Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:25:09.392Z Has data issue: false hasContentIssue false

Chapter 26 - Deep Brain Stimulation in Parkinson’s Disease

from Section 2: - Hypokinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Deep brain stimulation (DBS) is one of the most effective tools in the treatment of Parkinson’s disease. Being a last-resort therapy for many years, it recently advanced to a valuable option in moderate and even earlier stages. Different nuclei of the basal ganglia have been successfully targeted with various effects, risks and stimulation-induced side effects. Advances in implantation technique and accuracy, neuroimaging and implant technology helped make DBS a mostly safe and successful procedure, although the full potential of recent technical advantages such as directional stimulation, brain sensing or remote programming have yet to be fully explored.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Laitinen, LV, Bergenheim, AT, Hariz, MI. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992;76(1):5361.CrossRefGoogle ScholarPubMed
Benabid, AL, Pollak, P, Louveau, A, Henry, S, de Rougemont, J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 1987;50(1–6):344346.Google ScholarPubMed
Hariz, MI, Blomstedt, P, Zrinzo, L. Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg Focus 2010;29(2):E1.CrossRefGoogle ScholarPubMed
Bekhtereva, NP, Bondarchuk, AN, Smirnov, VM, Meliucheva, LA. [Therapeutic electric stimulation of deep brain structures]. Vopr Neirokhir 1972;36(1):712.Google ScholarPubMed
Shealy, CN, Mortimer, JT, Reswick, JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth Analg 1967;46(4):489491.CrossRefGoogle ScholarPubMed
Cotzias, GC. L-Dopa for Parkinsonism. N Engl J Med 1968;278(11):630.Google ScholarPubMed
Harary, M, Segar, DJ, Hayes, MT, Cosgrove, GR. Unilateral thalamic deep brain stimulation versus focused ultrasound thalamotomy for essential tremor. World Neurosurg 2019;126:e144–152.CrossRefGoogle ScholarPubMed
Deuschl, G, Schade-Brittinger, C, Krack, P, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006;355(9):896908.CrossRefGoogle ScholarPubMed
Weaver, FM, Follett, KA, Stern, M, et al. Randomized trial of deep brain stimulation for Parkinson disease: thirty-six-month outcomes. Neurology 2012;79(1):5565.CrossRefGoogle ScholarPubMed
Follett, KA, Weaver, FM, Stern, M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 2010;362(22):20772091.CrossRefGoogle ScholarPubMed
Ramirez-Zamora, A, Ostrem, JL. Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease: a review. JAMA Neurol 2018;75(3):367372.CrossRefGoogle ScholarPubMed
Odekerken, VJJ, van Laar, T, Staal, MJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 2013;12(1):3744.CrossRefGoogle ScholarPubMed
Stefani, A, Lozano, AM, Peppe, A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain J Neurol 2007;130(Pt 6):15961607.CrossRefGoogle ScholarPubMed
Garcia-Rill, E, Saper, CB, Rye, DB, et al. Focus on the pedunculopontine nucleus. Consensus review from the May 2018 brainstem society meeting in Washington, DC, USA. Clin Neurophysiol 2019;130(6):925940.CrossRefGoogle ScholarPubMed
Fasano, A, Daniele, A, Albanese, A. Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 2012;11(5):429442.CrossRefGoogle ScholarPubMed
Okun, MS, Fernandez, HH, Wu, SS, et al. Cognition and mood in Parkinson’s disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 2009;65(5):586595.CrossRefGoogle ScholarPubMed
Anderson, VC, Burchiel, KJ, Hogarth, P, Favre, J, Hammerstad, JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol 2005;62(4):554560.CrossRefGoogle ScholarPubMed
Weaver, FM, Follett, K, Stern, M, et al. Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 2009;301(1):6373.CrossRefGoogle ScholarPubMed
Odekerken, VJJ, Boel, JA, Schmand, BA, et al. GPi vs STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology 2016;86(8):755761.CrossRefGoogle ScholarPubMed
Lang, AE, Houeto, J-L, Krack, P, et al. Deep brain stimulation: preoperative issues. Mov Disord 2006;21(Suppl 14):S171196.CrossRefGoogle ScholarPubMed
Azevedo, P, Aquino, CC, Fasano, A. Surgical management of Parkinson’s disease in the elderly. Mov Disord Clin Pract 2021;8(4):500509.CrossRefGoogle ScholarPubMed
Mitchell, KT, Ostrem, JL. Surgical treatment of Parkinson disease. Neurol Clin 2020;38(2):293307.CrossRefGoogle ScholarPubMed
Krishna, V, Sammartino, F, Rezai, A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol 2018;75(2):246254.CrossRefGoogle ScholarPubMed
Cilia, R, Akpalu, A, Sarfo, FS, et al. The modern pre-levodopa era of Parkinson’s disease: insights into motor complications from sub-Saharan Africa. Brain J Neurol 2014;137(Pt 10):27312742.CrossRefGoogle ScholarPubMed
de Bie, RMA, Clarke, CE, Espay, AJ, Fox, SH, Lang, AE. Initiation of pharmacological therapy in Parkinson’s disease: when, why, and how. Lancet Neurol 2020;19(5):452461.CrossRefGoogle Scholar
Schuepbach, WMM, Rau, J, Knudsen, K, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 2013;368(7):610622.CrossRefGoogle ScholarPubMed
Fasano, A, Bhowmick, SS. Reader response: deep brain stimulation in early-stage Parkinson disease: five-year outcomes. Neurology 2021;96(12):590591.CrossRefGoogle ScholarPubMed
Boutet, A, Loh, A, Chow, CT, et al. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021;135(5):14451458.CrossRefGoogle ScholarPubMed
Patriat, R, Cooper, SE, Duchin, Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. NeuroImage 2018;178:198209.CrossRefGoogle ScholarPubMed
Engelhardt, J, Caire, F, Damon-Perrière, N, et al. A phase 2 randomized trial of asleep versus awake subthalamic nucleus deep brain stimulation for Parkinson’s disease. Stereotact Funct Neurosurg 2021;99(3):230240.CrossRefGoogle ScholarPubMed
Lafreniere-Roula, M, Hutchison, WD, Lozano, AM, Hodaie, M, Dostrovsky, JO. Microstimulation-induced inhibition as a tool to aid targeting the ventral border of the subthalamic nucleus. J Neurosurg 2009;111(4):724728.CrossRefGoogle ScholarPubMed
Rothlind, JC, York, MK, Carlson, K, et al. Neuropsychological changes following deep brain stimulation surgery for Parkinson’s disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy. J Neurol Neurosurg Psychiatry 2015;86(6):622629.CrossRefGoogle ScholarPubMed
Nutt, JG, Bloem, BR, Giladi, N, et al. Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 2011;10(8):734744.CrossRefGoogle ScholarPubMed
Weiss, D, Walach, M, Meisner, C, et al. Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial. Brain J Neurol 2013;136(Pt 7):20982108.CrossRefGoogle ScholarPubMed
Baumann-Vogel, H, Imbach, LL, Sürücü, O, et al. The impact of subthalamic deep brain stimulation on sleep–wake behavior: a prospective electrophysiological study in 50 Parkinson patients. Sleep 2017;40(5). Available from: https://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsx033Google ScholarPubMed
Volkmann, J, Moro, E, Pahwa, R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord 2006;21(Suppl 14):S284289.CrossRefGoogle ScholarPubMed
Reich, MM, Steigerwald, F, Sawalhe, AD, et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol 2015;2(4):427432.CrossRefGoogle ScholarPubMed
Soh, D, Lozano, AM, Fasano, A. Hybrid deep brain stimulation system to manage stimulation-induced side effects in essential tremor patients. Parkinsonism Relat Disord 2019;58:8586.CrossRefGoogle ScholarPubMed
Moreau, C, Defebvre, L, Destée, A, et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology 2008;71(2):8084.CrossRefGoogle ScholarPubMed
Jia, F, Guo, Y, Wan, S, et al. Variable frequency stimulation of subthalamic nucleus for freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord 2015;21(12):14711472.CrossRefGoogle ScholarPubMed
Harmsen, IE, Lee, DJ, Dallapiazza, RF, et al. Ultra-high-frequency deep brain stimulation at 10,000 Hz improves motor function. Mov Disord 2019;34(1):146148.CrossRefGoogle ScholarPubMed
Miocinovic, S, Khemani, P, Whiddon, R, et al. Outcomes, management, and potential mechanisms of interleaving deep brain stimulation settings. Parkinsonism Relat Disord 2014;20(12):14341437.CrossRefGoogle ScholarPubMed
Zhang, S, Zhou, P, Jiang, S, Wang, W, Li, P. Interleaving subthalamic nucleus deep brain stimulation to avoid side effects while achieving satisfactory motor benefits in Parkinson disease: a report of 12 cases. Medicine (Baltimore) 2016;95(49):e5575.CrossRefGoogle ScholarPubMed
Kern, DS, Picillo, M, Thompson, JA, et al. Interleaving stimulation in Parkinson’s disease, tremor, and dystonia. Stereotact Funct Neurosurg 2018;96(6):379391.CrossRefGoogle ScholarPubMed
Butson, CR, McIntyre, CC. Current steering to control the volume of tissue activated during deep brain stimulation. Brain Stimulat 2008;1(1):715.CrossRefGoogle ScholarPubMed
Zhang, S, Silburn, P, Pouratian, N, et al. Comparing current steering technologies for directional deep brain stimulation using a computational model that incorporates heterogeneous tissue properties. Neuromodulation 2020;23(4):469477.CrossRefGoogle ScholarPubMed
Chaturvedi, A, Foutz, TJ, McIntyre, CC. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region. Brain Stimulat 2012;5(3):369377.CrossRefGoogle ScholarPubMed
Pavese, N, Tai, YF, Yousif, N, Nandi, D, Bain, PG. Traditional trial and error versus neuroanatomic 3-dimensional image software-assisted deep brain stimulation programming in patients with Parkinson disease. World Neurosurg 2020;134:e98102.CrossRefGoogle ScholarPubMed
BeMent, SL, Ranck, JB. A quantitative study of electrical stimulation of central myelinated fibers. Exp Neurol 1969;24(2):147170.CrossRefGoogle ScholarPubMed
Anderson, DN, Duffley, G, Vorwerk, J, Dorval, AD, Butson, CR. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural Eng 2019;16(1):016026.CrossRefGoogle ScholarPubMed
Kirsch, AD, Hassin-Baer, S, Matthies, C, Volkmann, J, Steigerwald, F. Anodic versus cathodic neurostimulation of the subthalamic nucleus: a randomized-controlled study of acute clinical effects. Parkinsonism Relat Disord 2018;55:6167.CrossRefGoogle ScholarPubMed
Keane, M, Deyo, S, Abosch, A, Bajwa, JA, Johnson, MD. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor. J Neural Eng 2012;9(4):046005.CrossRefGoogle ScholarPubMed
Martens, HCF, Toader, E, Decré, MMJ, et al. Spatial steering of deep brain stimulation volumes using a novel lead design. Clin Neurophysiol 2011;122(3):558566.CrossRefGoogle ScholarPubMed
Teplitzky, BA, Zitella, LM, Xiao, Y, Johnson, MD. Model-based comparison of deep brain stimulation array functionality with varying number of radial electrodes and machine learning feature sets. Front Comput Neurosci 2016;10:58.CrossRefGoogle ScholarPubMed
Dembek, TA, Reker, P, Visser-Vandewalle, V, et al. Directional DBS increases side-effect thresholds – a prospective, double-blind trial. Mov Disord 2017;32(10):13801388.CrossRefGoogle ScholarPubMed
Pollo, C, Kaelin-Lang, A, Oertel, MF, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain 2014;137(7):20152026.CrossRefGoogle ScholarPubMed
Steigerwald, F, Müller, L, Johannes, S, Matthies, C, Volkmann, J. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord 2016;31(8):12401243.CrossRefGoogle ScholarPubMed
Contarino, MF, Bour, LJ, Verhagen, R, et al. Directional steering: a novel approach to deep brain stimulation. Neurology 2014;83(13):11631169.CrossRefGoogle ScholarPubMed
Schnitzler, A, Mir, P, Brodsky, MA, et al. Directional deep brain stimulation for Parkinson’s disease: results of an international crossover study with randomized, double-blind primary endpoint. Neuromodulation 2022;25(6):817828.CrossRefGoogle ScholarPubMed
Goyal, A, Goetz, S, Stanslaski, S, et al. The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens Bioelectron 2021;176:112888.CrossRefGoogle ScholarPubMed
Holewijn, RA, Verbaan, D, van den Munckhof, PM, et al. General anesthesia vs local anesthesia in microelectrode recording-guided deep-brain stimulation for Parkinson disease: the GALAXY randomized clinical trial. JAMA Neurol 2021;78(10):12121219.CrossRefGoogle ScholarPubMed
Krauss, P, Oertel, MF, Baumann-Vogel, H, et al. Intraoperative neurophysiologic assessment in deep brain stimulation surgery and its impact on lead placement. J Neurol Surg A Cent Eur Neurosurg 2021;82(1):1826.Google ScholarPubMed
Fasano, A, Appel-Cresswell, S, Jog, M, et al. Medical management of Parkinson’s disease after initiation of deep brain stimulation. Can J Neurol Sci 2016;43(5):626634.CrossRefGoogle ScholarPubMed
Picillo, M, Phokaewvarangkul, O, Poon, Y-Y, et al. Levodopa versus dopamine agonist after subthalamic stimulation in Parkinson’s disease. Mov Disord 2021;36(3):672680.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×