Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:25:32.080Z Has data issue: false hasContentIssue false

Chapter 43 - Chorea

from Section 3: - Hyperkinetic Movement Disorders

Published online by Cambridge University Press:  07 January 2025

Erik Ch. Wolters
Affiliation:
Universität Zürich
Christian R. Baumann
Affiliation:
Universität Zürich
Get access

Summary

Chorea is a state of excessive, spontaneous movements, irregularly timed, non-repetitive, randomly distributed, and abrupt in character. The severity of movements may vary from restlessness with mild intermittent exaggeration of gesture and expression, fidgeting movements of the hands, and dance-like gait to a continuous flow of disabling violent movements. The pathogenesis of chorea is mainly related to striatal dysfunction. The classification of the causes of choreatic dyskinesias is complex and involves many clinical entities, both hereditary and acquired. The severity of chorea can be reduced by antipsychotics, tetrabenazine or benzodiazepines.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albin, RL, Young, AB, Penney, JB. The functional anatomy of basal ganglia. Trends Neurosci 1989;12:366375.CrossRefGoogle ScholarPubMed
Obeso, JA, Rodríguez-Oroz, MC, Benitez-Temino, B, et al. Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 2008;23(Suppl 3):548559.CrossRefGoogle ScholarPubMed
Burgunder, JM. Recent advances in the management of choreas. Ther Adv Neurol Disord 2013;6:171127.CrossRefGoogle ScholarPubMed
Walker, RH. Differential diagnosis of chorea. Curr Neurol Neurosci Rep 2011;11:385395.CrossRefGoogle ScholarPubMed
Pringsheim, T, Wiltshire, K, Day, L, et al. The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 2012;27:10831091.CrossRefGoogle ScholarPubMed
The Huntington’s Disease Colaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;2:971983.Google Scholar
Langbehn, DR, Hayden, MR, Paulsen, JS; PREDICT-HD Investigators of the Huntington Study Group. CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches. Am J Med Genet B Neuropsychiatr Genet 2010;153B:397408.CrossRefGoogle ScholarPubMed
Semaka, A, Collins, JA, Hayden, MR. Unstable familial transmissions of Huntington disease alleles with 27–35 CAG repeats (intermediate alleles). Am J Med Genet B Neuropsychiatr Genet 2010;153B:314320.CrossRefGoogle ScholarPubMed
Andrew, SE, Goldberg, YP, Kremer, B, et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nature Genet 1993;4:398403.CrossRefGoogle ScholarPubMed
Zeitlin, S, Liu, JP, Chapman, DL, Papaioannou, VE, Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 1995;11:155163.CrossRefGoogle ScholarPubMed
Zuccato, C, Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol 2009;5:311322.CrossRefGoogle ScholarPubMed
Borrell-Pagès, M, Zala, D, Humbert, S, Saudou, F. Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 2006;63:26422660.CrossRefGoogle ScholarPubMed
Gil, JM, Rego, AC. Mechanisms of neurodegeneration in Huntington’s disease. Eur J Neurosci 2008;27:28032820.CrossRefGoogle ScholarPubMed
Lehman, NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol 2009;118:329347.CrossRefGoogle ScholarPubMed
Saudou, F, Finkbeiner, S, Devys, D, Greenberg, ME. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 1998;95:5566.CrossRefGoogle Scholar
Vonsattel, JP, Meyers, RH, Stevens, TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol and Exp Neurol 1985;44:559577.CrossRefGoogle ScholarPubMed
Dash, D, Mestre, TA. Therapeutic update on Huntington’s disease: symptomatic treatments and emerging disease-modifying therapies. Neurotherapeutics 2020;17(4):16451659.CrossRefGoogle ScholarPubMed
Tabrizi, SJ, Leavitt, BR, Landwehrmeyer, GB, et al. Targeting huntingtin expression in patients with Huntington’s disease. N Engl J Med 2019;380(24):23072316.CrossRefGoogle ScholarPubMed
Paulsen, JS, Ready, RE, Hamilton, JM, et al. Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 2001;71:310314.CrossRefGoogle ScholarPubMed
Jensen, P, Fenger, K, Bolwig, T, Sørensen, SA. Crime in Huntington’s disease: a study of registered offences among patients, relatives, and controls. J Neurol Neurosurg Psychiatry 1998;65:467471.CrossRefGoogle ScholarPubMed
Paulsen, JS.Cognitive impairment in Huntington disease: diagnosis and treatment. Curr Neurol Neurosci Rep 2011;11:474483.CrossRefGoogle ScholarPubMed
Bilney, B, Morris, ME, Perry, A. Effectiveness of physiotherapy, occupational therapy, and speech pathology for people with Huntington’s disease: a systematic review. Neurorehabil Neural Repair 2003;17:1224.CrossRefGoogle ScholarPubMed
Trejo, A, Boll, MC, Alonso, ME, et al. Use of oral nutritional supplements in patients with Huntington’s disease. Nutrition 2005;21:889894.CrossRefGoogle ScholarPubMed
Rasmussen, A, Macias, R, Yescas, P, et al. Huntington disease in children: genotype–phenotype correlation. Neuropediatrics 2000;31:190194.CrossRefGoogle ScholarPubMed
Ribaï, P, Nguyen, K, Hahn-Barma, V, et al. Psychiatric and cognitive difficulties as indicators of juvenile Huntington disease onset in 29 patients. Arch Neurol 2007;64:813819.CrossRefGoogle ScholarPubMed
Wild, EJ, Mudanohwo, EE, Sweeney, MG, et al. Huntington’s disease phenocopies are clinically and genetically heterogeneous Mov Disord 2008;23:716720.CrossRefGoogle ScholarPubMed
Hensman Moss, DJ, Poulter, M, Beck, J, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 2014;82(4):292299.CrossRefGoogle ScholarPubMed
Schneider, SA, van de Warrenburg, BP, Hughes, TD, et al. Phenotypic homogeneity of the Huntington disease-like presentation in a SCA17 family. Neurology 2006;67:17011703.CrossRefGoogle Scholar
Tsuji, S. Dentatorubral–pallidoluysian atrophy: clinical aspects and molecular genetics. Adv Neurol 2002;89:231239.Google ScholarPubMed
Wardle, M, Morris, H, Robertson, N. Clinical and genetic characteristics of non-Asian dentatorubral–pallidoluysian atrophy: a systematic review. Mov Disord 2009;24:16361640.CrossRefGoogle ScholarPubMed
Rubio, JP, Danek, A, Stone, C, et al. Chorea–acanthocytosis: genetic linkage to chromosome 9q21. Am J Hum Genet 1997;61:899908.CrossRefGoogle ScholarPubMed
Danek, A, Rubio, JP, Rampoldi, L, et al. McLeod neuroacanthocytosis: genotype and phenotype. Ann Neurol 2001;50:755764.CrossRefGoogle ScholarPubMed
Curtis, AR, Fey, C, Morris, CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001;28:350354.CrossRefGoogle ScholarPubMed
Filla, A, De Michele, G, Coppola, G, et al. Accuracy of clinical diagnostic criteria for Friedreich’s ataxia. Mov Disord 2000;15:12551258.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Bhidayasiri, R, Perlman, SL, Pulst, SM, Geschwind, DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol 2005;62:18651869.CrossRefGoogle ScholarPubMed
Hartig, MB, Prokisch, H, Meitinger, T, Klopstock, T. Pantothenate kinase-associated neurodegeneration. Curr Drug Targets 2012;13:11821189.CrossRefGoogle ScholarPubMed
Rosencrantz, R., Schilsky, M. Wilson disease: pathogenesis and clinical considerations in diagnosis and treatment. Semin Liver Dis 2011;31:245259.CrossRefGoogle ScholarPubMed
Perlman, S, Becker-Catania, S, Gatti, RA. Ataxia–telangiectasia: diagnosis and treatment. Semin Pediatr Neurol 2003;10:173182.CrossRefGoogle ScholarPubMed
Ber, I, Brice, A, Durr, A. New autosomal recessive cerebellar ataxias with oculomotor apraxia. Curr Neurol Neurosci Rep 2005;5:411417.CrossRefGoogle ScholarPubMed
Kleiner-Fisman, G. Benign hereditary chorea. Handb Clin Neurol 2011;100:199212.CrossRefGoogle ScholarPubMed
Unterberger, I, Trinka, E. Diagnosis and treatment of paroxysmal dyskinesias revisited. Ther Adv Neurol Disord 2008;1:411.CrossRefGoogle ScholarPubMed
Erro, R, Bhatia, KP. Unravelling of the paroxysmal dyskinesias. J Neurol Neurosurg Psychiatry 2019;90(2):227234.CrossRefGoogle ScholarPubMed
Carecchio, M, Mencacci, NE, Iodice, A, et al. ADCY5-related movement disorders: frequency, disease course and phenotypic variability in a cohort of pediatric patients. Parkinsonism Relat Disord 2017;41:37.CrossRefGoogle Scholar
Mencacci, NE, Kamsteeg, EJ, Nakashima, K, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet 2016;98(4):763771.CrossRefGoogle ScholarPubMed
Walker, KG. An update on the treatment of Sydenham’s chorea: the evidence for established and evolving interventions. Ther Adv Neurol Disord 2010;3:301309.CrossRefGoogle ScholarPubMed
Church, AJ, Cardoso, F, Dale, RC, et al. Anti-basal ganglia antibodies in acute and persistent Sydenham’s chorea. Neurology 2002:59:227231.CrossRefGoogle ScholarPubMed
Baizabal-Carvallo, JF, Jankovic, J. Movement disorders in autoimmune diseases. Mov Disord 2012;27:935946.CrossRefGoogle ScholarPubMed
Gövert, F, Leypoldt, F, Junker, R, et al. Antibody-related movement disorders – a comprehensive review of phenotype–autoantibody correlations and a guide to testing. Neurol Res Pract 2020;2:6.CrossRefGoogle Scholar
Tibben, A. Predictive testing for Huntington’s disease. Brain Res Bull 2007;30:165171.CrossRefGoogle Scholar
International Huntington Association (IHA) and the World Federation of Neurology (WFN) Research Group on Huntington’s Chorea. Guidelines for the molecular genetics predictive test in Huntington’s disease. Neurology 1994;44:15331536.CrossRefGoogle Scholar
Van Rij, MC, De Rademaeker, M, Moutou, C, et al. Preimplantation genetic diagnosis (PGD) for Huntington’s disease: the experience of three European centres. Eur J Hum Genet 2012;20:368375.CrossRefGoogle ScholarPubMed
Bonelli, RM, Wenning, GK Pharmacological management of Huntington’s disease: an evidence-based review. Curr Pharm 2006;12:27012720.CrossRefGoogle ScholarPubMed
Mestre, T, Ferreira, J, Coelho, MM, et al. Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev 2009;(3):CD006456.CrossRefGoogle Scholar
Burgunder, JM, Guttman, M, Perlman, S, et al. An international survey-based algorithm for the pharmacological treatment of chorea in Huntington’s disease. PLoS Curr 2011;3:RRN1260.CrossRefGoogle ScholarPubMed
Biolsi, B, Cif, L, Fertit, HE, et al. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J Neurosurg 2008;109:130132.CrossRefGoogle ScholarPubMed
Roth, J. Chorea. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press; 2014: 535556.Google Scholar
de Letter, M-ACJ, Wolters, ECh. Movement disorders in psychiatry. In: Wolters, ECh, Baumann, CR, eds. Parkinson Disease and Other Movement Disorders. Amsterdam: VU University Press (Publ) 2014:691704.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Chorea
  • Edited by Erik Ch. Wolters, Universität Zürich, Christian R. Baumann, Universität Zürich
  • Book: International Compendium of Movement Disorders
  • Online publication: 07 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781108989855.045
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Chorea
  • Edited by Erik Ch. Wolters, Universität Zürich, Christian R. Baumann, Universität Zürich
  • Book: International Compendium of Movement Disorders
  • Online publication: 07 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781108989855.045
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Chorea
  • Edited by Erik Ch. Wolters, Universität Zürich, Christian R. Baumann, Universität Zürich
  • Book: International Compendium of Movement Disorders
  • Online publication: 07 January 2025
  • Chapter DOI: https://doi.org/10.1017/9781108989855.045
Available formats
×