences with ultrasonic irradiation of the pallidofugal and nigral complexes in hyperkinetic and hypertonic disorders. J Neurosurg 1959;16(1):3254.CrossRefGoogle ScholarPubMed
Hynynen, K, Jolesz, FA. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med Biol 1998;24(2):275283.CrossRefGoogle ScholarPubMed
Cline, HE, Schenck, JF, Watkins, RD, Hynynen, K, Jolesz, FA. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993;30(1):98106.CrossRefGoogle ScholarPubMed
Cline, HE, Hynynen, K, Hardy, CJ, et al. MR temperature mapping of focused ultrasound surgery. Magn Reson Med 1994;31(6):628636.CrossRefGoogle ScholarPubMed
Martin, E, Jeanmonod, D, Morel, A, Zadicario, E, Werner, B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 2009;66(6):858861.CrossRefGoogle ScholarPubMed
McDannold, N, Clement, GT, Black, P, Jolesz, F, Hynynen, K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery 2010;66(2):323332; discussion 332.CrossRefGoogle ScholarPubMed
Elias, WJ, Lipsman, N, Ondo, WG, et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N Engl J Med 2016;375(8):730739.CrossRefGoogle ScholarPubMed
Lynn, JG, Zwemer, RL, Chick, AJ. The biological application of focused untrasonic waves. Science 1942;96(2483):119120.CrossRefGoogle Scholar
Schwartz, ML, Yeung, R, Huang, Y, et al. Skull bone marrow injury caused by MR-guided focused ultrasound for cerebral functional procedures. J Neurosurg 2018;130(3):758762.CrossRefGoogle ScholarPubMed
Clement, GT, Hynynen, K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol 2002;47(8):12191236.CrossRefGoogle ScholarPubMed
Jolesz, FA, Hynynen, K, McDannold, N, Tempany, C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am 2005;13(3):545560.CrossRefGoogle ScholarPubMed
Ishihara, Y, Calderon, A, Watanabe, H, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34(6):814823.CrossRefGoogle ScholarPubMed
Sapareto, SA, Dewey, WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984;10(6):787800.CrossRefGoogle ScholarPubMed
Chen, H, Brayman, AA, Bailey, MR, Matula, TJ. Blood vessel rupture by cavitation. Urol Res 2010;38(4):321326.CrossRefGoogle ScholarPubMed
Fishman, PS, Elias, WJ, Ghanouni, P, et al. Neurological adverse event profile of magnetic resonance imaging-guided focused ultrasound thalamotomy for essential tremor. Mov Disord 2018;33(5):843847.CrossRefGoogle ScholarPubMed
Gallay, MN, Moser, D, Jeanmonod, D. Safety and accuracy of incisionless transcranial MR-guided focused ultrasound functional neurosurgery: single-center experience with 253 targets in 180 treatments. J Neurosurg 2018;130(4):12341248.CrossRefGoogle ScholarPubMed
Alshaikh, J, Fishman, PS. Revisiting bilateral thalamotomy for tremor. Clin Neurol Neurosurg 2017;158:103107.CrossRefGoogle ScholarPubMed
Martínez-Fernández, R, Mahendran, S, Pineda-Pardo, JA, et al. Bilateral staged magnetic resonance-guided focused ultrasound thalamotomy for the treatment of essential tremor: a case series study. J Neurol Neurosurg Psychiatry 2021;92(9):927937.CrossRefGoogle ScholarPubMed
Bond, AE, Shah, BB, Huss, DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol 2017;74(12):14121418.CrossRefGoogle ScholarPubMed
Miller, TR, Guo, S, Melhem, ER, et al. Predicting final lesion characteristics during MR-guided focused ultrasound pallidotomy for treatment of Parkinson’s disease. J Neurosurg 2020;134(3):10831090.CrossRefGoogle ScholarPubMed
Eisenberg, HM, Krishna, V, Elias, WJ, et al. MR-guided focused ultrasound pallidotomy for Parkinson’s disease: safety and feasibility. J Neurosurg 2020;135(3):792798.CrossRefGoogle ScholarPubMed
Máñez-Miró, JU, Rodríguez-Rojas, R, Del Álamo, M, Martínez-Fernández, R, Obeso, JA. Present and future of subthalamotomy in the management of Parkinson´s disease: a systematic review. Expert Rev Neurother 2021;21(5):533545.CrossRefGoogle ScholarPubMed
Martínez-Fernández, R, Máñez-Miró, JU, Rodríguez-Rojas, R, et al. Randomized trial of focused ultrasound subthalamotomy for Parkinson’s disease. N Engl J Med 2020;383(26):25012513.CrossRefGoogle ScholarPubMed
McDannold, N, White, PJ, Cosgrove, R. Predicting bone marrow damage in the skull after clinical transcranial MRI-guided focused ultrasound with acoustic and thermal simulations. IEEE Trans Med Imaging 2020;39(10):32313239.CrossRefGoogle ScholarPubMed
Iorio-Morin, C, Yamamoto, K, Sarica, C, et al. Bilateral focused ultrasound thalamotomy for essential tremor (BEST-FUS Phase 2 Trial). Mov Disord 2021;36(11):26532662.CrossRefGoogle ScholarPubMed
Schlesinger, I, Eran, A, Sinai, A, et al. MRI guided focused ultrasound thalamotomy for moderate-to-severe tremor in Parkinson’s disease. Parkinsons Dis 2015;2015:219149.Google ScholarPubMed
Zaaroor, M, Sinai, A, Goldsher, D, et al. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: a report of 30 Parkinson’s disease and essential tremor cases. J Neurosurg 2018;128(1):202210.CrossRefGoogle ScholarPubMed
Fasano, A, Llinas, M, Munhoz, RP, et al. MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes. Neurology 2017;89(8):771775.CrossRefGoogle ScholarPubMed
Ito, H, Fukutake, S, Yamamoto, K, et al. Magnetic resonance imaging-guided focused ultrasound thalamotomy for Parkinson’s disease. Intern Med 2018;57(7):10271031.CrossRefGoogle ScholarPubMed
Martínez-Fernández, R, Rodríguez-Rojas, R, Del Álamo, M, et al. Focused ultrasound subthalamotomy in patients with asymmetric Parkinson’s disease: a pilot study. Lancet Neurol 2018;17(1):5463.CrossRefGoogle ScholarPubMed
Jung, NY, Park, CK, Kim, M, et al. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson’s disease: a Phase I clinical trial. J Neurosurg 2018 Aug 1;1–9.Google Scholar
Magara, A, Bühler, R, Moser, D, et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. J Ther Ultrasound 2014;2:11.CrossRefGoogle ScholarPubMed
Gallay, MN, Moser, D, Rossi, F, et al. MRgFUS pallidothalamic tractotomy for chronic therapy-resistant Parkinson’s disease in 51 consecutive patients: single center experience. Front Surg 2019;6:76.CrossRefGoogle ScholarPubMed
Gallay, MN, Moser, D, Magara, AE, Haufler, F, Jeanmonod, D. Bilateral MR-guided focused ultrasound pallidothalamic tractotomy for Parkinson’s disease with 1-year follow-up. Front Neurol 2021;12:601153.CrossRefGoogle ScholarPubMed
Iacopino, DG, Gagliardo, C, Giugno, A, et al. Preliminary experience with a transcranial magnetic resonance-guided focused ultrasound surgery system integrated with a 1.5-T MRI unit in a series of patients with essential tremor and Parkinson’s disease. Neurosurg Focus 2018;44(2):E7.CrossRefGoogle Scholar
Fasano, A, De Vloo, P, Llinas, M, et al. Magnetic resonance imaging-guided focused ultrasound thalamotomy in Parkinson tremor: reoperation after benefit decay. Mov Disord 2018;33(5):848849.CrossRefGoogle ScholarPubMed
Chen, X, Wang, F, Chen, Q, Qin, XC, Li, Z. Analysis of neurotoxin 3-N-oxalyl-l-2,3-diaminopropionic acid and its alpha-isomer in Lathyrus sativus by high-performance liquid chromatography with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization. J Agric Food Chem 2000;48(8):33833386.CrossRefGoogle ScholarPubMed
Foffani, G, Trigo-Damas, I, Pineda-Pardo, JA, et al. Focused ultrasound in Parkinson’s disease: a twofold path toward disease modification. Mov Disord 2019;34(9):12621273.CrossRefGoogle ScholarPubMed
Samiotaki, G, Acosta, C, Wang, S, Konofagou, EE. Enhanced delivery and bioactivity of the neurturin neurotrophic factor through focused ultrasound-mediated blood–brain barrier opening in vivo. J Cereb Blood Flow Metab 2015;35(4):611622.CrossRefGoogle ScholarPubMed
Rezai, AR, Ranjan, M, D’Haese, PF, et al. Noninvasive hippocampal blood–brain barrier opening in Alzheimer’s disease with focused ultrasound. Proc Natl Acad Sci U S A 2020;117(17):91809182.CrossRefGoogle ScholarPubMed
Gasca-Salas, C, Fernández-Rodríguez, B, Pineda-Pardo, JA, et al. Blood–brain barrier opening with focused ultrasound in Parkinson’s disease dementia. Nat Commun 2021;12(1):779.CrossRefGoogle ScholarPubMed
Zhan, W. Effects of focused-ultrasound-and-microbubble-induced blood–brain barrier disruption on drug transport under liposome-mediated delivery in brain tumour: a pilot numerical simulation study. Pharmaceutics 2020;12(1):E69.CrossRefGoogle ScholarPubMed
Quadri, SA, Waqas, M, Khan, I, et al. High-intensity focused ultrasound: past, present, and future in neurosurgery. Neurosurg Focus 2018;44(2):E16.CrossRefGoogle ScholarPubMed

References

McAleese, KE, Colloby, SJ, Thomas, AJ, et al. Concomitant neurodegenerative pathologies contribute to the transition from mild cognitive impairment to dementia. Alzheimers Dement 2021;17(7):11211133.CrossRefGoogle Scholar
Kane, JP, Surendranathan, A, Bentley, A, et al. Clinical prevalence of Lewy body dementia. Alzheimers Res Ther 2018;10(1):19.CrossRefGoogle ScholarPubMed
Thomas, AJ, Taylor, JP, McKeith, I, et al. Development of assessment toolkits for improving the diagnosis of the Lewy body dementias: feasibility study within the DIAMOND Lewy study. Int J Geriatr Psychiatry 2017;32(12):12801304.CrossRefGoogle ScholarPubMed
Taylor, J-P, McKeith, IG, Burn, DJ, et al. New evidence on the management of Lewy body dementia. Lancet Neurol 2020;19(2):157169.CrossRefGoogle ScholarPubMed
Clark, LN, Kartsaklis, LA, Wolf Gilbert, R, et al. Association of glucocerebrosidase mutations with dementia with Lewy bodies. Arch Neurol 2009;66(5):578583.CrossRefGoogle ScholarPubMed
Jung, JH, Jeong, SH, Jeon, S, et al. Effects of APOE4 on Alzheimer’s disease, Lewy body disease, cerebral amyloid deposition and cognitive dysfunction. Alzheimers Dement 2020;16(S6):e037300.CrossRefGoogle Scholar
Erskine, D, Koss, D, Korolchuk, VI, et al. Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol 2021;141(4):511526.CrossRefGoogle ScholarPubMed
Attems, J, Toledo, JB, Walker, L, et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-centre study. Acta Neuropathol 2021;141(2):159172.CrossRefGoogle ScholarPubMed
McKeith, IG, Boeve, BF, Dickson, DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 2017;89(1):88100.CrossRefGoogle ScholarPubMed
Toledo, JB, Gopal, P, Raible, K, et al. Pathological alpha-synuclein distribution in subjects with coincident Alzheimer’s and Lewy body pathology. Acta Neuropathol 2016;131(3):393409.CrossRefGoogle ScholarPubMed
Hatton, C, Reeve, A, Lax, NZ, et al. Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathol Commun 2020;8(1):103.CrossRefGoogle ScholarPubMed
Schumacher, J, Thomas, AJ, Peraza, LR, et al. EEG alpha reactivity and cholinergic system integrity in Lewy body dementia and Alzheimer’s disease. Alzheimers Res Ther 2020;12(1):46.CrossRefGoogle ScholarPubMed
Ballard, C, Ziabreva, I, Perry, R, et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 2006;67(11):19311934.CrossRefGoogle ScholarPubMed
Donaghy, PC, Firbank, MJ, Thomas, AJ, et al. Clinical and imaging correlates of amyloid deposition in dementia with Lewy bodies. Mov Disord 2018;33(7):11301138.CrossRefGoogle ScholarPubMed
Tiraboschi, P, Attems, J, Thomas, A, et al. Clinicians’ ability to diagnose dementia with Lewy bodies is not affected by β-amyloid load. Neurology 2015;84(5):496499.CrossRefGoogle Scholar
Barber, R, Gholkar, A, Scheltens, P, et al. Medial temporal lobe atrophy on MRI in dementia with Lewy bodies. Neurology 1999;52(6):11531158.CrossRefGoogle ScholarPubMed
Nedelska, Z, Ferman, TJ, Boeve, BF, et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging 2015;36(1):452461.CrossRefGoogle ScholarPubMed
Whitwell, JL, Weigand, SD, Shiung, MM, et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain 2007;130(3):708719.CrossRefGoogle ScholarPubMed
Colloby, SJ, Elder, GJ, Rabee, R, O’Brien, JT, Taylor, JP. Structural grey matter changes in the substantia innominata in Alzheimer’s disease and dementia with Lewy bodies: a DARTEL-VBM study. Int J Geriatr Psychiatry 2017;32(6):615623.CrossRefGoogle ScholarPubMed
Middelkoop, HAM, van Der Flier, WM, Burton, EJ, et al. Dementia with Lewy bodies and AD are not associated with occipital lobe atrophy on MRI. Neurology 2001;57(11):21172120.CrossRefGoogle Scholar
Lobotesis, K, Fenwick, JD, Phipps, A, et al. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology 2001;56(5):643649.CrossRefGoogle Scholar
Fujishiro, H, Iseki, E, Kasanuki, K, et al. A follow up study of non-demented patients with primary visual cortical hypometabolism: prodromal dementia with Lewy bodies. J Neurol Sci 2013;334(1):4854.CrossRefGoogle ScholarPubMed
McKhann, GM, Knopman, DS, Chertkow, H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011;7(3):263269.CrossRefGoogle ScholarPubMed
McKeith, IG, Ferman, TJ, Thomas, AJ, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020;94:113.CrossRefGoogle ScholarPubMed
Postuma, RB, Iranzo, A, Hu, M, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain 2019;142(3):744759.CrossRefGoogle ScholarPubMed
Hamilton, JM, Salmon, DP, Galasko, D, et al. A comparison of episodic memory deficits in neuropathologically-confirmed Dementia with Lewy bodies and Alzheimer’s disease. J Int Neuropsychol Soc 2004;10(5):689697.CrossRefGoogle ScholarPubMed
Ferman, TJ, Smith, GE, Boeve, BF, et al. Neuropsychological differentiation of dementia with Lewy bodies from normal aging and Alzheimer’s disease. Clin Neuropsychol 2006;20(4):623636.CrossRefGoogle ScholarPubMed
Uchiyama, M, Nishio, Y, Yokoi, K, et al. Pareidolias: complex visual illusions in dementia with Lewy bodies. Brain 2012;135(8):24582469.CrossRefGoogle ScholarPubMed
Donaghy, PC, Taylor, J-P, O’Brien, JT, et al. Neuropsychiatric symptoms and cognitive profile in mild cognitive impairment with Lewy bodies. Psychol Med 2018;48(14):23842390.CrossRefGoogle ScholarPubMed
Donaghy, PC, Ciafone, J, Durcan, R, et al. Mild cognitive impairment with Lewy bodies: neuropsychiatric supportive symptoms and cognitive profile. Psychol Med 2022:52(6):11471155.CrossRefGoogle ScholarPubMed
Hamilton, CA, Matthews, FE, Allan, LM, et al. Utility of the pareidolia test in mild cognitive impairment with Lewy bodies and Alzheimer’s disease. Int J Geriatr Psychiatry 2021;36(9):14071414.CrossRefGoogle ScholarPubMed
Hamilton, CA, Matthews, FE, Donaghy, PC, et al. Cognitive decline in mild cognitive impairment with Lewy bodies or Alzheimer’s disease: a prospective cohort study. Am J Geriatr Psychiatry 2021;29(3):272284.CrossRefGoogle ScholarPubMed
Smirnov, DS, Galasko, D, Edland, SD, et al. Cognitive decline profiles differ in Parkinson disease dementia and dementia with Lewy bodies. Neurology 2020;94(20):e2076e2087.CrossRefGoogle ScholarPubMed
Hamilton, JM, Salmon, DP, Galasko, D, et al. Visuospatial deficits predict rate of cognitive decline in autopsy-verified dementia with Lewy bodies. Neuropsychology 2008;22(6):729737.CrossRefGoogle ScholarPubMed
Calderon, J, Perry, RJ, Erzinclioglu, SW, et al. Perception, attention, and working memory are disproportionately impaired in dementia with Lewy bodies compared with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2001;70(2):157164.CrossRefGoogle ScholarPubMed
Doubleday, EK, Snowden, JS, Varma, AR, Neary, D. Qualitative performance characteristics differentiate dementia with Lewy bodies and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2002;72(5):602607.CrossRefGoogle ScholarPubMed
Noe, E, Marder, K, Bell, KL, et al. Comparison of dementia with Lewy bodies to Alzheimer’s disease and Parkinson’s disease with dementia. Mov Disord 2004;19(1):6067.CrossRefGoogle ScholarPubMed
Fujishiro, H, Ferman, TJ, Boeve, BF, et al. Validation of the neuropathologic criteria of the third consortium for dementia with Lewy bodies for prospectively diagnosed cases. J Neuropathol Exp Neurol 2008;67(7):649656.CrossRefGoogle Scholar
Ferman, TJ, Boeve, BF, Smith, GE, et al. Inclusion of RBD improves the diagnostic classification of dementia with Lewy bodies. Neurology 2011;77(9):875882.CrossRefGoogle ScholarPubMed
Boeve, BF, Molano, JR, Ferman, TJ, et al. Validation of the Mayo Sleep Questionnaire to screen for REM sleep behavior disorder in an aging and dementia cohort. Sleep Med 2011;12(5):445453.CrossRefGoogle Scholar
O’Dowd, S, Schumacher, J, Burn, DJ, et al. Fluctuating cognition in the Lewy body dementias. Brain 2019;142(11):33383350.CrossRefGoogle ScholarPubMed
Hamilton, CA, Matthews, FE, Donaghy, PC, et al. Progression to dementia in mild cognitive impairment with Lewy bodies or Alzheimer’s disease. Neurology 2021;96(22):e2685–2693.CrossRefGoogle ScholarPubMed
Espinosa, R, Davis, M, Johnson, S, Cline, S, Weintraub, D. Direct medical costs of dementia with Lewy Bodies by disease complexity. J Am Med Dir Assoc 2020;21(11):16961704.CrossRefGoogle ScholarPubMed
Thomas, AJ, Mahin-Babaei, F, Saidi, M, et al. Improving the identification of dementia with Lewy bodies in the context of an Alzheimer’s-type dementia. Alzheimers Res Ther 2018;10(1):27.CrossRefGoogle ScholarPubMed
McKeith, I, O’Brien, J, Walker, Z, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 2007;6(4):305313.CrossRefGoogle ScholarPubMed
Roberts, G, Donaghy, PC, Lloyd, J, et al. Accuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodies. Br J Psychiatry 2020;218(5):276282.CrossRefGoogle Scholar
Lloyd, JJ, Petrides, G, Donaghy, PC, et al. A new visual rating scale for Ioflupane imaging in Lewy body disease. Neuroimage Clin 2018;20:823829.CrossRefGoogle ScholarPubMed
Yoshita, M, Arai, H, Arai, H, et al. Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: a multicenter study. PLoS One 2015;10(3):e0120540.CrossRefGoogle ScholarPubMed
Hamilton, CA, Matthews, FE, Donaghy, PC, et al. Prospective predictors of decline versus stability in mild cognitive impairment with Lewy bodies or Alzheimer’s disease. Psychol Med. 2021;51(15):25902598.CrossRefGoogle ScholarPubMed
Mueller, C, Soysal, P, Rongve, A, et al. Survival time and differences between dementia with Lewy bodies and Alzheimer’s disease following diagnosis: a meta-analysis of longitudinal studies. Ageing Res Rev 2019;50:7280.CrossRefGoogle ScholarPubMed
Mueller, C, Perera, G, Rajkumar, AP, et al. Hospitalization in people with dementia with Lewy bodies: frequency, duration, and cost implications. Alzheimers Dement (Amst) 2018;10:143152.CrossRefGoogle ScholarPubMed
Mueller, C, Ballard, C, Corbett, A, Aarsland, D. The prognosis of dementia with Lewy bodies. Lancet Neurol 2017;16(5):390398.CrossRefGoogle ScholarPubMed
Wu, YT, Clare, L, Hindle, JV, et al. Dementia subtype and living well: results from the Improving the experience of Dementia and Enhancing Active Life (IDEAL) study. BMC Med 2018;16(1):140.CrossRefGoogle ScholarPubMed
Killen, A, Flynn, D, De Brun, A, et al. Support and information needs following a diagnosis of dementia with Lewy bodies. Int Psychogeriatr 2016;28(3):495501.CrossRefGoogle ScholarPubMed
Armstrong, MJ, Gamez, N, Alliance, S, et al. Research priorities of caregivers and individuals with dementia with Lewy bodies: an interview study. PLoS One 2020;15(10):e0239279.CrossRefGoogle ScholarPubMed

References

Balestrino, R, Schapira, AHV. Parkinson disease. Eur J Neurol 2020;27(1):2742.CrossRefGoogle ScholarPubMed
Hall, A, Bandres-Ciga, S, Diez-Fairen, M, Quinn, JP, Billingsley, KJ. Genetic risk profiling in Parkinson’s disease and utilizing genetics to gain insight into disease-related biological pathways. Int J Mol Sci. 2020;21(19):7332.CrossRefGoogle ScholarPubMed
Trinh, J, Zeldenrust, FMJ, Huang, J, et al. Genotype–phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov Disord 2018;33(12):18571870.CrossRefGoogle ScholarPubMed
Deng, H, Wang, P, Jankovic, J. The genetics of Parkinson disease. Ageing Res Rev 2018;42:7285.CrossRefGoogle ScholarPubMed
Lai, D, Alipanahi, B, Fontanillas, P, et al. Genomewide association studies of LRRK2 modifiers of Parkinson’s disease. Ann Neurol 2021;90(1):7688.CrossRefGoogle ScholarPubMed
Lunati, A, Lesage, S, Brice, A. The genetic landscape of Parkinson’s disease. Rev Neurol (Paris) 2018;174(9):628643.CrossRefGoogle ScholarPubMed
Reed, X, Bandres-Ciga, S, Blauwendraat, C, Cookson, MR. The role of monogenic genes in idiopathic Parkinson’s disease. Neurobiol Dis 2019;124:230239.CrossRefGoogle ScholarPubMed
Chen, Y, Cen, Z, Zheng, X, et al. LRP10 in autosomal-dominant Parkinson’s disease. Mov Disord 2019;34(6):912916.CrossRefGoogle ScholarPubMed
Puschmann, A. New genes causing hereditary Parkinson’s disease or parkinsonism. Curr Neurol Neurosci Rep 2017;17(9):66.CrossRefGoogle ScholarPubMed
Lee, JS, Kanai, K, Suzuki, M, et al. Arylsulfatase A, a genetic modifier of Parkinson’s disease, is an alpha-synuclein chaperone. Brain 2019;142(9):28452859.CrossRefGoogle Scholar
Oji, Y, Hatano, T, Ueno, SI, et al. Variants in saposin D domain of prosaposin gene linked to Parkinson’s disease. Brain 2020;143(4):11901205.CrossRefGoogle ScholarPubMed
Kasten, M, Hartmann, C, Hampf, J, et al. Genotype–phenotype relations for the Parkinson’s disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov Disord 2018;33(5):730741.CrossRefGoogle ScholarPubMed
Kumar, S, Abbas, MM, Govindappa, ST, et al. Compound heterozygous variants in Wiskott–Aldrich syndrome like (WASL) gene segregating in a family with early onset Parkinson’s disease. Parkinsonism Relat Disord 2021;84:6167.CrossRefGoogle Scholar
Riboldi, GM, Di Fonzo, AB. GBA, Gaucher disease, and Parkinson’s disease: from genetic to clinic to new therapeutic approaches. Cells 2019;8(4):364.CrossRefGoogle ScholarPubMed
Arienti, F, Lazzeri, G, Vizziello, M, et al. Unravelling genetic factors underlying corticobasal syndrome: a systematic review. Cells. 2021;10(1):171.CrossRefGoogle ScholarPubMed
Labbe, C, Heckman, MG, Lorenzo-Betancor, O, et al. MAPT haplotype diversity in multiple system atrophy. Parkinsonism Relat Disord 2016;30:4045.CrossRefGoogle ScholarPubMed
Wen, Y, Zhou, Y, Jiao, B, Shen, L. Genetics of progressive supranuclear palsy: a review. J Parkinsons Dis 2021;11(1):93105.CrossRefGoogle ScholarPubMed
Deutschlander, AB, Konno, T, Soto-Beasley, AI, et al. Association of MAPT subhaplotypes with clinical and demographic features in Parkinson’s disease. Ann Clin Transl Neurol 2020;7(9):15571563.CrossRefGoogle ScholarPubMed
de Boer, EMJ, Orie, VK, Williams, T, et al. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2021;92(1):8695.CrossRefGoogle Scholar
Dulski, J, Cerquera-Cleves, C, Milanowski, L, et al. Clinical, pathological and genetic characteristics of Perry disease – new cases and literature review. Eur J Neurol 2021;28(12):40104021.CrossRefGoogle ScholarPubMed
Siuda, J, Fujioka, S, Wszolek, ZK. Parkinsonian syndrome in familial frontotemporal dementia. Parkinsonism Relat Disord 2014;20(9):957964.CrossRefGoogle ScholarPubMed
Bourinaris, T, Houlden, H. C9orf72 and its relevance in parkinsonism and movement disorders: a comprehensive review of the literature. Mov Disord Clin Pract 2018;5(6):575585.CrossRefGoogle ScholarPubMed
Chitramuthu, BP, Bennett, HPJ, Bateman, A. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain 2017;140(12):30813104.CrossRefGoogle ScholarPubMed
Di Lazzaro, G, Magrinelli, F, Estevez-Fraga, C, et al. X-linked parkinsonism: phenotypic and genetic heterogeneity. Mov Disord 2021;36(7):15111525.CrossRefGoogle ScholarPubMed
Boot, E, Bassett, AS, Marras, C. 22q11.2 Deletion syndrome-associated Parkinson’s disease. Mov Disord Clin Pract 2019;6(1):1116.CrossRefGoogle ScholarPubMed
Figura, M, Geremek, M, Milanowski, LM, et al. Movement disorders associated with chromosomal aberrations diagnosed in adult patients. Neurol Neurochir Pol 2021;55(3):300305.CrossRefGoogle ScholarPubMed
Araujo, FMM, Junior, WM, Tomaselli, PJ, et al. SPG15: a rare correlation with atypical juvenile parkinsonism responsive to levodopa. Mov Disord Clin Pract 2020;7(7):842844.CrossRefGoogle ScholarPubMed
Leuzzi, V, Nardecchia, F, Pons, R, Galosi, S. Parkinsonism in children: clinical classification and etiological spectrum. Parkinsonism Relat Disord 2021;82:150157.CrossRefGoogle ScholarPubMed
Hsieh, PC, Wang, CC, Tsai, CL, et al. POLG R964C and GBA L444P mutations in familial Parkinson’s disease: case report and literature review. Brain Behav 2019;9(5):e01281.CrossRefGoogle ScholarPubMed
Mehta, SH, Dickson, DW, Morgan, JC, et al. Juvenile onset Parkinsonism with “pure nigral” degeneration and POLG1 mutation. Parkinsonism Relat Disord 2016;30:8385.CrossRefGoogle ScholarPubMed
Konno, T, Ross, OA, Teive, HAG, et al. DCTN1-related neurodegeneration: Perry syndrome and beyond. Parkinsonism Relat Disord 2017;41:1424.CrossRefGoogle ScholarPubMed
Gatto, EM, Rojas, GJ, Nemirovsky, SI, et al. A novel mutation in PSEN1 (p.Arg41Ser) in an Argentinian woman with early onset Parkinsonism. Parkinsonism Relat Disord 2020;77:2125.CrossRefGoogle Scholar
Synofzik, M. Parkinsonism in neurodegenerative diseases predominantly presenting with ataxia. Int Rev Neurobiol 2019;149:277298.CrossRefGoogle ScholarPubMed
Park, H, Kim, HJ, Jeon, BS. Parkinsonism in spinocerebellar ataxia. Biomed Res Int 2015;2015:125273.CrossRefGoogle ScholarPubMed
Hanna Al-Shaikh, R, Wernick, AI, Strongosky, AJ, et al. Spinocerebellar ataxia type 6 family with phenotypic overlap with multiple system atrophy. Neurol Neurochir Pol 2020;54(4):350355.CrossRefGoogle ScholarPubMed
Pollini, L, Galosi, S, Tolve, M, et al. KCND3-related neurological disorders: from old to emerging clinical phenotypes. Int J Mol Sci 2020;21(16):5802.CrossRefGoogle ScholarPubMed
Ser, MH, Tekgul, S, Gunduz, A, et al. Ataxia telangiectasia like disorder: another dopa-responsive disorder look-alike? Parkinsonism Relat Disord 2020;74:2224.CrossRefGoogle ScholarPubMed
Weissbach, A, Saranza, G, Domingo, A. Combined dystonias: clinical and genetic updates. J Neural Transm (Vienna) 2021;128(4):417429.CrossRefGoogle ScholarPubMed
Weissbach, A, Wittke, C, Kasten, M, Klein, C. ‘Atypical’ Parkinson’s disease – genetic. Int Rev Neurobiol 2019;149:207235.CrossRefGoogle ScholarPubMed
Hedera, P. Wilson’s disease: a master of disguise. Parkinsonism Relat Disord 2019;59:140145.CrossRefGoogle ScholarPubMed
Niemann, N, Jankovic, J. Juvenile parkinsonism: differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019;67:7489.CrossRefGoogle ScholarPubMed
Anagianni, S, Tuschl, K. Genetic disorders of manganese metabolism. Curr Neurol Neurosci Rep 2019;19(6):33.CrossRefGoogle ScholarPubMed
Reilmann, R. Parkinsonism in Huntington’s disease. Int Rev Neurobiol 2019;149:299306.CrossRefGoogle ScholarPubMed
Bally, JF, Camargos, S, Oliveira Dos Santos, C, et al. DYT-TUBB4A (DYT4 dystonia): new clinical and genetic observations. Neurology 2021;96(14):e1887e1897.CrossRefGoogle ScholarPubMed
Chen, J, Luo, S, Li, N, et al. A novel missense mutation of the CSF1R gene causes incurable CSF1R-related leukoencephalopathy: case report and review of literature. Int J Gen Med 2020;13:16131620.CrossRefGoogle ScholarPubMed
Ramirez, J, Dilliott, AA, Binns, MA, et al. Parkinson’s disease, NOTCH3 genetic variants, and white matter hyperintensities. Mov Disord 2020;35(11):20902095.CrossRefGoogle ScholarPubMed
Horvath, R, Kley, RA, Lochmuller, H, Vorgerd, M. Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology 2007;68(1):5658.CrossRefGoogle ScholarPubMed
Balicza, P, Bencsik, R, Lengyel, A, et al. Novel dominant MPAN family with a complex genetic architecture as a basis for phenotypic variability. Neurol Genet 2020;6(5):e515.CrossRefGoogle ScholarPubMed
Annesi, G, Gagliardi, M, Iannello, G, et al. Mutational analysis of COASY in an Italian patient with NBIA. Parkinsonism Relat Disord 2016;28:150151.CrossRefGoogle Scholar
Ebrahimi-Fakhari, D, Van Karnebeek, C, Munchau, A. Movement disorders in treatable inborn errors of metabolism. Mov Disord 2019;34(5):598613.CrossRefGoogle ScholarPubMed
Kresojevic, N, Mandic-Stojmenovic, G, Dobricic, V, et al. Very late-onset Niemann Pick type C disease: example of progressive supranuclear palsy look-alike disorder. Mov Disord Clin Pract 2020;7(2):211214.CrossRefGoogle ScholarPubMed
Ebrahimi-Fakhari, D, Hildebrandt, C, Davis, PE, et al. The spectrum of movement disorders in childhood-onset lysosomal storage diseases. Mov Disord Clin Pract 2018;5(2):149155.CrossRefGoogle ScholarPubMed
Cherian, A, Divya, KP, Paramasivan, NK, Krishnan, S. Pearls & Oy-sters: levodopa-responsive adult NCL (type B Kufs disease) due to CLN6 mutation. Neurology 2021;96(21):e2662e2665.CrossRefGoogle ScholarPubMed
Tian, Y, Wang, JL, Huang, W, et al. Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 2019;105(1):166176.CrossRefGoogle ScholarPubMed
de Gusmao, CM, Stone, S, Waugh, JL, et al. VAC14 gene-related parkinsonism–dystonia with response to deep brain stimulation. Mov Disord Clin Pract 2019;6(6):494497.CrossRefGoogle ScholarPubMed
Park, J, Park, ST, Kim, J, Kwon, KY. A case report of adult-onset Alexander disease clinically presenting as Parkinson’s disease: is the comorbidity associated with genetic susceptibility? BMC Neurol 2020;20(1):27.CrossRefGoogle Scholar
Introne, WJ, Westbroek, W, Groden, CA, et al. Neurologic involvement in patients with atypical Chediak-Higashi disease. Neurology 2017;88(7):e57e65.CrossRefGoogle ScholarPubMed
Flokas, ME, Tomani, M, Agdere, L, Brown, B. Triple A syndrome (Allgrove syndrome): improving outcomes with a multidisciplinary approach. Pediatric Health Med Ther 2019;10:99106.CrossRefGoogle ScholarPubMed
Vroegindeweij, LHP, Langendonk, JG, Langeveld, M, et al. New insights in the neurological phenotype of aceruloplasminemia in Caucasian patients. Parkinsonism Relat Disord 2017;36:3340.CrossRefGoogle ScholarPubMed
Kumar, N, Rizek, P, Sadikovic, B, Adams, PC, Jog, M. Movement disorders associated with hemochromatosis. Can J Neurol Sci 2016;43(6):801808.CrossRefGoogle ScholarPubMed
Bohlega, S, Abusrair, AH, Al-Ajlan, FS, et al. Patterns of neurological manifestations in Woodhouse–Sakati syndrome. Parkinsonism Relat Disord 2019;69:99103.CrossRefGoogle ScholarPubMed
Dulski, J, Sulek, A, Krygier, M, Radziwonik, W, Slawek, J. False-negative tests in Huntington’s disease: a new variant within primer hybridization site. Eur J Neurol 2021;28(6):21032105.CrossRefGoogle ScholarPubMed

References

Spillantini, MG, Crowther, RA, Jakes, R, et al.Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson‘s disease and dementia with Lewy bodies. Neurosci Lett 1998;251:205208.CrossRefGoogle ScholarPubMed
Wenning, GK, Colosimo, C, Geser, F, Poewe, W. Multiple system atrophy. Lancet Neurol 2004;3:93103.CrossRefGoogle ScholarPubMed
Gilman, S, Wenning, GK, Low, PA. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71:670676.CrossRefGoogle ScholarPubMed
Trojanowski, JQ, Revesz, T. Proposed neuropathological criteria for the post mortem diagnosis of multiple system atrophy. Neuropath Appl Neurobiol 2007;33:615620.CrossRefGoogle ScholarPubMed
Graham, JG, Oppenheimer, DR. Orthostatic hypotension and nicotine sensitivity in a case of multiple system atrophy. J Neurol Neurosurg Psychiatry 1969;32:2834.CrossRefGoogle Scholar
Dejerine, J. Atrophie olivo-ponto-cerebelleuse. In: Nouvelle iconographie de la Salpetriere: Clinique des malacies du systeme nerveux (periodique). Paris: Masson; 1900.Google Scholar
Adams, R, Van Bogaert, L, Van Der Eecken, H. [Nigro-striate and cerebello-nigro-striate degeneration. Clinical uniqueness and pathological variability of presenile degeneration of the extrapyramidal rigidity type]. Psychiatr Neurol (Basel) 1961;142:219259.CrossRefGoogle ScholarPubMed
Shy, GM, Drager, GA. A neurological syndrome associated with orthostatic hypotension: a clinical–pathologic study. Arch Neurol 1960;2:511527.CrossRefGoogle ScholarPubMed
Papp, MI, Kahn, JE, Lantos, PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy–Drager syndrome. J Neurol Sci 1989;94:79100.CrossRefGoogle ScholarPubMed
Quinn, N. Multiple system atrophy – the nature of the beast. J Neurol Neurosurg Psychiatry 1989;Suppl:7889.CrossRefGoogle ScholarPubMed
Wenning, GK, Stankovic, I, Vignatelli, L, et al. The Movement Disorder Society criteria for the diagnosis of multiple system atrophy. Mov Disord 2022;37:11311148.CrossRefGoogle ScholarPubMed
Petrovic, IN, Ling, H, Asi, Y, et al. Multiple system atrophy–parkinsonism with slow progression and prolonged survival: a diagnostic catch. Mov Disord 2012;27:11861190.CrossRefGoogle ScholarPubMed
Vanacore, N. Epidemiological evidence on multiple system atrophy. J. Neural Transm (Vienna) 2005;1996(112):16051612.CrossRefGoogle Scholar
Kollensperger, M, Geser, F, Ndayisaba, JP. Presentation, diagnosis, and management of multiple system atrophy in Europe: final analysis of the European multiple system atrophy registry. Mov Disord 2010;25:26042612.CrossRefGoogle ScholarPubMed
Wullner, U, Abele, M, Schmitz-Huebsch, T. Probable multiple system atrophy in a German family. J Neurol Neurosurg Psychiatry 2004;75:924925.CrossRefGoogle Scholar
Hara, K, Momose, Y, Tokiguchi, S. Multiplex families with multiple system atrophy. Arch Neurol 2007;64:545551.CrossRefGoogle ScholarPubMed
Guo, XY, Chen, YP, Song, W, et al. SNCA variants rs2736990 and rs356220 as risk factors for Parkinson’s disease but not for amyotrophic lateral sclerosis and multiple system atrophy in a Chinese population. Neurobiol Aging 2014;35:2882.e12882.e6.CrossRefGoogle Scholar
Sasaki, H, Emi, M, Iijima, H. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol Brain 2011;4:24.CrossRefGoogle ScholarPubMed
Ferguson, MC, Garland, EM, Hedges, L, et al. SHC2 gene copy number in multiple system atrophy (MSA). Clin Auton Res 2014;24:2530.CrossRefGoogle ScholarPubMed
Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med 2013;369(3):233244.CrossRefGoogle Scholar
Schottlaender, LV, Bettencourt, C, Kiely, AP, et al. Coenzyme Q10 levels are decreased in the cerebellum of multiple-system atrophy patients. PLoS One 2016;11:e0149557.CrossRefGoogle ScholarPubMed
Sklerov, M, Kang, UJ, Liong, C, et al. Frequency of GBA variants in autopsy-proven multiple system atrophy. Mov Disord Clin Pract 2017;4:574581.CrossRefGoogle ScholarPubMed
Riboldi, GM, Palma, J-A, Cortes, E, et al. Early-onset pathologically proven multiple system atrophy with LRRK2 G2019S mutation. Mov Disord 2019;34:10801082.CrossRefGoogle ScholarPubMed
Federoff, M. Price, TR, Sailer, A, et al. Genome-wide estimate of the heritability of multiple system atrophy. Parkinsonism Relat Disord 2016;22:3541.CrossRefGoogle ScholarPubMed
Vidal, JS, Vidailhet, M, Elbaz, A, et al.Risk factors of multiple system atrophy: a case–control study in French patients. Mov Disord 2008;23:797803.CrossRefGoogle ScholarPubMed
Ozawa, T, Paviour, D, Quinn, NP. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain 2004;127:26572671.CrossRefGoogle ScholarPubMed
Yoshida, M. Multiple system atrophy: alpha-synuclein and neuronal degeneration. Neuropathology 2007;27:484493.CrossRefGoogle ScholarPubMed
Wakabayashi, K, Mori, F, Nishie, M. An autopsy case of early (“minimal change”) olivopontocerebellar atrophy (multiple system atrophy–cerebellar. Acta Neuropathol 2005;110:185190.CrossRefGoogle ScholarPubMed
Nishie, M, Mori, F, Yoshimoto, M, Takahashi, H, Wakabayashi, K. A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol Appl Neurobiol 2004;30:546554.CrossRefGoogle ScholarPubMed
Jellinger, K. The role of α-synuclein in neurodegeneration – an update. Transl Neurosci 2012;3:75122.CrossRefGoogle Scholar
Orosz, F, Kovacs, GG, Lehotzky, A, et al. TPPP/p25: from unfolded protein to misfolding disease: prediction and experiments. Biol Cell 2004;96:701711.CrossRefGoogle ScholarPubMed
Kovacs, GG, Laszlo, L, Kovacs, J. Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol Dis 2004;17:155162.CrossRefGoogle ScholarPubMed
Ovadi, J, Orosz, F. An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. Bioessays 2009;31:676686.CrossRefGoogle ScholarPubMed
Herrera-Vaquero, M, Heras-Garvin, A, Krismer, F, et al. Signs of early cellular dysfunction in multiple system atrophy. Neuropathol Appl Neurobiol 2021;47:268282.CrossRefGoogle ScholarPubMed
Bettencourt, C, Miki, Y, Piras, IS, et al. MOBP and HIP1 in multiple system atrophy: new α-synuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis. Neuropathol Appl Neurobiol 2021;47:640652.CrossRefGoogle ScholarPubMed
Prusiner, SB, Woerman, AL, Mordes, DA, et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A 2015;112:E5308–5317.CrossRefGoogle ScholarPubMed
Krejciova, Z, Carlson, GA, Giles, K, Prusiner, SB. Replication of multiple system atrophy prions in primary astrocyte cultures from transgenic mice expressing human α-synuclein. Acta Neuropathol Commun 2019:7:81.CrossRefGoogle ScholarPubMed
Watts, JC, Giles, K, Oehler, A, et al. Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 2013;110:1955519560.CrossRefGoogle ScholarPubMed
Peng, C, Gathagan, RJ, Covell, DJ, et al. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 2018:557:558563.CrossRefGoogle ScholarPubMed
Jellinger, KA, Wenning, GK, Stefanova, N. Is multiple system atrophy a prion-like disorder? Int J Mol Sci 2021;22(18):10093.CrossRefGoogle ScholarPubMed
Jecmenica-Lukic, M, Poewe, W, Tolosa, E, Wenning, GK. Premotor signs and symptoms of multiple system atrophy. Lancet Neurol 2012;11:361368.CrossRefGoogle ScholarPubMed
Low, PA, Reich, SG, Jankovic, J, et al. Natural history of multiple system atrophy in the USA: a prospective cohort study, Lancet Neurol 2015;14:710719.CrossRefGoogle ScholarPubMed
Wenning, GK, Geser, F, Krismer, F. The natural history of multiple system atrophy: a prospective European cohort study. Lancet Neurol 2013;12:264274.CrossRefGoogle ScholarPubMed
O‘Sullivan, SS, Massey, LA, Williams, DR. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy. Brain 2008;131:1372.Google ScholarPubMed
Wenning, GK, Ben Shlomo, Y, Hughes, A, et al. What clinical features are most useful to distinguish definite multiple system atrophy from Parkinson‘s disease? J Neurol Neurosurg Psychiatry 2000;68:434440.CrossRefGoogle ScholarPubMed
Lin, DJ, Hermann, KL, Schmahmann, JD. The diagnosis and natural history of multiple system atrophy, cerebellar type. Cerebellum 2016;15:663679.CrossRefGoogle ScholarPubMed
Wenning, GK, Ben Shlomo, Y, Magalhaes, M, Daniel, SE, Quinn, NP. Clinical features and natural history of multiple system atrophy. An analysis of 100 cases. Brain 1994;117:835845.CrossRefGoogle ScholarPubMed
Wenning, GK, Tison, F, Ben Shlomo, Y, Daniel, SE, Quinn, NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 1997;12:133147.CrossRefGoogle ScholarPubMed
Stankovic, I, Fanciulli, A, Sidoroff, V, Wenning, GK. A review on the clinical diagnosis of multiple system atrophy. Cerebellum 2023;22(5):825839.CrossRefGoogle ScholarPubMed
Kollensperger, M, Geser, F, Seppi, K. Red flags for multiple system atrophy. Mov Disord 2008;23:10931099.CrossRefGoogle ScholarPubMed
Marsili, L, Bologna, M, Kojovic, M, et al. Dystonia in atypical parkinsonian disorders. Parkinsonism Relat Disord 2019;66:2533.CrossRefGoogle ScholarPubMed
Wenning, GK, Geser, F, Poewe, W. The “risus sardonicus” of multiple system atrophy. Mov Disord 2003;18:1211.CrossRefGoogle Scholar
Yoon, WT. Comparison of dystonia between Parkinson’s disease and atypical parkinsonism: the clinical usefulness of dystonia distribution and characteristics in the differential diagnosis of parkinsonism. Neurol Neurochir Pol 2018;52:4853.CrossRefGoogle ScholarPubMed
Moreno-López, C, Santamaría, J, Salamero, M, et al. Excessive daytime sleepiness in multiple system atrophy (SLEEMSA study). Arch Neurol 2011;68:223230.CrossRefGoogle ScholarPubMed
Boesch, SM, Wenning, GK, Ransmayr, G, Poewe, W. Dystonia in multiple system atrophy. J Neurol Neurosurg Psychiatry 2002;72:300303.CrossRefGoogle ScholarPubMed
Espay, AJ, Morgante, F, Merola, A, et al. Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol 2018;84:797811.CrossRefGoogle ScholarPubMed
Wenning, GK, Scherfler, C, Granata, R. Time course of symptomatic orthostatic hypotension and urinary incontinence in patients with postmortem confirmed parkinsonian syndromes: a clinicopathological study. J Neurol Neurosurg Psychiatry 1999;67:620623.CrossRefGoogle ScholarPubMed
Fanciulli, A, Wenning, GK. Multiple-system atrophy. N Engl J Med 2015;372:249263.CrossRefGoogle ScholarPubMed
Benarroch, EE. Pedunculopontine nucleus: functional organization and clinical implications. Neurology 2013;80:11481155.CrossRefGoogle ScholarPubMed
Salazar, G, Valls-Sole, J, Marti, MJ, Chang, H, Tolosa, ES. Postural and action myoclonus in patients with parkinsonian type multiple system atrophy. Mov Disord 2000;15:7783.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Okuma, Y, Fujishima, K, Miwa, H, Mori, H, Mizuno, Y. Myoclonic tremulous movements in multiple system atrophy are a form of cortical myoclonus. Mov Disord 2005;20:451456.CrossRefGoogle ScholarPubMed
Ganguly, J, Chai, JR, Jog, M. Minipolymyoclonus: a critical appraisal. J Mov Disord 2021;14:114118.CrossRefGoogle ScholarPubMed
Rusz, J, Tykalová, T, Salerno, G, et al. Distinctive speech signature in cerebellar and parkinsonian subtypes of multiple system atrophy. J Neurol 2019;266:13941404.CrossRefGoogle ScholarPubMed
Muller, J, Wenning, GK, Verny, M. Progression of dysarthria and dysphagia in postmortem-confirmed parkinsonian disorders. Arch Neurol 2001;58:259264.CrossRefGoogle ScholarPubMed
Ogawa, T, Sakakibara, R, Kuno, S, et al. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy. Nat Rev Urol 2017;14:7989.CrossRefGoogle ScholarPubMed
Oertel, WH, Wachter, T, Quinn, NP, Ulm, G, Brandstadter, D. Reduced genital sensitivity in female patients with multiple system atrophy of parkinsonian type. Mov Disord 2003;18:430432.CrossRefGoogle ScholarPubMed
Coon, EA, Nelson, RM, Sletten, DM, et al. Sex and gender influence symptom manifestation and survival in multiple system atrophy. Auton Neurosci Basic Clin 2019;219:4952.CrossRefGoogle ScholarPubMed
Mathias, CJ, Mallipeddi, R, Bleasdale-Barr, K. Symptoms associated with orthostatic hypotension in pure autonomic failure and multiple system atrophy. J Neurol 1999;246:893898.CrossRefGoogle ScholarPubMed
Tada, M, Onodera, O, Ozawa, T. Early development of autonomic dysfunction may predict poor prognosis in patients with multiple system atrophy. Arch Neurol 2007;64:256260.CrossRefGoogle ScholarPubMed
Fanciulli, A, Göbel, G, Ndayisaba, JP, et al. Supine hypertension in Parkinson’s disease and multiple system atrophy. Clin Auton Res 2016;26:97105.CrossRefGoogle ScholarPubMed
Iodice, V, Lipp, A, Ahlskog, JE, et al. Autopsy confirmed multiple system atrophy cases: Mayo experience and role of autonomic function tests. J Neurol Neurosurg Psychiatry 2012;83:453459.CrossRefGoogle ScholarPubMed
Coon, EA, Fealey, RD, Sletten, DM, et al. Anhidrosis in multiple system atrophy involves pre- and postganglionic sudomotor dysfunction. Mov Disord 2017;32:397404.CrossRefGoogle ScholarPubMed
Lipp, A, Sandroni, P, Ahlskog, JE. Prospective differentiation of multiple system atrophy from Parkinson disease, with and without autonomic failure. Arch Neurol 2009;66:742750.CrossRefGoogle ScholarPubMed
Augustis, S, Saferis, V, Jost, WH. Autonomic disturbances including impaired hand thermoregulation in multiple system atrophy and Parkinson’s disease. J Neural Transm (Vienna) 2017;1996(124):965972.CrossRefGoogle Scholar
Klein, C, Brown, R, Wenning, G, Quinn, N. The “cold hands sign” in multiple system atrophy. Mov Disord 1997;12:514518.CrossRefGoogle Scholar
Miki, Y, Foti, SC, Asi, YT, et al. Improving diagnostic accuracy of multiple system atrophy: a clinicopathological study. Brain 2019;142:28132827.CrossRefGoogle ScholarPubMed
Palma, J-A, Krismer, F, Meissner, WG, et al. Patient-reported symptoms in the Global Multiple System Atrophy Registry. Mov Disord Clin Pract 2022;9:967971.CrossRefGoogle ScholarPubMed
Zhang, L-Y, Cao, B, Zou, Y-T, et al. Depression and anxiety in multiple system atrophy. Acta Neurol Scand 2018;137:3337.CrossRefGoogle ScholarPubMed
Benrud-Larson, LM, Sandroni, P, Schrag, A, Low, PA. Depressive symptoms and life satisfaction in patients with multiple system atrophy. Mov Disord 2005;20:951957.CrossRefGoogle ScholarPubMed
Stankovic, I, Krismer, F, Jesic, A, et al. Cognitive impairment in multiple system atrophy: a position statement by the Neuropsychology Task Force of the MDS Multiple System Atrophy (MODIMSA) study group. Mov Disord 2014;29:857867.CrossRefGoogle ScholarPubMed
Shimohata, T, Nakayama, H, Tomita, M, Ozawa, T, Nishizawa, M. Daytime sleepiness in Japanese patients with multiple system atrophy: prevalence and determinants. BMC Neurol 2012;12:130.CrossRefGoogle ScholarPubMed
Abbott, SM, Videnovic, A. Sleep disorders in atypical parkinsonism. Mov Disord Clin Pract 2014;1:8996.CrossRefGoogle ScholarPubMed
Cortelli, P, Calandra-Buonaura, G, Benarroch, EE, et al. Stridor in multiple system atrophy: consensus statement on diagnosis, prognosis, and treatment. Neurology 2019;93:630639.CrossRefGoogle ScholarPubMed
Ghorayeb, I, Yekhlef, F, Chrysostome, V, et al. Sleep disorders and their determinants in multiple system atrophy. J Neurol Neurosurg Psychiatry 2002;72:798800.CrossRefGoogle ScholarPubMed
Kim, H-J, Stamelou, M, Jeon, B. Multiple system atrophy-mimicking conditions: diagnostic challenges. Parkinsonism Relat Disord 2016;22(Suppl 1):S1215.CrossRefGoogle ScholarPubMed
Klockgether, T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 2008;7:101105.CrossRefGoogle ScholarPubMed
Lee, PH, Lee, JE, Kim, HS. A randomized trial of mesenchymal stem cells in multiple system atrophy. Ann Neurol 2012;72:3240.CrossRefGoogle ScholarPubMed
Singer, W, Dietz, AB, Zeller, AD, et al. Intrathecal administration of autologous mesenchymal stem cells in multiple system atrophy. Neurology 2019;93:e77e87.CrossRefGoogle ScholarPubMed
Holmberg, B, Johansson, JO, Poewe, W. Safety and tolerability of growth hormone therapy in multiple system atrophy: a double-blind, placebo-controlled study. Mov Disord 2007;22:11381144.CrossRefGoogle ScholarPubMed
Bensimon, G, Ludolph, A, Agid, Y, et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 2009;132:156171.CrossRefGoogle ScholarPubMed
Poewe, W, Seppi, K, Fitzer-Attas, CJ, et al. Efficacy of rasagiline in patients with the parkinsonian variant of multiple system atrophy: a randomised, placebo-controlled trial. Lancet Neurol 2015;14:145152.CrossRefGoogle ScholarPubMed
Novak, P, Pimentel Maldonado, DA, Novak, V. Safety and preliminary efficacy of intranasal insulin for cognitive impairment in Parkinson disease and multiple system atrophy: a double-blinded placebo-controlled pilot study, PloS One 2019;14:e0214364.CrossRefGoogle ScholarPubMed
Bassil, F, Canron, M-H, Vital, A, et al. Insulin resistance and exendin-4 treatment for multiple system atrophy. Brain 2017;140:14201436.CrossRefGoogle ScholarPubMed
Bartels, AL, Willemsen, ATM, Doorduin, J, et al.[11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 2010;16:5759.CrossRefGoogle Scholar
Novak, P, Williams, A, Ravin, P, et al. Treatment of multiple system atrophy using intravenous immunoglobulin. BMC Neurol 2012;12:131.CrossRefGoogle ScholarPubMed
Ubhi, K, Rockenstein, E, Mante, M, et al. Rifampicin reduces alpha-synuclein in a transgenic mouse model of multiple system atrophy. Neuroreport 2008;19:12711276.CrossRefGoogle Scholar
Li, J, Zhu, M, Rajamani, S, Uversky, VN, Fink, AL. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 2004;11:15131521.CrossRefGoogle ScholarPubMed
Heras-Garvin, A, Weckbecker, D, Ryazanov, S, et al. Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy. Mov Disord 2019;34:255263.CrossRefGoogle Scholar
Bassil, F, Fernagut, P-O, Bezard, E, et al. Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy. Proc Natl Acad Sci U S A 2016;113:95939598.CrossRefGoogle Scholar
Williams, EL, Raj, SR, Schondorf, R, et al. Salt supplementation in the management of orthostatic intolerance: vasovagal syncope and postural orthostatic tachycardia syndrome. Auton Neurosci Basic Clin 2022;237:102906.CrossRefGoogle ScholarPubMed
Freeman, R. Current pharmacologic treatment for orthostatic hypotension. Clin Auton Res 2008;1:1418.CrossRefGoogle Scholar
Veazie, S, Peterson, K, Ansari, Y, et al. Fludrocortisone for orthostatic hypotension. Cochrane Database Syst Rev 2021;5:CD012868.Google ScholarPubMed
Biaggioni, I, Arthur Hewitt, L, Rowse, GJ, Kaufmann, H. Integrated analysis of droxidopa trials for neurogenic orthostatic hypotension. BMC Neurol 2017;17:90.CrossRefGoogle ScholarPubMed
Singer, W, Sandroni, P, Opfer-Gehrking, TL. Pyridostigmine treatment trial in neurogenic orthostatic hypotension. Arch Neurol 2006;63:513518.CrossRefGoogle ScholarPubMed
Shibao, CA, Biaggioni, I. Management of orthostatic hypotension, postprandial hypotension, and supine hypertension. Semin Neurol 2020;40:515522.Google ScholarPubMed
Furukawa, K, Suzuki, T, Ishiguro, H, et al. Prevention of postprandial hypotension-related syncope by caffeine in a patient with long-standing diabetes mellitus. Endocr J 2020;67:585592.CrossRefGoogle Scholar
Claassen, DO. Multiple system atrophy. Continuum (Minneap Minn) 2022);28:13501363.Google ScholarPubMed
Beck, RO, Betts, CD, Fowler, CJ. Genitourinary dysfunction in multiple system atrophy: clinical features and treatment in 62 cases. J Urol 1994;151:13361341.CrossRefGoogle ScholarPubMed
Hussain, IF, Brady, CM, Swinn, MJ, Mathias, CJ, Fowler, CJ. Treatment of erectile dysfunction with sildenafil citrate (Viagra) in parkinsonism due to Parkinson’s disease or multiple system atrophy with observations on orthostatic hypotension. J Neurol Neurosurg Psychiatry 2001;71:371374.CrossRefGoogle ScholarPubMed
Sakakibara, R, Yamaguchi, T, Uchiyama, T. Calcium polycarbophil improves constipation in primary autonomic failure and multiple system atrophy subjects. Mov Disord 2007;22:16721673.CrossRefGoogle ScholarPubMed
Coon, EA, Ahlskog, JE. My treatment approach to multiple system atrophy, Mayo Clin Proc 2021;96:708719.CrossRefGoogle ScholarPubMed
Pioro, EP, Brooks, BR, Cummings, J, et al. Dextromethorphan plus ultra low-dose quinidine reduces pseudobulbar affect. Ann Neurol 2010;68:693702.CrossRefGoogle ScholarPubMed
Jordan, J, Fanciulli, A, Tank, J, et al. Management of supine hypertension in patients with neurogenic orthostatic hypotension: scientific statement of the American Autonomic Society, European Federation of Autonomic Societies, and the European Society of Hypertension. J Hypertens 2019;37:15411546.CrossRefGoogle ScholarPubMed
Arnold, AC, Okamoto, LE, Gamboa, A, et al. Angiotensin II, independent of plasma renin activity, contributes to the hypertension of autonomic failure. Hypertension 2013;61:701706.CrossRefGoogle Scholar
Gibbons, CH, Schmidt, P, Biaggioni, I, et al. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol 2017;264:15671582.CrossRefGoogle ScholarPubMed
Chang, HJ, Kim, H-J, Woo, KA, Shin, JH, Jung, K-Y. The effect of continuous positive airway pressure (CPAP) on the quality of life in patients with multiple system atrophy. Sleep Breath 2023;27:14811484.CrossRefGoogle ScholarPubMed
Giannini, G, Provini, F, Cani, I, et al. Tracheostomy is associated with increased survival in multiple system atrophy patients with stridor. Eur J Neurol 2022;29:22322240.CrossRefGoogle ScholarPubMed
Wenning, GK. Placebo-controlled trial of amantadine in multiple-system atrophy. Clin Neuropharmacol 2005;28:225227.CrossRefGoogle ScholarPubMed
Artusi, CA, Rinaldi, D, Balestrino, R, Lopiano, L. Deep brain stimulation for atypical parkinsonism: a systematic review on efficacy and safety. Parkinsonism Relat Disord 2022;96:109118.CrossRefGoogle ScholarPubMed
Wenning, GK, Geser, F, Stampfer-Kountchev, M, Tison, F. Multiple system atrophy: an update. Mov Disord 2003;18:S34S42.CrossRefGoogle ScholarPubMed
Muller, J, Wenning, GK, Wissel, J, Seppi, K, Poewe, W. Botulinum toxin treatment in atypical parkinsonian disorders associated with disabling focal dystonia. J Neurol 2002;249:300304.Google ScholarPubMed
Thobois, S, Broussolle, E, Toureille, L, Vial, C. Severe dysphagia after botulinum toxin injection for cervical dystonia in multiple system atrophy. Mov Disord 2001;16:764765.CrossRefGoogle ScholarPubMed
Mancini, F, Zangaglia, R, Cristina, S. Double-blind, placebo-controlled study to evaluate the efficacy and safety of botulinum toxin type A in the treatment of drooling in parkinsonism. Mov Disord 2003;18:685688.CrossRefGoogle ScholarPubMed
Calandra-Buonaura, G, Alfonsi, E, Vignatelli, L, et al. Dysphagia in multiple system atrophy consensus statement on diagnosis, prognosis and treatment. Parkinsonism Relat Disord 2021;86:124132.CrossRefGoogle ScholarPubMed
Papapetropoulos, S, Tuchman, A, Laufer, D, et al. Causes of death in multiple system atrophy. J Neurol Neurosurg Psychiatry 2007;78:327329.CrossRefGoogle ScholarPubMed

References

Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy: a heterogeneous degeneration involving brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964;10:333359.CrossRefGoogle ScholarPubMed
Savica, R, Grossardt, BR, Bower, JH, Ahlskog, JE, Rocca, WA. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol 2013;70:859866.CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, et al. The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 2001;124:14381449.CrossRefGoogle ScholarPubMed
Donker Kaat, L, Boon, AJ, Azmani, A, et al. Familial aggregation of parkinsonism in progressive supranuclear palsy. Neurology 2009;73:98105.CrossRefGoogle ScholarPubMed
Höglinger, GU, Melhem, NM, Dickson, DW, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 2011;43:699705.CrossRefGoogle ScholarPubMed
Borroni, B, Agosti, C, Magnani, E, Di Luca, M, Padovani, A. Genetic bases of progressive supranuclear palsy: the MAPT tau disease. Curr Med Chem 2011;18:26552660.CrossRefGoogle ScholarPubMed
Myers, AJ, Pittman, AM, Zhao, AS, et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis 2007;25:561570.CrossRefGoogle ScholarPubMed
Fujioka, S, Algom, AA, Murray, ME, et al. Similarities between familial and sporadic autopsy-proven progressive supranuclear palsy. Neurology 2013;80:20762078.CrossRefGoogle ScholarPubMed
Sanchez-Contreras, MY, Kouri, N, Cook, CN, et al. Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol Neurodegener 2018;13:37.CrossRefGoogle ScholarPubMed
Vidal, JS, Vidailhet, M, Derkinderen, P, et al. Risk factors for progressive supranuclear palsy: a case–control study in France. J Neurol Neurosurg Psychiatry 2009;80:12711274.CrossRefGoogle ScholarPubMed
Melquist, S, Craig, DW, Huentelman, MJ, et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. Am J Hum Genet 2007;80:769778.CrossRefGoogle ScholarPubMed
Stamelou, M, de Silva, R, Arias-Carrión, O, et al. Rational therapeutic approaches to progressive supranuclear palsy. Brain 2010;133:15781590.CrossRefGoogle ScholarPubMed
Escobar-Khondiker, M, Höllerhage, M, Muriel, MP, et al. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J Neurosci 2007;27:78277837.CrossRefGoogle ScholarPubMed
Höllerhage, M, Matusch, A, Champy, P, et al. Natural lipophilic inhibitors of mitochondrial complex I are candidate toxins for sporadic neurodegenerative tau pathologies. Exp Neurol 2009;220:133142.CrossRefGoogle ScholarPubMed
Fernández-Botrán, R, Ahmed, Z, Crespo, FA, et al. Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord 2011;17:683688.CrossRefGoogle ScholarPubMed
Park, HK, Ilango, SD, Litvan, I. Environmental risk factors for progressive supranuclear palsy. J Mov Disord 2021;14:103113.CrossRefGoogle ScholarPubMed
Goedert, M, Wischik, CM, Crowther, RA, Walker, JE, Klug, A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 1988;85:40514055.CrossRefGoogle Scholar
Lee, VM, Goedert, M, Trojanowski, JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001;24:11211159.CrossRefGoogle ScholarPubMed
Dickson, DW, Ahmed, Z, Algom, AA, Tsuboi, Y, Josephs, KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 2010;23:394400.CrossRefGoogle ScholarPubMed
Goedert, M. Tau protein and neurodegeneration. Semin Cell Dev Biol 2004;15:4549.CrossRefGoogle ScholarPubMed
Hauw, JJ, Dickson, DW. Tauopathies. In: Dickson, D, ed. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Basel: ISN Neuropath Press; 2003: 82154.Google Scholar
Yamazaki, M, Makifuchi, T, Chen, KM, et al. Progressive supranuclear palsy on Guam. Acta Neuropathol 2001; 102: 510514.CrossRefGoogle ScholarPubMed
Williams, DR, Lees, AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009;8:270279.CrossRefGoogle ScholarPubMed
Coughlin, DG, Litvan, I. Progressive supranuclear palsy: advances in diagnosis and management. Parkinsonism Relat Disord 2020;73:105116.CrossRefGoogle ScholarPubMed
Hauw, JJ, Daniel, SE, Dickson, D, et al. Preliminary NINDS neuropathologic criteria for Steele–Richardson–Olszewski syndrome (progressive supranuclear palsy). Neurology 1994;44:20152019.CrossRefGoogle ScholarPubMed
Litvan, I, Hauw, JJ, Bartko, JJ, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 1996;55:97105.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, J, Strand, C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy–parkinsonism from Richardson’s syndrome. Brain 2007;130:15661576.CrossRefGoogle ScholarPubMed
Jellinger, KA. Different tau pathology pattern in two clinical phenotypes of progressive supranuclear palsy. Neurodegenerative Dis 2008;5:339346.CrossRefGoogle ScholarPubMed
Dickson, DW, Ahmed, Z, Algom, AA, Tsuboi, Y, Josephs, KA. Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 2010;23:394400.CrossRefGoogle ScholarPubMed
Kovacs, GG, Lukic, MJ, Irwin, DJ, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol 2020;140:99119.CrossRefGoogle ScholarPubMed
Gardner, RC, Boxer, AL, Trujillo, A, et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann Neurol 2013;73:603616.CrossRefGoogle ScholarPubMed
Williams, DR, de Silva, R, Paviour, DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP–parkinsonism. Brain 2005;128:12471258.CrossRefGoogle ScholarPubMed
Williams, DR, Holton, JL, Strand, K, Revesz, T, Lees, AJ. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord 2007;22:22352241.CrossRefGoogle ScholarPubMed
Duff, K, Gerstenecker, A, Litvan, I; investigators and coordinators of the ENGENE-PSP Study Group. Functional impairment in progressive supranuclear palsy. Neurology 2013;80:380384.CrossRefGoogle ScholarPubMed
Hauw, JJ, Verny, M, Delaère, P, et al. Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy. Basic differences with Alzheimer’s disease and aging. Neurosci Lett 1990;119:182186.CrossRefGoogle Scholar
Matsusaka, H, Ikeda, K, Akiyama, H, et al. Astrocytic pathology in progressive supranuclear palsy: significance for neuropathological diagnosis. Acta Neuropathol 1998;96:248252.CrossRefGoogle ScholarPubMed
Nath, U, Ben-Shlomo, Y, Thomson, RG, Lees, AJ, Burn, DJ. Clinical features and natural history of progressive supranuclear palsy: a clinical cohort study. Neurology 2003;60:910916.CrossRefGoogle ScholarPubMed
Goetz, CG, Leurgans, S, Lang, AE, Litvan, I. Progression of gait, speech and swallowing deficits in progressive supranuclear palsy. Neurology 2003;60:917922.CrossRefGoogle ScholarPubMed
Golbe, LI. Progressive supranuclear palsy. In: Jankovic, J, Tolosa, E, eds. Parkinson’s Disease and Movement Disorders, 2nd ed. Baltimore: Williams and Wilkins; 1993: 145161.Google Scholar
Williams, DR, Lees, AJ. What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy–parkinsonism (PSP-P)? Mov Disord 2010;25:357362.CrossRefGoogle ScholarPubMed
Jellinger, KA. Different tau pathology pattern in two clinical phenotypes of progressive supranuclear palsy. Neurodegener Dis 2008;5:339346.CrossRefGoogle ScholarPubMed
Imai, H, Narabayashi, H. Akinesia – concerning 2 cases of pure akinesia. Adv Neurol Sci (Tokyo) 1974;18:787794.Google Scholar
Ahmed, Z, Josephs, KA, Gonzalez, J, DelleDonne, A, Dickson, DW. Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 2008;131:460472.CrossRefGoogle ScholarPubMed
Mizusawa, H, Mochizuki, A, Ohkoshi, N, et al. Progressive supranuclear palsy presenting with pure akinesia. Adv Neurol 1993;60:618621.Google ScholarPubMed
Rivaud-Pechoux, S, Vidailhet, M, Gallouedec, G, et al. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology 2000;54:10291032.CrossRefGoogle ScholarPubMed
Boeve, BF, Maraganore, DM, Parisi, JE, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 1999;53:795800.CrossRefGoogle ScholarPubMed
Tsuboi, Y, Josephs, KA, Boeve, BF, et al. Increased tau burden in the cortices of progressive supranuclear palsy presenting with corticobasal syndrome. Mov Disord 2005;20:982988.CrossRefGoogle ScholarPubMed
Hu, WT, Parisi, JE, Knopman, DS, et al. Clinical features and survival of 3R and 4R tauopathies presenting as behavioral variant frontotemporal dementia. Alzheimer Dis Assoc Disord 2007;21:S3943.CrossRefGoogle ScholarPubMed
Neary, D, Snowden, JS, Gustafson, L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:15461554.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129:13851398.CrossRefGoogle ScholarPubMed
Litvan, I, Agid, Y, Jankovic, J, et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome). Neurology 1996;46:922930.CrossRefGoogle ScholarPubMed
Respondek, G, Roeber, S, Kretzschmar, H, et al. Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov Disord 2013;28:504509.CrossRefGoogle ScholarPubMed
Höglinger, GU, Respondek, G, Stamelou, M, et al. Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society criteria. Mov Disord 2017;32:853864.CrossRefGoogle ScholarPubMed
Ali, F, Botha, H, Whitwell, JL, Josephs, KA. Utility of the Movement Disorders Society criteria for progressive supranuclear palsy in clinical practice. Mov Disord Clin Pract 2019;6:436439.CrossRefGoogle ScholarPubMed
Grötsch, MT, Respondek, G, Colosimo, C, et al. A modified progressive supranuclear palsy rating scale. Mov Disord 2021;36(5):12031215.CrossRefGoogle ScholarPubMed
Massey, LA, Micallef, C, Paviour, DC, et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 2012; 27: 1754-62.CrossRefGoogle ScholarPubMed
Morelli, M, Arabia, G, Novellino, F, et al. MRI measurements predict PSP in unclassifiable parkinsonisms: a cohort study. Neurology 2011;77:10421047.CrossRefGoogle ScholarPubMed
Morelli, M, Arabia, G, Salsone, M, et al. Accuracy of magnetic resonance parkinsonism index for differentiation of progressive supranuclear palsy from probable or possible Parkinson disease. Mov Disord 2011;26:527533.CrossRefGoogle ScholarPubMed
Massey, LA, Jäger, HR, Paviour, DC, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 2013;80:18561861.CrossRefGoogle ScholarPubMed
Brendel, M, Barthel, H, van Eimeren, T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol 2020;77:14081419.CrossRefGoogle ScholarPubMed
Li, L, Liu, FT, Li, M, et al. Clinical utility of 18F-APN-1607 tau PET imaging in patients with progressive supranuclear palsy. Mov Disord 2021;36;23142323.CrossRefGoogle ScholarPubMed
Saijo, E, Metrick, MA 2nd, Koga, S, et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol 2020;139:6377.CrossRefGoogle ScholarPubMed
Jabbari, E, Koga, S, Valentino, RR, et al. Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurol 2021;20:107116.CrossRefGoogle ScholarPubMed
Miki, Y, Tsushima, E, Foti, SC. Identification of multiple system atrophy mimicking Parkinson’s disease or progressive supranuclear palsy. Brain 2021;144(4):11381151.CrossRefGoogle ScholarPubMed
Stamelou, M, Quinn, NP, Bhatia, KP. “Atypical” atypical parkinsonism: New genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy – a diagnostic guide. Mov Disord 2013;28:11841199.CrossRefGoogle ScholarPubMed
Nieforth, KA, Golbe, LI. Retrospective study of drug response in 87 patients with progressive supranuclear palsy. Clin Neuropharmacol 1993;16:338346.CrossRefGoogle ScholarPubMed
Engel, PA. Treatment of progressive supranuclear palsy with amitriptyline: therapeutic and toxic effects. J Am Geriatr Soc 1996;44:10721074.CrossRefGoogle ScholarPubMed
Baumann, CR, Lees, AJ. Progressive supranuclear palsy. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 399409.Google Scholar

References

Doran, M, Du Plessis, DG, Enevoldson, TP, et al. Pathological heterogeneity of clinically diagnosed corticobasal degeneration. J Neurol Sci 2003;216(1):127134.CrossRefGoogle ScholarPubMed
Ling, H, O’Sullivan, SS, Holton, JL, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010;133(7):20452057.CrossRefGoogle ScholarPubMed
Coyle-Gilchrist, ITS, Dick, KM, Patterson, K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016;86(18):17361743.CrossRefGoogle ScholarPubMed
Josephs, K, Petersen, RC, Knopman, DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006;66(1):4148.CrossRefGoogle ScholarPubMed
Brown, J, Lantos, PL, Roques, P, Fidani, L, Rossor, MN. Familial dementia with swollen achromatic neurons and corticobasal inclusion bodies: a clinical and pathological study. J Neurol Sci 1996;135(1):2130.CrossRefGoogle ScholarPubMed
Spillantini, MG, Yoshida, H, Rizzini, C, et al. A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann Neurol 2000;48(6):939943.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Snowden, JS, Rollinson, S, Thompson, JC, et al. Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 2012;135(3):693708.CrossRefGoogle ScholarPubMed
Ghetti, B, Oblak, AL, Boeve, BF, et al. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015;41(1):2446.CrossRefGoogle ScholarPubMed
Kouri, N, Ross, OA, Dombrowski, B, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun 2015;6:7247.CrossRefGoogle ScholarPubMed
Miklossy, J, Steele, JC, Yu, S, McCall, S, Sandberg, G, McGeer, EG, et al. Enduring involvement of tau, β-amyloid, α-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam (ALS/PDC). Acta Neuropathol 2008;116(6):625637.CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70(2):327340.CrossRefGoogle ScholarPubMed
Liu, F, Gong, C-X. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 2008;3(1):8.CrossRefGoogle ScholarPubMed
Dickson, DW, Kouri, N, Murray, ME, Josephs, KA. Neuropathology of frontotemporal lobar degeneration-tau (FTLD-Tau). J Mol Neurosci 2011;45(3):384389.CrossRefGoogle ScholarPubMed
Spillantini, MG, Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol 2013;12(6):609622.CrossRefGoogle ScholarPubMed
Yokoyama, JS, Karch, CM, Fan, CC, et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol 2017;133(5):825837.CrossRefGoogle ScholarPubMed
Ling, H, Kovacs, GG, Vonsattel, JPG, et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain 2016;139(Pt 12):32373252.CrossRefGoogle ScholarPubMed
Kovacs, GG, Xie, SX, Robinson, JL,et al. Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol Commun 2018;6(1):50.CrossRefGoogle ScholarPubMed
Goedert, M. Tau proteinopathies and the prion concept. Prog Mol Biol Transl Sci 2020;175:239259.CrossRefGoogle ScholarPubMed
Dickson, DW, Bergeron, C, Chin, SS, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol 2002;61(11):935946.CrossRefGoogle ScholarPubMed
Saranza, GM, Whitwell, JL, Kovacs, GG, Lang, AE. Chapter Four – Corticobasal degeneration. In: Stamelou, M, Höglinger, GU, eds.Parkinsonism Beyond Parkinson’s Disease. New York: Academic Press; 2019: 87136.CrossRefGoogle Scholar
Robinson, JL, Lee, EB, Xie, SX,et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 2018;141(7):21812193.CrossRefGoogle ScholarPubMed
Shi, Y, Zhang, W, Yang, Y, et al. Structure-based classification of tauopathies. Nature 2021;598(7880):359363.CrossRefGoogle ScholarPubMed
Lee, SE, Rabinovici, GD, Mayo, MC, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011;70(2):327340.CrossRefGoogle ScholarPubMed
Armstrong, MJ, Litvan, I, Lang, AE, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80(5):496503.CrossRefGoogle ScholarPubMed
Stamelou, M, Alonso-Canovas, A, Bhatia, KP. Dystonia in corticobasal degeneration: a review of the literature on 404 pathologically proven cases. Mov Disord 2012;27(6):696702.CrossRefGoogle ScholarPubMed
Murray, R, Neumann, M, Forman, MS,et al. Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 2007;68(16):12741283.CrossRefGoogle ScholarPubMed
Vanvoorst, WA, Greenaway, MC, Boeve, BF, et al. Neuropsychological findings in clinically atypical autopsy confirmed corticobasal degeneration and progressive supranuclear palsy. Parkinsonism Relat Disord 2008;14(4):376378.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Clark, HM, et al. A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nat Commun 2021;12(1):3452.CrossRefGoogle ScholarPubMed
Day, GS, Lim, TS, Hassenstab, J, et al. Differentiating cognitive impairment due to corticobasal degeneration and Alzheimer disease. Neurology 2017;88(13):12731281.CrossRefGoogle ScholarPubMed
Soliveri, P, Piacentini, S, Girotti, F. Limb apraxia in corticobasal degeneration and progressive supranuclear palsy. Neurology 2005;64(3):448453.CrossRefGoogle ScholarPubMed
Hassan, A, Josephs, KA. Alien hand syndrome. Curr Neurol Neurosci Rep 2016;16(8):73.CrossRefGoogle ScholarPubMed
Kertesz, A, McMonagle, P, Blair, M, Davidson, W, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128(9):19962005.CrossRefGoogle ScholarPubMed
Ouchi, H, Toyoshima, Y, Tada, M,et al. Pathology and sensitivity of current clinical criteria in corticobasal syndrome. Mov Disord 2014;29(2):238244.CrossRefGoogle ScholarPubMed
Alexander, SK, Rittman, T, Xuereb, JH, et al. Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J Neurol Neurosurg Psychiatry 2014;85(8):923927.CrossRefGoogle ScholarPubMed
Boyd, C, Tierney, M, Wassermann, E, et al. Sensitivity and specificity of new criteria for the diagnosis of corticobasal degeneration (P5.010). Neurology 2015;84(14 Suppl):P5.010.CrossRefGoogle Scholar
Weinstein, J, Irwin, D, Trojanowski, J, et al. Sensitivity and specificity of clinical criteria for 4-repeat tauopathies in autopsy-confirmed cases (S27.003). Neurology 2018;90(15 Suppl):S27.003.CrossRefGoogle Scholar
Sha, SJ, Ghosh, PM, Lee, SE, et al. Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography. Alzheimers Res Ther 2015;7(1):8.CrossRefGoogle ScholarPubMed
Koyama, M, Yagishita, A, Nakata, Y, et al.Imaging of corticobasal degeneration syndrome. Neuroradiology 2007;49(11):905912.CrossRefGoogle ScholarPubMed
Boxer, AL, Geschwind, MD, Belfor, N, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol 2006;63(1):8186.CrossRefGoogle ScholarPubMed
Josephs, KA, Whitwell, JL, Dickson, DW, et al. Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 2008;29(2):280289.CrossRefGoogle ScholarPubMed
Whitwell, JL, Jack, CR, Boeve, BF, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 2010;75(21):18791887.CrossRefGoogle ScholarPubMed
Upadhyay, N, Suppa, A, Piattella, MC, et al. Gray and white matter structural changes in corticobasal syndrome. Neurobiol Aging 2016;37:8290.CrossRefGoogle ScholarPubMed
Whitwell, JL, Schwarz, CG, Reid, RI, et al. Diffusion tensor imaging comparison of progressive supranuclear palsy and corticobasal syndromes. Parkinsonism Relat Disord 2014;20(5):493498.CrossRefGoogle ScholarPubMed
Kaasinen, V, Gardberg, M, Röyttä, M, Seppänen, M, Päivärinta, M. Normal dopamine transporter SPECT in neuropathologically confirmed corticobasal degeneration. J Neurol 2013;260(5):14101411.CrossRefGoogle ScholarPubMed
Mille, E, Levin, J, Brendel, M, et al. Cerebral glucose metabolism and dopaminergic function in patients with corticobasal syndrome. J Neuroimaging 2017;27(2):255261.CrossRefGoogle ScholarPubMed
Whitwell, JL. Tau imaging in parkinsonism: what have we learned so far? Mov Disord Clin Pract 2018;5(2):118130.CrossRefGoogle ScholarPubMed
Sander, K, Lashley, T, Gami, P, et al. Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. Alzheimers Dement 2016;12(11):11161124.CrossRefGoogle ScholarPubMed
Whitwell, JL, Loewe, VJ, Tosakulwong, N, et al. [18F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord 2017;32(1):124133.CrossRefGoogle ScholarPubMed
Tetzloff, KA, Duffy, JR, Strand, EA, et al. Clinical and imaging progression over 10 years in a patient with primary progressive apraxia of speech and autopsy-confirmed corticobasal degeneration. Neurocase 2018;24(2):111120.CrossRefGoogle Scholar
Hansson, O, Janelidze, S, Hall, S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017;88(10):930937.CrossRefGoogle ScholarPubMed
Bridel, C, van Wieringen, WN, Zetterberg, H, et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology. JAMA Neurol 2019;76(9):10351048.CrossRefGoogle ScholarPubMed
Jabbari, E, Holland, N, Chelban, V, et al. Diagnosis across the spectrum of progressive supranuclear palsy and corticobasal syndrome. JAMA Neurol 2020;77(3):377387.CrossRefGoogle ScholarPubMed
Hall, S, Öhrfelt, A, Constantinescu, R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 2012;69(11):14451452.CrossRefGoogle ScholarPubMed
Magdalinou, NK, Paterson, RW, Schott, JM, et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2015;86(11):12401247.CrossRefGoogle ScholarPubMed
Rojas, JC, Bang, J, Lobach, IV, et al. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology 2018;90(4):e273e281.CrossRefGoogle ScholarPubMed
Leuzy, A, Janelidze, S, Mattsson-Carlgren, N, et al. Comparing the clinical utility and diagnostic performance of CSF P-Tau181, P-Tau217, and P-Tau231 assays. Neurology 2021;97(17):e1681e1694.CrossRefGoogle ScholarPubMed
Saijo, E, Metrick, MA, Koga, S, et al, 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol 2020;139(1):6377.CrossRefGoogle ScholarPubMed
Alcolea, D, Vilaplana, E, Suárez-Calvet, M, et al. CSF sAPPbeta, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology 2017;89(2):178188.CrossRefGoogle ScholarPubMed
Olsson, B, Constantinescu, R, Holmberg, B, et al. The glial marker YKL-40 is decreased in synucleinopathies. Mov Disord 2013;28(13):18821885.CrossRefGoogle ScholarPubMed
Jabbari, E, Woodside, J, Guo, T, et al. Proximity extension assay testing reveals novel diagnostic biomarkers of atypical parkinsonian syndromes. J Neurol Neurosurg Psychiatry 2019;90(7):768773.CrossRefGoogle ScholarPubMed
Lang, AE, Stebbins, GT, Wang, P,et al., The Cortical Basal ganglia Functional Scale (CBFS): development and preliminary validation. Parkinsonism Relat Disord 2020;79:121126.CrossRefGoogle ScholarPubMed
Boxer, AL, Yu, J-T, Golbe, LI, et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol 2017;16(7):552563.CrossRefGoogle ScholarPubMed
Tolosa, E, Litvan, I, Höglinger, GU, et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 2014;29(4):470478.CrossRefGoogle ScholarPubMed
Boxer, AL, Lang, AE, Grossman, M, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 2014;13(7):676685.CrossRefGoogle ScholarPubMed
Tsai, RM, Miller, Z, Koestler, M, et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol 2020;77(2):215224.CrossRefGoogle ScholarPubMed
Dam, T, Boxer, AL, Golbe, LI, et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat Med 2021;27(8):14511457.CrossRefGoogle ScholarPubMed
Höglinger, GU, Litvan, I, Mendonca, N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol 2021;20(3):182192.CrossRefGoogle ScholarPubMed
Kompoliti, K, Goetze, CE, Boeve, BF, et al. Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol 1998;55(7):957961.CrossRefGoogle ScholarPubMed
Bluett, B, Pantelyat, AY, Litvan, I, et al. Best practices in the clinical management of progressive supranuclear palsy and corticobasal syndrome: a consensus statement of the CurePSP Centers of Care. Front Neurol 2021;12:694872.CrossRefGoogle ScholarPubMed
VandeVrede, L, Ljubenkov, PA, Rojas, JC, Welch, AE, Boxer, AL. Four-repeat tauopathies: current management and future treatments. Neurotherapeutics 2020;17(4):15631581.CrossRefGoogle ScholarPubMed
Saranza, G, Villanueva, EQ III, Lang, AE. Preferences for communication about end-of-life care in atypical parkinsonism. Mov Disord 2021;36(9):21162125.CrossRefGoogle ScholarPubMed
Forman, MS, Farmer, J, Johnson, JK, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59(6):952962.CrossRefGoogle ScholarPubMed
Wenning, GK, Litvan, I, Jankovic, J, et al. Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 1998;64(2):184189.CrossRefGoogle ScholarPubMed
Hansson, O, Janelidze, S, Hall, S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 2017;88(10):930937.CrossRefGoogle ScholarPubMed

References

Foster, NL, Wilhelmsen, K, Sima, AA, et al. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol 1997;41(6):706715.CrossRefGoogle ScholarPubMed
Baker, M, Mackenzie, IR, Pickering-Brown, SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006;442(7105):916919.CrossRefGoogle ScholarPubMed
Mackenzie, IR, Neumann, M, Baborie, A, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 2011;122(1):111113.CrossRefGoogle ScholarPubMed
Josephs, KA. Rest in peace FTDP-17. Brain 2018;141(2):324331.CrossRefGoogle ScholarPubMed
Kovacs, GG. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol 2015;41(1):323.CrossRefGoogle ScholarPubMed
Forrest, SL, Kril, JJ, Stevens, CH, et al. Retiring the term FTDP-17 as MAPT mutations are genetic forms of sporadic frontotemporal tauopathies. Brain 2018;141(2):521534.CrossRefGoogle ScholarPubMed
Ghetti, B, Oblak, AL, Boeve, BF, et al. Invited review: frontotemporal dementia caused by microtubule‐associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 2015;41(1):2446.CrossRefGoogle ScholarPubMed
Rohrer, J, Guerreiro, R, Vandrovcova, J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009;73(18):14511456.CrossRefGoogle ScholarPubMed
Dickson, D, Weller, RO, eds. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders: John Wiley & Sons; 2011.CrossRefGoogle Scholar
Reed, LA, Schelper, RL, Solodkin, A, et al. Autosomal dominant dementia with widespread neurofibrillary tangles. Ann Neurol 1997;42(4):564572.CrossRefGoogle ScholarPubMed
Tsuboi, Y, Baker, M, Hutton, M, et al. Clinical and genetic studies of families with the tau N279K mutation (FTDP-17). Neurology 2002;59(11):17911793.CrossRefGoogle ScholarPubMed
Rohrer, JD, Lashley, T, Schott, JM, et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain 2011;134(9):25652581.CrossRefGoogle ScholarPubMed
Rohrer, JD, Nicholas, JM, Cash, DM, et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 2015;14(3):253262.CrossRefGoogle ScholarPubMed
Sivasathiaseelan, H, Marshall, CR, Agustus, JL, et al. Frontotemporal dementia: a clinical review. Semin Neurol 2019;39(2):251263.Google ScholarPubMed
Duffy, JR. Apraxia of speech in degenerative neurologic disease. Aphasiology 2006;20(6):511527.CrossRefGoogle Scholar
Josephs, KA, Duffy, JR, Strand, EA, et al. Characterizing a neurodegenerative syndrome: primary progressive apraxia of speech. Brain 2012;135(5):15221536.CrossRefGoogle ScholarPubMed
Whitwell, JL, Duffy, JR, Strand, EA, et al. Sample size calculations for clinical trials targeting tauopathies: a new potential disease target. J Neurol 2015;262(9):20642072.CrossRefGoogle ScholarPubMed
Dang, J, Graff-Radford, J, Duffy, JR, et al. Progressive apraxia of speech: delays to diagnosis and rates of alternative diagnoses. J Neurol 2021;268(12):47524758.CrossRefGoogle ScholarPubMed
Flanagan, EP, Baker, MC, Perkerson, RB, et al. Dominant frontotemporal dementia mutations in 140 cases of primary progressive aphasia and speech apraxia. Dement Geriatr Cogn Disord 2015;39(5–6):281286.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Clark, HM, et al. A molecular pathology, neurobiology, biochemical, genetic and neuroimaging study of progressive apraxia of speech. Nat Commun 2021;12(1):3452.CrossRefGoogle ScholarPubMed
Botha, H, Duffy, JR, Whitwell, JL, et al. Classification and clinicoradiologic features of primary progressive aphasia (PPA) and apraxia of speech. Cortex 2015;69:220236.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. Syndromes dominated by apraxia of speech show distinct characteristics from agrammatic PPA. Neurology 2013;81(4):337–45.CrossRefGoogle ScholarPubMed
Botha, H, Duffy, JR, Strand, EA, et al. Nonverbal oral apraxia in primary progressive aphasia and apraxia of speech. Neurology 2014;82(19):17291735.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. The evolution of primary progressive apraxia of speech. Brain 2014;137(10):27832795.CrossRefGoogle ScholarPubMed
Seckin, ZI, Duffy, JR, Strand, EA, et al. The evolution of parkinsonism in primary progressive apraxia of speech: a 6-year longitudinal study. Parkinsonism Relat Disord 2020;81:3440.CrossRefGoogle ScholarPubMed
Botha, H, Josephs, KA. Primary progressive aphasias and apraxia of speech. Continuum (Minneap Minn) 2019;25(1):101127.Google ScholarPubMed
Whitwell, JL, Martin, P, Duffy, JR, et al. Survival analysis in primary progressive apraxia of speech and agrammatic aphasia. Neurol Clin Pract 2021;11(3):246255.CrossRefGoogle ScholarPubMed
Mesulam, MM. Primary progressive aphasia. Ann Neurol 2001;49(4):425432.CrossRefGoogle ScholarPubMed
Gorno-Tempini, ML, Hillis, AE, Weintraub, S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76(11):10061014.CrossRefGoogle ScholarPubMed
Grossman, M. The non-fluent/agrammatic variant of primary progressive aphasia. Lancet Neurol 2012;11(6):545555.CrossRefGoogle ScholarPubMed
Onyike, CU, Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int Rev Psychiatry 2013;25(2):130137.CrossRefGoogle ScholarPubMed
Josephs, KA, Papenfuss, SM, Duffy, JR, et al. Occupational differences between Alzheimer’s and aphasic dementias: implication for teachers. Am J Alzheimers Dis Other Demen 2013;28(6):612616.CrossRefGoogle ScholarPubMed
Buciuc, M, Whitwell, JL, Kasanuki, K, et al. Lewy body disease is a contributor to logopenic progressive aphasia phenotype. Ann Neurol 2021;89(3):520533.CrossRefGoogle ScholarPubMed
Graff-Radford, J, Josephs, KA, Parisi, JE, et al. Globular glial tauopathy presenting as semantic variant primary progressive aphasia. JAMA Neurol 2016;73(1):123125.CrossRefGoogle ScholarPubMed
Botha, H, Boeve, BF, Jones, LK, Parisi, JE, Klaas, JP. A young man with progressive language difficulty and early-onset dementia. JAMA Neurol 2016;73(5):595599.CrossRefGoogle Scholar
Mesulam, M-M, Weintraub, S, Rogalski, EJ, et al. Asymmetry and heterogeneity of Alzheimer’s and frontotemporal pathology in primary progressive aphasia. Brain 2014;137(4):11761192.CrossRefGoogle ScholarPubMed
Harris, JM, Gall, C, Thompson, JC, et al. Classification and pathology of primary progressive aphasia. Neurology 2013;81(21):18321839.CrossRefGoogle ScholarPubMed
Josephs, KA, Duffy, JR, Strand, EA, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129(6):13851398.CrossRefGoogle ScholarPubMed
Lomen-Hoerth, C, Anderson, T, Miller, B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 2002;59(7):10771079.CrossRefGoogle ScholarPubMed
Josephs, KA, Dickson, DW. Frontotemporal lobar degeneration with upper motor neuron disease/primary lateral sclerosis. Neurology 2007;69(18):18001801.CrossRefGoogle ScholarPubMed
Katz, DI, Bernick, C, Dodick, DW, et al. National Institute of Neurological Disorders and Stroke consensus diagnostic criteria for traumatic encephalopathy syndrome. Neurology 2021;96(18):848863.CrossRefGoogle ScholarPubMed
McKee, AC, Stein, TD, Nowinski, CJ, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 2013;136(1):4364.CrossRefGoogle ScholarPubMed
Mez, J, Daneshvar, DH, Kiernan, PT, et al. Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. JAMA 2017;318(4):360370.CrossRefGoogle ScholarPubMed
Langlois, JA, Rutland-Brown, W, Wald, MM. The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 2006;21(5):375378.CrossRefGoogle ScholarPubMed
McKee, AC, Cantu, RC, Nowinski, CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009;68(7):709735.CrossRefGoogle ScholarPubMed
Stern, RA, Daneshvar, DH, Baugh, CM, et al. Clinical presentation of chronic traumatic encephalopathy. Neurology 2013;81(13):11221129.CrossRefGoogle ScholarPubMed
McKee, AC, Daneshvar, DH. The neuropathology of traumatic brain injury. Handb Clin Neurol 2015;127:4566.CrossRefGoogle ScholarPubMed
McKee, AC, Cairns, NJ, Dickson, DW, et al. The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy. Acta Neuropathol 2016;131(1):7586.CrossRefGoogle ScholarPubMed
McKee, AC, Stein, TD, Kiernan, PT, Alvarez, VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol 2015;25(3):350364.CrossRefGoogle ScholarPubMed
Bang, J, Spina, S, Miller, BL. Frontotemporal dementia. Lancet 2015;386(10004):16721682.CrossRefGoogle ScholarPubMed

References

Mehanna, R, Jankovic, J. Movement disorders in cerebrovascular disease. Lancet Neurol 2013;12:597608.CrossRefGoogle ScholarPubMed
Udagedara, TB, Dhananjalee Alahakoon, AM, Goonaratna, IK. Vascular parkinsonism: a review on management updates. Ann Indian Acad Neurol 2019;22:1720.Google ScholarPubMed
Critchley, M. Arteriosclerotic parkinsonism. Brain 1929;52:2383.CrossRefGoogle Scholar
Zijlmans, JC, Katzenschlager, R, Daniel, SE, Lees, AJ. The L-dopa response in vascular parkinsonism. J Neurol Neurosurg Psychiatry 2004;75:545547.CrossRefGoogle ScholarPubMed
Kalra, S, Grosset, DG, Benamer, HT. Differentiating vascular parkinsonism from idiopathic Parkinson’s disease: a systematic review. Mov Disord 2010;25:149156.CrossRefGoogle ScholarPubMed
Zijlmans, JC, Daniel, SE, Hughes, AJ, Révész, T, Lees, AJ. Clinicopathological investigation of vascular parkinsonism, including clinical criteria for diagnosis. Mov Disord 2004;19:630640.CrossRefGoogle ScholarPubMed
Hughes, AJ, Daniel, SE, Kilford, L, Lees, AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatr 1992;55:181184.CrossRefGoogle ScholarPubMed
Jellinger, KA. Vascular parkinsonism. Therapy 2008;5:237255.CrossRefGoogle Scholar
Pickut, B. Vascular parkinsonism. In: Wolters, ECh and Baumann, CR, eds. Parkinson Disease and Other Movement DSisorders. Amsterdam: VU University Press; 2014: 363372.Google Scholar
Jellinger, KA. Prevalence of vascular lesions in dementia with Lewy bodies. A postmortem study. J Neural Transm (Vienna) 2003;110:771778.CrossRefGoogle ScholarPubMed
Sibon, I, Fenelon, G, Quinn, NP, Tison, F. Vascular parkinsonism. J Neurol 2004;251:513524.CrossRefGoogle ScholarPubMed
Vlasov, V, Darweesh, SKL, Stricker, BH, et al. Subclinical vascular disease and the risk of parkinsonism: the Rotterdam Study. Parkinsonism Relat Disord 2017;43:2732.CrossRefGoogle ScholarPubMed
Caproni, S, Colosimo, C. Movement disorders and cerebrovascular diseases: from pathophysiology to treatment. Expert Rev Neurother 2017;17:509519.CrossRefGoogle ScholarPubMed
Choi, SM, Kim, BC, Nam, TS, et al., Midbrain atrophy in vascular Parkinsonism. Eur Neurol 2011;65:296301.CrossRefGoogle ScholarPubMed
Durand-Fardel, M. Traite du ramollissement du cerveau. Paris: Bailliere; 1843.Google Scholar
Erkinjuntti, T. Subcortical vascular dementia. Cerebrovasc Dis 2002;13(S2):5860.CrossRefGoogle ScholarPubMed
Winikates, J, Jankovic, J. Clinical correlates of vascular parkinsonism. Arch Neurol 1999;56:98102.CrossRefGoogle ScholarPubMed
Reider-Groswasser, I, Bornstein, NM, Korczyn, AD. Parkinsonism in patients with lacunar infarcts of the basal ganglia. Eur Neurol 1995;35:4649.CrossRefGoogle Scholar
Tohgi, H, Takahashi, S, Abe, T, Utsugisawa, K. Symptomatic characteristics of parkinsonism and the width of substantia nigra pars compacta on MRI according to ischemic changes in the putamen and cerebral white matter: Implications for the diagnosis of vascular parkinsonism. Eur Neurol 2001;46:110.CrossRefGoogle ScholarPubMed
Thanvi, B, Lo, N, Robinson, T. Vascular parkinsonism – an important cause of parkinsonism in older people. Age Ageing 2005;34:114119.CrossRefGoogle ScholarPubMed
Jellinger, KA, Attems, J. Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 2008;115:427436.CrossRefGoogle ScholarPubMed
Shrimanker, I, Tadi, P, Sánchez-Manso, JC. Parkinsonism. In: StatPearls, Treasure Island (FL); 2022. www.ncbi.nlm.nih.gov/books/NBK542224/Google Scholar
Wegner, F. Strecker, K, Schwarz, J, et al., Vascular parkinsonism in a CADASIL case with an intact nigrostriatal dopaminergic system. J Neurol 2007;254,17431745.CrossRefGoogle Scholar
Zhang, S, Wang, Y, Liu, L. et al. Case report of a pathologically confirmed vascular parkinsonism with early cognitive impairment and behavioral disturbance. BMC Neurol 2021;21:15.CrossRefGoogle ScholarPubMed
Caproni, S, Colosimo, C. Movement disorders and cerebrovascular diseases: from pathophysiology to treatment. Expert Rev Neurother 2017;17:509519.CrossRefGoogle ScholarPubMed
Caba, LM, Ferrairó, JIT, Torres, IM, et al. Increased pulsatility index supports diagnosis of vascular parkinsonism versus idiopathic Parkinson’s disease. Neurologia (Engl Ed) 2020;35:563567.CrossRefGoogle ScholarPubMed
Ma, KKY, Lin, S, Mok, VCT. Neuroimaging in vascular parkinsonism. Curr Neurol Neurosci Rep 2019;19:102.CrossRefGoogle ScholarPubMed
Alarcón, F, Zijlmans, JC, Dueñas, G, Cevallos, N. Post-stroke movement disorders: report of 56 patients. J Neurol Neurosurg Psychiatry 2004;75:15681574.CrossRefGoogle ScholarPubMed
Uehara, T, Tabuchi, M, Mori, E. Risk factors for silent cerebral infarcts in subcortical white matter and basal ganglia. Stroke 1999;30:378382.CrossRefGoogle ScholarPubMed
Vizcarra, JA, Lang, AE, Sethi, KD, Espay, AJ. Vascular parkinsonism: deconstructing a syndrome. Mov Disord 2015;30:886894.CrossRefGoogle ScholarPubMed
Mostile, G, Nicoletti, A, Cicero, CE, et al. Magnetic resonance parkinsonism index in progressive supranuclear palsy and vascular parkinsonism. Neurol Sci 2016;37:591595.CrossRefGoogle ScholarPubMed
Rektor, I, Bohnen, NI, Korczyn, AD, et al. An updated diagnostic approach to subtype definition of vascular parkinsonism – recommendations from an expert working group. Parkinsonism Relat Disord 2017;49:916.CrossRefGoogle ScholarPubMed
Mostile, G, Nicoletti, A, Zappia, M. Vascular parkinsonism: still looking for a diagnosis. Front Neurol 2018;9:411.CrossRefGoogle ScholarPubMed
Antonini, A, Vitale, C, Barone, P, et al. The relationship between cerebral vascular disease and parkinsonism: the VADO study. Parkinsonism Relat Disord 2012;18:775780.CrossRefGoogle ScholarPubMed
Miguel-Puga, A, Villafuerte, G, Salas-Pacheco, J, Arias-Carrión, O. Therapeutic interventions for vascular parkinsonism: a systematic review and meta-analysis. Front Neurol 2017;8:481.CrossRefGoogle ScholarPubMed
Contrafatto, D, Mostile, G, Nicoletti, A, et al. Single photon emission computed tomography striatal asymmetry index may predict dopaminergic responsiveness in Parkinson disease. Clin Neuropharmacol 2011;34:7173.CrossRefGoogle ScholarPubMed
Contrafatto, D, Mostile, G, Nicoletti, A, et al. [(123)I]FP-CIT-SPECT asymmetry index to differentiate Parkinson’s disease from vascular parkinsonism. Acta Neurol Scand 2012;126:1216.CrossRefGoogle ScholarPubMed
Lin, W, Zuo, CT, Wu, JJ, et al. Striatal asymmetry index and its correlation with the Hoehn & Yahr stage in Parkinson’s disease. Int J Neurosci 2022;132:165170.CrossRefGoogle ScholarPubMed
Oka, H, Toyoda, C, Yogo, M, Mochio, S. Reduced cardiac 123I-MIBG uptake reflects cardiac sympathetic dysfunction in de novo Parkinson’s disease. J Neural Transm (Vienna) 2011;118:13231327.CrossRefGoogle ScholarPubMed
Quattrone, A, Nicoletti, G, Messina, D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 2008;246:214221.CrossRefGoogle ScholarPubMed
Kim, S, Suh, CH, Shim, WH, Kim, SJ. Diagnostic performance of the magnetic resonance parkinsonism index in differentiating progressive supranuclear palsy from Parkinson’s disease: an updated systematic review and meta-analysis. Diagnostics (Basel) 2022;12(1):12.CrossRefGoogle Scholar
Morelli, M, Arabia, G, Salsone, M, et al. Accuracy of magnetic resonance parkinsonism index for differentiation of progressive supranuclear palsy from probable or possible Parkinson disease. Mov Disord 2011;26:527533.CrossRefGoogle ScholarPubMed
Gallia, GL, Rigamonti, D, Williams, MA. The diagnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neurol 2006;2:375381.CrossRefGoogle ScholarPubMed
Giliberto, C, Mostile, G, Lo Fermo, S, et al. Vascular parkinsonism or idiopathic NPH? New insights from CSF pressure analysis. Neurol Sci 2017;38:22092212.CrossRefGoogle ScholarPubMed
Halperin, JJ, Kurlan, R, Schwalb, JM, et al. Practice guideline: idiopathic normal pressure hydrocephalus: response to shunting and predictors of response: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2015;85:20632071.CrossRefGoogle Scholar
Espay, AJ, Narayan, RK, Duker, AP, Barrett, ET Jr, de Courten-Myers, G. Lower-body parkinsonism: reconsidering the threshold for external lumbar drainage. Nat Clin Pract Neurol 2008;4:5055.CrossRefGoogle ScholarPubMed
Baezner, H, Blahak, C, Poggesi, A, et al. Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 2008;70:935942.CrossRefGoogle ScholarPubMed
Nieuwboer, A, Kwakkel, G, Rochester, L, et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J Neurol Neurosurg Psychiatry 2007;78:134140.CrossRefGoogle ScholarPubMed
Guerini, F, Frisoni, GB, Bellwald, C, et al. Subcortical vascular lesions predict functional recovery after rehabilitation in patients with L-dopa refractory parkinsonism. J Am Geriatr Soc 2004;52:252256.CrossRefGoogle ScholarPubMed
Udagedara, TB, Dhananjalee Alahakoon, AM, Goonaratna, IK. Vascular parkinsonism: a review on management updates. Ann Indian Acad Neurol 2019;22:1722.Google ScholarPubMed
Pickut, B. Vascular parkinsonism. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 363372.Google Scholar

References

Hong, JY, Sunwoo, MK, Oh, JS, et al. Persistent drug-induced parkinsonism in patients with normal dopamine transporter imaging. PLoS One 2016;11(6):e0157410.CrossRefGoogle ScholarPubMed
Oh, YS, Kwon, DY, Kim, JS, et al. Transcranial sonographic findings may predict prognosis of gastroprokinetic drug-induced parkinsonism. Parkinsonism & Related Disorders 2018;46:3640.CrossRefGoogle ScholarPubMed
Ebentheuer, J, Canelo, M, Trautmann, E, et al. Substantia nigra echogenicity in progressive supranuclear palsy. Mov Disord 2010;25:773777.CrossRefGoogle ScholarPubMed
Bouwmans, AE, Vlaar, AM, Mess, WH, et al. Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease: prospective cohort study in 196 patients. BMJ Open 2013;3(4):e002613.CrossRefGoogle ScholarPubMed
Zárate, S, Stevnsner, T, Gredilla, R. Role of estrogen and other sex hormones in brain aging. Neuroprotection and DNA repair. Front Aging Neurosci 2017;9:430.CrossRefGoogle ScholarPubMed
Hong, JY, Sunwoo, MK, Yoon, JH, et al. Rapid drug increase and early onset of levodopa-induced dyskinesia in Parkinson’s disease. PLoS One 2020;15(8):e0237472.CrossRefGoogle ScholarPubMed
Solmi, M, Pigato, G, Kane, JM, et al. Clinical risk factors for the development of tardive dyskinesia. J Neurol Sci 2018;389:2127.CrossRefGoogle ScholarPubMed
Turrone, P, Seeman, MV, Silvestri, S. Estrogen receptor activation and tardive dyskinesia. Can J Psychiatry 2000;45(3):288290.CrossRefGoogle ScholarPubMed
Powers, R, Lei, S, Anandhan, A, et al. Metabolic investigations of the molecular mechanisms associated with Parkinson’s disease. Metabolites 2017;7(2):22.CrossRefGoogle ScholarPubMed
Davis, GC, Williams, AC, Markey, SP, et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979;1:249254.CrossRefGoogle ScholarPubMed
Ziering, A, Lee, J. Piperidine derivatives. V. 1,3-dialkyl-4-aryl-4-acyloxypiperidines. J Org Chem 1947;12(6):911914.CrossRefGoogle Scholar
Bradbury, AJ, Costall, B, Domeney, AM, et al. 1-Methyl-4-phenylpyridine is neurotoxic to the nigrostriatal dopamine pathway. Nature 1986;319(6048):5657.CrossRefGoogle Scholar
Purisai, MG, McCormack, AL, Langston, WJ, et al. α-Synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 2005;20:898906.CrossRefGoogle ScholarPubMed
Millot, M, Saga, Y, Duperrier, S, et al. Prior MDMA administration aggravates MPTP-induced Parkinsonism in macaque monkeys. Neurobiol Dis 2020;134:104643.CrossRefGoogle ScholarPubMed
Kuniyoshi, SM, Jankovic, J. MDMA and parkinsonism. N Engl J Med 2003;349(1):9697.CrossRefGoogle ScholarPubMed
Krasnova, IN, Cadet, JL. Methamphetamine toxicity and messengers of death. Brain Res Rev 2009;60(2):379407.CrossRefGoogle ScholarPubMed
McCann, UD, Kuwabara, H, Kumar, A, et al. Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Gait Posture 2012;36:144148.Google Scholar
Thrash, B, Thiruchelvan, K, Ahuja, M, et al. Methamphetamine-induced neurotoxicity: the road to Parkinson’s disease. Pharmacol Rep 2009;61:966977.CrossRefGoogle ScholarPubMed
Chung, YA, Peterson, BS, Yoon, SJ, et al. In vivo evidence for long-term CNS toxicity, associated with chronic binge use of methamphetamine. Drug Alcohol Depend 2010;111(1–2):155-160.CrossRefGoogle ScholarPubMed
Lappin, J, Darke, S, Farrell, M. Methamphetamine use and future risk for Parkinson’s Disease: evidence and clinical implications. Drug Alcohol Depend 2018;187:134140.CrossRefGoogle ScholarPubMed
Mash, DC, Ouyang, Q, Pablo, J, et al. Cocaine abusers have an overexpression of alpha-synuclein in dopamine neurons. J Neurosci 2003;23(7):25642571.CrossRefGoogle ScholarPubMed
Karley, YL, Eric, R, Ryan, W, et al. Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res 2009;168(3):173180.Google Scholar
Callaghan, RC, Cunningham, JK, Sykes, J, et al. Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 2012;120(1–3):3540.CrossRefGoogle ScholarPubMed
Couper, J. On the effects of black oxide of manganese when inhaled into the lungs. Br Ann Med Pharmacy Vital Stat Gen Sci 1837;1:4142.Google Scholar
Guilarte, TR. Manganese and Parkinson’s disease: a critical review and new findings. Cien Saude Colet 2011;16(11):45494566. Erratum in Cien Saude Colet 2012;17(3):809.CrossRefGoogle ScholarPubMed
Martinez-Finley, EJ, Gavin, CE, Aschner, M, et al. Manganese neurotoxicity and the role of reactive oxygen species. Free Rad Biol Med 2013;62:6575.CrossRefGoogle ScholarPubMed
Ma, RE, Ward, EJ, Yeh, CL, et al. Thalamic GABA levels and occupational manganese neurotoxicity: association with exposure levels and brain MRI. Neurotoxicology 2018;64:3042.CrossRefGoogle ScholarPubMed
Koziorowski, D, Szlufik, S, Mandat, T, et al. Improvement in ephedrone Parkinsonism after global pallidus pars interna deep brain stimulation implantation. Mov Disord Clin Pract 2016;3(2):191193.CrossRefGoogle ScholarPubMed
Bjorklund, G, Stejskal, V, Urbina, M, et al. Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr Med Chem 2018;25(19):21982214.CrossRefGoogle ScholarPubMed
Goldman, SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol 2014;54(1):141164.CrossRefGoogle ScholarPubMed
Wang, A, Costello, S, Cockburn, M, et al. Parkinson’s disease risk from ambient exposure to pesticides. Eur J Epidemiol 2011;26(7):547555.CrossRefGoogle ScholarPubMed
McKnight, S, Hack, N. Toxin-induced parkinsonism. Neurol Clin 2020;38(4):853865.CrossRefGoogle ScholarPubMed
Peng, J, Stevenson, FF, Oo, ML, et al. Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation. Free Rad Biol Med 2009;46:312320.CrossRefGoogle ScholarPubMed
Terron, A, Bal-Price, A, Paini, A, et al. An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Arch Toxicol 2018;92:4182.CrossRefGoogle ScholarPubMed
Kitazawa, M, Anantharam, V, Kanthasamy, AG. Dieldrin induces apoptosis by promoting caspase-3-dependent proteolytic cleavage of protein kinase Cdelta in dopaminergic cells: relevance to oxidative stress and dopaminergic degeneration. Neuroscience 2003;119:945964.CrossRefGoogle ScholarPubMed
Torres-Altoro, MI, Mathur, BN, Drerup, JM, et al. Organophosphates dysregulate dopamine signaling, glutamatergic neurotransmission, and induce neuronal injury markers in striatum. J Neurochem 2011;119(2):303313.CrossRefGoogle ScholarPubMed
Casida, JE, Gammon, DW, Glickman, AH, et al. Mechanisms of selective action of pyrethroid insecticides. Annu Rev Pharmacol Toxicol 1983;23:413438.CrossRefGoogle ScholarPubMed
Costa, LG. The neurotoxicity of organochlorine and pyrethroid pesticides. Handb Clin Neurol Occupat Neurol 2015;131:135148.CrossRefGoogle ScholarPubMed
Eriguchi, M, Iida, K, Ikeda, S, et al. Parkinsonism relating to intoxication with glyphosate: a case report. Intern Med 2019;58(13):19351938.CrossRefGoogle Scholar
Zhang, D, Lee, B, Nutter, A, et al. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. J Neurochem 2015;133(6):898908.CrossRefGoogle ScholarPubMed
Di Filippo, M, Tambasco, N, Muzi, G, et al. Parkinsonism and cognitive impairment following chronic exposure to potassium cyanide. Mov Disord 2008;23(3):468470.CrossRefGoogle ScholarPubMed
Pintér, D, Kovács, M, Harmat, M, et al. Trimetazidine and parkinsonism: a prospective study. Parkinsonism Relat Disord 2019;62:117121.CrossRefGoogle ScholarPubMed
Hirano, A, Kurland, LT, Krooth, RS, et al. Parkinsonism–dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain 1961;84:642661.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×