Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-01T17:46:35.977Z Has data issue: false hasContentIssue false

Chapter 9 - The Restructuring of Levant Reefs by Aliens, Ocean Warming and Overfishing

Implications for Species Interactions and Ecosystem Functions

Published online by Cambridge University Press:  07 September 2019

Stephen J. Hawkins
Affiliation:
Marine Biological Association of the United Kingdom, Plymouth
Katrin Bohn
Affiliation:
Natural England
Louise B. Firth
Affiliation:
University of Plymouth
Gray A. Williams
Affiliation:
The University of Hong Kong
Get access

Summary

The Levantine Basin at the south-eastern corner of the Mediterranean represents the trailing edge of the distribution of native Atlanto-Mediterranean species, where they are exposed to the most extreme temperature and salinity conditions. The region is also fast warming and exposed to a flood of alien species, mostly thermophilic ones from the Indo-Pacific. The Levant coast also hosts a unique, fragile and understudied rocky intertidal ecosystem – vermetid reefs. Anecdotal historical data and observations, and recent extensive intertidal and shallow subtidal community surveys on the Israeli coast (including a marine reserve) indicate that Levant reefs are (1) overfished; (2) highly invaded by thermophilic alien species, some (rabbitfish) highly destructive; (3) dominated by turf barrens (canopy-forming brown algae are rare, probably overgrazed by rabbitfish) and increasing patches of alien algae and (4) suffering the loss of many native species (e.g., urchins subtidally and the main reef-building vermetid gastropod, Dendropoma petraeum, intertidally). Laboratory work has shown that many native species that are still abundant are likely to disappear under increasing warming, while aliens are much more resistant. Mesocosm experiments demonstrated that, under both warming and acidification, the community structure will further shift, and whole community functions will transform from autotrophic to heterotrophic.

Type
Chapter
Information
Interactions in the Marine Benthos
Global Patterns and Processes
, pp. 214 - 236
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achituv, Y. and Safriel, U. (1980). Euraphia depressa (Poli)(Crustacea, Cirripedia), a recent Mediterranean colonizer of the Suez Canal. Bulletin Marine Sciences, 30, 724–6.Google Scholar
Albins, M. A. (2015). Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Marine Ecology Progress Series, 522, 231–43.Google Scholar
Badreddine, A., Milazzo, M., Saab, M. A. A., Bitar, G. and Mangialajo, L. (2019). Threatened biogenic formations of the Mediterranean: current status and assessment of the vermetid reefs along the Lebanese coastline (Levant basin). Ocean & Coastal Management, 169, 137146.Google Scholar
Bannister, J. (1974). The respiration in air and in water of the limpets Patella caerulea (L.) and Patella lusitanica (Gmelin). Comparative Biochemistry and Physiology Part A: Physiology, 49, 407–11.Google ScholarPubMed
Bariche, M., Torres, M. and Azzurro, E. (2013). The presence of the invasive Lionfish Pterois miles in the Mediterranean Sea. Mediterranean Marine Science, 14, 292–4.CrossRefGoogle Scholar
Bates, A. E., Pecl, G. T., Frusher, F. et al. (2014). Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 26, 2738.CrossRefGoogle Scholar
Bellwood, D. R. and Goatley, C. H. R. (2017). Can biological invasions save Caribbean coral reefs? Current Biology, 27, R13–14.CrossRefGoogle ScholarPubMed
Ben Eliahu, M. N. (1975). Polychaete cryptofauna from rims of similar intertidal vermetid reefs on Mediterranean coast of Israel and in gulf of Elat – Nereidae (polychaeta-errantia). Israel Journal of Zoology, 24, 177–91.Google Scholar
Ben-Tuvia, A. (1964). Two Siganid Fishes of Red Sea Origin in the Eastern Mediterranean. In Bulletin. Sea Fisheries Research Station (Haifa). Ministry of Agriculture, Department of Fisheries, Sea Fisheries Research Station, Haifa, pp. 19.Google Scholar
Benedetti-Cecchi, L., Pannacciulli, F., Bulleri, F. et al. (2001). Predicting the consequences of anthropogenic disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine Ecology-Progress Series, 214, 137–50.CrossRefGoogle Scholar
Bianchi, C. N. (2007). Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia, 580, 721.CrossRefGoogle Scholar
Bianchi, C. N., Corsini-Foka, M., Morri, C. and Zenetos, A. (2014). Thirty years after: dramatic change in the coastal marine ecosystems of Kos Island (Greece), 1981–2013. Mediterranean Marine Science, 15, 482–97.CrossRefGoogle Scholar
Blanfuné, A., Boudouresque, C.-F., Verlaque, M. and Thibaut, T. (2016). The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuarine, Coastal and Shelf Science, 181, 196208.CrossRefGoogle Scholar
Bricker, O. P. (1971). Introduction: Beachrock and Intertidal Cement. In Bricker, O. P., ed. Carbonate Cements. John Hopkins Press, Baltimore, pp 13.Google Scholar
Bulleri, F., Balata, D., Bertocci, I., Tamburello, L. and Benedetti-Cecchi, L. (2010). The seaweed Caulerpa racemosa on Mediterranean rocky reefs: from passenger to driver of ecological change. Ecology, 91, 2205–12.Google Scholar
Bulleri, F., Benedetti-Cecchi, L., Acunto, S., Cinelli, F. and Hawkins, S. J. (2002). The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. Journal of Experimental Marine Biology and Ecology, 267, 89106.CrossRefGoogle Scholar
Calvo, M., Templado, J., Oliverio, M. and Machordom, A. (2009). Hidden Mediterranean biodiversity: molecular evidence for a cryptic species complex within the reef building vermetid gastropod Dendropoma petraeum (Mollusca: Caenogastropoda). Biological Journal of the Linnean Society, 96, 898912.CrossRefGoogle Scholar
Calvo, M., Templado, J. and Penchaszadeh, P. E. 1998. Reproductive biology of the gregarious Mediterranean vermetid gastropod Dendropoma petraeum. Journal of the Marine Biological Association of the United Kingdom, 78, 525–49.CrossRefGoogle Scholar
Castellari, S., Pinardi, N. and Leaman, K. (2000). Simulation of water mass formation processes in the Mediterranean Sea: influence of the time frequency of the atmospheric forcing. Journal of Geophysical Research: Oceans, 105, 24157–81.CrossRefGoogle Scholar
Cevik, C., Cavas, L., Mavruk, S., Derici, O. B. and Cevik, F. (2012). Macrobenthic assemblages of newly introduced Caulerpa taxifolia from the Eastern Mediterranean coast of Turkey. Biological Invasions, 14, 499501.CrossRefGoogle Scholar
Chemello, R. C. R. and Silenzi, S. (2011). Vermetid reefs in the Mediterranean Sea as archives of sea-level and surface temperature changes. Chemistry and Ecology, 27, 121–7.Google Scholar
Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. and Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024–6.Google Scholar
Chintiroglou, C., Antoniadou, C., Vafidis, D. and Koutsoubas, D. (2005). A review on the biodiversity of hard substrate invertebrate communities in the Aegean Sea. Mediterranean Marine Science, 6, 5162.Google Scholar
Coles, S. L. and Fadlallah, Y. H. (1991). Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs, 9, 231–7.Google Scholar
Coll, M., Piroddi, C., Steenbeek, J. et al. 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE, 5, https://doi.org/10.1371/journal.pone.0011842.CrossRefGoogle ScholarPubMed
Connell, J. H. (1961). The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stelattus. Ecology, 42, 710–23.CrossRefGoogle Scholar
Connell, J. H. (1972). Community interactions on marine rocky intertidal shores. Annual Review of Ecological Systems, 3, 169–92.CrossRefGoogle Scholar
Connell, S. D., Doubleday, Z. A., Hamlyn, S. B. et al. (2017). How ocean acidification can benefit calcifiers. Current Biology, 27, R95–6.CrossRefGoogle ScholarPubMed
Connolly, S. R., Menge, B. A. and Roughgarden, J. (2001). A latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology, 82, 1799–813.CrossRefGoogle Scholar
De Raedemaecker, F., Miliou, A. and Perkins, R. (2010). Fish community structure on littoral rocky shores in the Eastern Aegean Sea: effects of exposure and substratum. Estuarine Coastal and Shelf Science, 90, 3544.CrossRefGoogle Scholar
Duarte, C. M., Conley, D. J., Carstensen, J. and Sánchez-Camacho, M. (2009). Return to Neverland: shifting baselines affect eutrophication restoration targets. Estuaries and Coasts, 32, 2936.CrossRefGoogle Scholar
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. and Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961–8.CrossRefGoogle Scholar
Edelist, D., Rilov, G., Golani, D., Carleton, J. and Spanier, E. (2013a). Restructuring the Sea: profound shifts in the world’s most invaded marine ecosystem. Diversity and Distributions, 19, 6977.CrossRefGoogle Scholar
Edelist, D., Scheinin, A., Sonin, O. et al. (2013b). Israel: reconstructed estimates of total fisheries removals in the Mediterranean, 1950–2010. Acta Adriatica, 54, 253–63.Google Scholar
Edelstein, T. (1960). The Biology and Ecology of Deep Sea Algae of the Haifa Bay Area. The Hebrew University of Jerusalem, Jerusalem.Google Scholar
Einav, R. and Beer, S. (1993). Photosynthesis in air and in water of Acanthophora najadiformis growing within a narrow zone of the intertidal. Marine Biology, 117, 133–8.Google Scholar
Einav, R. and Israel, A. (2007). Seaweeds on the Abrasion Platforms of the Intertidal Zone of Eastern Mediterranean Shores. In Algae and Cyanobacteria in Extreme Environments. Springer, Berlin, pp. 193207.Google Scholar
Einav, R. and Israel, A. (2008). Checklist of seaweeds from the Israeli Mediterranean: taxonomical and ecological approaches. Israel Journal of Plant Sciences, 56, 127–84.CrossRefGoogle Scholar
Elmasry, E., Abdel Razek, F. A., El-Sayed, A.-F. M., Omar, H. and Hamed, E. S. A. E. (2015). Abundance, size composition and benthic assemblages of two Mediterranean echinoids off the Egyptian coasts: Paracentrotus lividus and Arbacia lixula. The Egyptian Journal of Aquatic Research, 41, 367–74.Google Scholar
Fanelli, E., Azzurro, E., Bariche, M., Cartes, J. E. and Maynou, F. (2015). Depicting the novel Eastern Mediterranean food web: a stable isotopes study following Lessepsian fish invasion. Biological Invasions, 17, 2163–78.CrossRefGoogle Scholar
Fine, M., Gildor, H. and Genin, A. (2013). A coral reef refuge in the Red Sea. Global Change Biology, 19, 3640–7.CrossRefGoogle ScholarPubMed
Galil, B., Pisanty, S., Spanier, E. and Tom, M. (1989). The indo-pacific lobster Panulirus ornatus (Crustacea, decapoda) – a new Lessepsian migrant to the eastern Mediterranean. Israel Journal of Zoology, 35, 241–3.Google Scholar
Galil, B. S., Boero, F., Campbell, M. L. et al. (2015). ‘Double trouble’: the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biological Invasions, 17, 973–6.CrossRefGoogle Scholar
Garval, T. (2016). Population Dynamics and Ecological Impacts of the Alien Macroalgae Galaxaura rugosa (J. Ellis & Solander) J.V.Lamouroux on the Israeli Shore. University of Haifa, Haifa.Google Scholar
Gattuso, J.-P., Magnan, A., Billé, R. et al. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science, 349(6243), http://dx.doi.org/10.1126/science.aac4722.Google Scholar
Gerovasileiou, V., Sini, M. I., Poursanidis, D. and Koutsoubas, D. (2009). Contribution to the Knowledge of Coralligenous Communities in the NE Aegean Sea. In Proceedings of the 1st Mediterranean Symposium on the Conservation of the Coralligenous and other Calcareous Bio-concretions, Tabarka, Tunis, pp. 205–7.Google Scholar
Giakoumi, S. (2014). Distribution patterns of the invasive herbivore Siganus luridus (Rüppell, 1829) and its relation to native benthic communities in the central Aegean Sea, Northeastern Mediterranean. Marine Ecology, 35, 96105.Google Scholar
Golani, D. and Diamant, A. (1991). Biology of the sweeper, Pempheris vanicolensis Cuvier & Valenciennes, a Lessepsian migrant in the eastern Mediterranean, with a comparison with the original Red Sea population. Journal of Fish Biology, 38, 819–27.Google Scholar
Golani, D. and Sonin, O. (1992). New records of the Red Sea fishes, Pterois miles (Scorpaenidae) and Pteragogus pelycus (Labridae) from the eastern Mediterranean Sea. Japanese Journal of Ichthyology, 39, 167–9.Google Scholar
Goldstien, S. J., Schiel, D. R. and Gemmell, N. J. (2006). Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand. Molecular Ecology, 15, 3259–68.Google Scholar
Gon, O. and Golani, D. (2008). Lessepsian migration of cardinalfishes (Telcostei, Apogonidae). South African Journal of Botany, 74, 367.Google Scholar
Goren, M. and Galil, B. S. (2001). Fish biodiversity in the vermetid reef of Shiqmona (Israel). Marine Ecology – Pubblicazioni Della Stazione Zoologica Di Napoli I, 22, 369–78.CrossRefGoogle Scholar
Goren, M. and Galil, B. S. (2005). A review of changes in the fish assemblages of Levantine inland and marine ecosystems following the introduction of non-native fishes. Journal of Applied Ichthyology, 21, 364–70.Google Scholar
Gruvel, A. (1931). Les Etats de Syrie. Richesses marines et fluviales: Exploitation actuelle, Avenir. Société des Editions Géographiques, Maritimes et Coloniales, Paris.Google Scholar
Guy-Haim, T. (2017) The impact of ocean warming and acidification on coastal benthic species and communities. PhD, University of Haifa.Google Scholar
Guy‐Haim, T., Hyams‐Kaphzan, J., Yeruham, E., Almogi‐Labin, A. and Carlton, J. T. (2017). A novel marine bioinvasion vector: Ichthyochory, live passage through fish. Limnology and Oceanography Letters, 2, 8190.Google Scholar
Guy-Haim, T., Rilov, G. and Achituv, Y. (2015). Different settlement strategies explain intertidal zonation of barnacles in the Eastern Mediterranean. Journal of Experimental Marine Biology and Ecology, 463, 125–34.CrossRefGoogle Scholar
Guy-Haim, T., Silverman, J., Raddatz, S., Wahl, M., Israel, A. and Rilov, G. (2016a). The carbon turnover response to thermal stress of a dominant coralline alga on the fast warming Levant coast. Limnology and Oceanography, 61, 1120–33.CrossRefGoogle Scholar
Guy-Haim, T., Silverman, J., Raddatz, S., Wahl, M. and Rilov, G. (2016b). Shifted coastal communities and ecosystem functions under predicted warming and acidification. In 41th CIESM Congress, Kiel, Germany.Google Scholar
Guy-Haim, T., Silverman, J., Wahl, M., Aguirre, J., Noisette, F. and Rilov, G. Epiphytes provide micro-scale refuge from ocean acidification: The dressed coralline hypothesis. Journal of Ecology, in reviewGoogle Scholar
Harmelin-Vivien, M. L., Bitar, G., Harmelin, J. G. and Monestiez, P. (2005). The littoral fish community of the Lebanese rocky coast (eastern Mediterranean Sea) with emphasis on Red Sea immigrants. Biological Invasions, 7, 625–37.CrossRefGoogle Scholar
Hill, R., Bellgrove, A., Macreadie, P. I. et al. (2015). Can macroalgae contribute to blue carbon? An Australian perspective. Limnology and Oceanography, 60, 1689–706.CrossRefGoogle Scholar
Hixon, M. A., Green, S. J., Albins, M. A., Akins, J. L. and Morris, J. A. Jr (2016). Lionfish: a major marine invasion. Marine Ecology Progress Series, 558, 161–5.Google Scholar
Hoffman, R., Dubinsky, Z., Israel, A. and Iluz, D. (2008a). The mysterious disappearance of Halimeda tuna from the intertidal zone along the Israeli Mediterranean. Israel Journal of Ecology and Evolution, 54, 267–8.Google Scholar
Hoffman, R., Israel, A., Lipkin, Y., Dubinsky, Z. and Iluz, D. (2008b). First record of two seaweeds from the Israeli Mediterranean: Galaxaura rugosa (J. Ellis and Solander) JV Lamouroux (Rhodophyta) and Codium adhaerens C. Agardh (Chlorophyta). Israel Journal of Plant Sciences, 56, 123–6.Google Scholar
Hornell, J. (1935). Report on the Fisheries of Palestine. Crown Agents of the Colonies, London, p. 65.Google Scholar
Hughes, T. P., Bellwood, D. R., Folke, C. S., McCook, L. J. and Pandolfi, J. M. (2007). No-take areas, herbivory and coral reef resilience. Trends in Ecology & Evolution, 22, 13.CrossRefGoogle ScholarPubMed
Hyams-Kaphzan, O., Almogi-Labin, A., Sivan, D. and Benjamini, C. (2008). Benthic foraminifera assemblage change along the southeastern Mediterranean inner shelf due to fall-off of Nile-derived siliciclastics. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen, 248, 315–44.Google Scholar
Israel, A., Einav, R., Silva, P. C., Paz, G., Chacana, M. E. and Douek, J. (2010). First report of the seaweed Codium parvulum (Chlorophyta) in Mediterranean waters: recent blooms on the northern shores of Israel. Phycologia, 49, 107–12.CrossRefGoogle Scholar
Jackson, J. B. and Sala, E. (2001). Unnatural oceans. Scientia Marina, 65, 273–81.Google Scholar
Jackson, J. B. C., Kirby, M. X., Berger, W. H. et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–38.CrossRefGoogle ScholarPubMed
Johnston, M. and Purkis, S. (2014). Are lionfish set for a Mediterranean invasion? Modelling explains why this is unlikely to occur. Marine Pollution Bulletin, 88, 138–47.Google Scholar
Katsanevakis, S., Coll, M., Piroddi, C. et al. (2014). Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Frontiers in Marine Science, 1, https://doi.org/10.3389/fmars.2014.00032.CrossRefGoogle Scholar
Klein, L. (2015). The Effects of Temperature Changes on Grazer Gastropod Species along the Rocky Shores of the Eastern Mediterranean. Bar-Ilan University, Ramat Gan.Google Scholar
Klepal, W. and Barnes, H. (1975). Further observations on the ecology of Chthamalus depressus (Poli). Journal of Experimental Marine Biology and Ecology, 17, 269–96.Google Scholar
Kletou, D., Hall-Spencer, J. M. and Kleitou, P. (2016). A lionfish (Pterois miles) invasion has begun in the Mediterranean Sea. Marine Biodiversity Records, 9, 1.CrossRefGoogle Scholar
Knowlton, N. and Jackson, J. B. (2008). Shifting baselines, local impacts, and global change on coral reefs. Plos Biology, 6, e54.CrossRefGoogle ScholarPubMed
Koren, Z. C. (2005). The First Optimal All-Murex All-Natural Purple Dyeing in the Eastern Mediterranean in a Millennium and a Half. In Dyes. History and Archaeology Archetype Publications, London, pp. 136–49.Google Scholar
Levy, Y., Frid, O., Weinberger, A. et al. 2015. A small fishery with a high impact on sea turtle populations in the eastern Mediterranean. Zoology in the Middle East, 61, 300–17.CrossRefGoogle Scholar
Lipkin, Y. and Safriel, U. (1971). Intertidal zonation of the rocky shores at Mikhmoret (Mediterranean, Israel). Journal of Ecology, 59, 130.CrossRefGoogle Scholar
Lundberg, B. (1996). Composition of the Seaweed Vegetation along the Mediterranean Coast of Israel. Nature Reserves Authority, Jerusalem.Google Scholar
Lundberg, B., Payiatas, G. and Argyrou, M. (1999). Notes on the diet of the Lessepsian migrant herbivorous fishes, Siganus luridus and S. rivulatus, in Cyprus. Israel Journal of Zoology, 45, 127–34.Google Scholar
Marbà, N., Jorda, G., Agusti, S., Girard, C. and Duarte, C. M. (2015). Footprints of climate change on Mediterranean Sea biota. Frontiers in Marine Science, 2, https://doi.org/10.3389/fmars.2015.00056.Google Scholar
McQuaid, C. D., Porri, F., Nicastro, K. R. and Zardi, G. I. (2015). Simple, scale-dependent patterns emerge from very complex effects: an example from the intertidal mussels Mytilus galloprovincialis and Perna perna. Oceanography and Marine Biology, 53, 127–56.Google Scholar
Meriç, E., Yokeş, M. B., Avşar, N. and Bircan, C. (2010). An oasis for alien benthic Foraminifera in the Aegean Sea. Aquatic Invasions, 5, 191–5.Google Scholar
Mienis, H. K. (2004). New data concerning the presence of Lessepsian and other Indo-Pacific migrants among the molluscs in the Mediterranean Sea with emphasis on the situation in Israel. Turkish Journal of Aquatic Life, 2, 117–31.Google Scholar
Mumby, P. J., Dahlgren, C. P., Harborne, A. R. et al. 2006. Fishing, trophic cascades, and the process of grazing on coral reefs. Science, 311, 98101.Google Scholar
Navarrete, S. A., Wieters, E. A., Broitman, B. R. and Castilla, J. C. (2005). Scales of benthic-pelagic and the intensity of species interactions: from recruitment limitation to top-down control. Proceedings of the National Academy of Sciences of the United States of America, 102, 18046–51.Google ScholarPubMed
Pallary, P. (1912). Catalogue des mollusques du littoral méditerranéen de l’Egypte. Mémoires de l’Institut d’Egypte, 7, 69207.Google Scholar
Pauly, D. (1995). Anecdotes and the shifting baseline syndrome of fisheries. Trends in Ecology and Evolution, 10, 430.Google Scholar
Peleg, O. (2017). Bioinvasions Drive Major Shifts in Levant Reef Community Structure and Ecosystem Functioning. University of Haifa, Haifa.Google Scholar
Peleg, O., Guy-Haim, T., Yeruham, E., Silverman, J. and Rilov, G. Two-stage tropicalization inverts trophic state and carbon budget of shallow temperate rocky reefs. Journal of Ecology. 33, 1000–13.Google Scholar
Petraitis, P. S. and Dudgeon, S. R. (1999). Experimental evidence for the origin of alternative communities on rocky intertidal shores. Oikos, 84, 239–45.CrossRefGoogle Scholar
Piazzi, L. and Balata, D. (2008). The spread of Caulerpa racemosa var. cylindracea in the Mediterranean Sea: An example of how biological invasions can influence beta diversity. Marine Environmental Research, 65, 5061.CrossRefGoogle ScholarPubMed
Piazzi, L., Balata, D., Bulleri, F., Gennaro, P. and Ceccherelli, G. (2016). The invasion of Caulerpa cylindracea in the Mediterranean: the known, the unknown and the knowable. Marine Biology, 163, 114.Google Scholar
Piazzi, L., Ceccherelli, G. and Cinelli, F. (2001). Threat to macroalgal diversity: effects of the introduced green alga Caulerpa racemosa in the Mediterranean. Marine Ecology Progress Series, 210, 149–59.Google Scholar
Por, F. D. (1978). Lessepsian Migration: The Influx of Red Sea Biota into the Mediterranean by Way of the Suez Canal. Springer-Verlag, Berlin.Google Scholar
Por, F. D. and Dimentman, C. H. (1989). The Legacy of Tethys: An Aquatic Biogeography of the Levant. Kluwer Academic Publishers, Dordrecht.Google Scholar
Raitsos, D. E., Beaugrand, G., Georgopoulos, D. et al. 2010. Global climate change amplifies the entry of tropical species into the Eastern Mediterranean Sea. Limnology and Oceanography, 55, 1478–84.Google Scholar
Rilov, G. (2015). Test of Marine Reserves as a Management Tool for Marine Conservation on the Israeli Mediterranean Coast (Report Submitted to the Ministry of National Infrastructures, Energy and Water Resources). H34/2015, Israel Oceanographic and Limnological Research (IOLR), Haifa.Google Scholar
Rilov, G. (2016). Multi-species collapses at the warm edge of a warming sea. Scientific Reports, 6, 36897.Google Scholar
Rilov, G., Benayahu, Y. and Gasith, A. (2001). Low abundance and skewed population structure of the whelk Stramonita haemastoma along the Israeli Mediterranean coast. Marine Ecology Progress Series, 218, 189202.CrossRefGoogle Scholar
Rilov, G., Benayahu, Y. and Gasith, A. (2004a). Life on the edge: do biomechanical and behavioral adaptations to wave-exposure correlate with habitat partitioning in predatory whelks? Marine Ecology Progress Series, 282, 193204.Google Scholar
Rilov, G., Benayahu, Y. and Gasith, A. (2004b). Prolonged lag in population outbreak of an invasive mussel: a shifting-habitat model. Biological Invasions, 6, 347–64.CrossRefGoogle Scholar
Rilov, G., Dudas, S., Grantham, B., Menge, B. A., Lubchenco, J. and Schiel, R. D. (2008). The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae? Journal of Experimental Marine Biology and Ecology, 361, 5974.Google Scholar
Rilov, G., Gasith, A. and Benayahu, Y. (2002). Effect of an exotic prey on the feeding pattern of a predatory snail. Marine Environmental Research, 54, 8598.CrossRefGoogle ScholarPubMed
Rilov, G., Peleg, O., Yeruham, E., Garval, T., Vichik, A. and Raveh, O. (2018). Alien turf: overfishing, overgrazing and invader domination in southeastern Levant reef ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 28, 351–69. http://dx.doi.org/10.1002/aqc.2862.CrossRefGoogle Scholar
Rilov, G. and Schiel, D. R. (2011). Community regulation: the relative importance of recruitment and predation intensity of an intertidal community dominant in a seascape context. PLoS ONE, 6, https://doi.org/10.1371/journal.pone.0023958.Google Scholar
Rilov, G. and Schiel, R. D. (2006). Seascape-dependent subtidal-intertidal trophic linkages. Ecology, 87, 731–44.Google Scholar
Rivetti, I., Fraschetti, S., Lionello, P., Zambianchi, E. and Boero, F. (2014). Global warming and mass mortalities of benthic invertebrates in the Mediterranean Sea. PLoS ONE, 9, https://doi.org/10.1371/journal.pone.0115655.Google Scholar
Rosen, S. D., Raskin, L. and Galanti, B. (2013). Long-term characteristics of sea level, wave, wind and current at central Mediterranean coast of Israel from 20 years of data at GLOSS station 80 – Hadera. In 40th CIESM Congress, Marseille.Google Scholar
Saaroni, H., Ziv, B., Bitan, A. and Alpert, P. (1998). Easterly wind storms over Israel. Theoretical and Applied Climatology, 59, 6177.Google Scholar
Safriel, U. N. (1974). Vermetid gastropods and intertidal reefs in Israel and Bermuda. Science, 186, 1113–15.Google Scholar
Safriel, U. N. (1975). The role of vermetid gastropods in the formation of Mediterranean and Atlantic reefs. Oecologia (Berlin), 20, 85101.CrossRefGoogle ScholarPubMed
Safriel, U. N., Felsenburg, T. and Gilboa, A. (1980a). The distribution of Brachidontes variabilis (Krauss) along the Red Sea coasts of Sinai. Argamon Israel Jorournal of Malacology, 7, 3143.Google Scholar
Safriel, U. N., Gilboa, A. and Felsenburg, T. (1980b). Distribution of rocky intertidal mussels in the Red Sea coasts of Sinai, the Suez Canal, and the Mediterranean coast of Israel, with special reference to recent colonizer. Journal of Biogeography, 7, 3962.Google Scholar
Safriel, U. N. and Sasson-Frostig, Z. (1988). Can colonizing mussel outcompete indigenous mussel? Journal of Experimental Marine Biology and Ecology, 117, 211–26.CrossRefGoogle Scholar
Sala, E. (2004). The past and present topology and structure of Mediterranean subtidal rocky-shore food webs. Ecosystems, 7, 333–40.Google Scholar
Sala, E., Ballesteros, E., Dendrinos, P. et al. (2012). The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. PLoS ONE, 7, https://doi.org/10.1371/journal.pone.0032742.Google Scholar
Sala, E., Kizilkaya, Z., Yildirim, D. and Ballesteros, E. (2011). Alien marine fishes deplete algal biomass in the eastern Mediterranean. PLoS ONE, 6, https://doi.org/10.1371/journal.pone.0017356.CrossRefGoogle ScholarPubMed
Sara, G., Romano, M. and Mazzola, A. (2000). The new Lessepsian entry Brachidontes pharaonis (Fischer P., 1870) (Bivalvia, Mytilidae) in the western Mediterranean: a physiological analysis under varying natural conditions. Journal of Shellfish Research, 19, 967–77.Google Scholar
Serisawa, Y., Imoto, Z., Ishikawa, T. and Ohno, M. (2004). Decline of the Ecklonia cava population associated with increased seawater temperatures in Tosa Bay, southern Japan. Fisheries Science, 70, 189–91.Google Scholar
Shaltout, M. and Omstedt, A. (2014). Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56, 411–43.Google Scholar
Shemesh, E., Huchon, D., Simon‐Blecher, N. and Achituv, Y. (2009). The distribution and molecular diversity of the Eastern Atlantic and Mediterranean chthamalids (Crustacea, Cirripedia). Zoologica Scripta, 38, 365–78.Google Scholar
Sisma‐Ventura, G., Yam, R. and Shemesh, A. (2014). Recent unprecedented warming and oligotrophy of the eastern Mediterranean Sea within the last millennium. Geophysical Research Letters, 41, 5158–66.CrossRefGoogle Scholar
Spalding, M. D., Fox, H. E., Halpern, B. S. et al. 2007. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience, 57, 573–83.Google Scholar
Steinitz, W. (1927). Beiträge zur Kenntnis der Küstenfauna Palästinas. Pubblicazioni Della Stazione Zoologica Di Napoli I, 8, 331–53.Google Scholar
Stephenson, T. A. and Stephenson, A. (1949). The universal feature of zonation between the tide-marks on rocky coasts. Journal of Ecology, 36, 289305.Google Scholar
Templado, J., Richter, A. and Calvo, M. (2016). Reef building Mediterranean vermetid gastropods: disentangling the Dendropoma petraeum species complex. Mediterranean Marine Science, 17(1), 1331.Google Scholar
Teske, P. R., Papadopoulos, I., Mmonwa, K. L. et al. (2011). Climate-driven genetic divergence of limpets with different life histories across a southeast African marine biogeographic disjunction: different processes, same outcome. Molecular Ecology, 20, 5025–41.CrossRefGoogle ScholarPubMed
Turan, C., Ergüden, D., Gürlek, M., Yağlıoğlu, D., Uyan, A. and Uygur, N. (2014). First record of the Indo-Pacific lionfish Pterois miles (Bennett, 1828)(Osteichthyes: Scorpaenidae) for the Turkish marine waters. Journal of Black Sea/Mediterranean Environment, 20(2).Google Scholar
Vergés, A., Doropoulos, C., Malcolm, H. A. et al. (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proceedings of the National Academy of Sciences, 201610725.Google Scholar
Vergés, A., Steinberg, P. D., Hay, M. E. et al. (2014a). The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society B: Biological Sciences, 281, 20140846.Google ScholarPubMed
Vergés, A., Tomas, F., Cebrian, E. et al. (2014b). Tropical rabbitfish and the deforestation of a warming temperate sea. Journal of Ecology, 102, 1518–27.Google Scholar
Verlaque, M., Ruitton, S., Mineur, F. and Boudouresque, C. F. (2015). CIESM Atlas of Exotic Macrophytes in the Mediterranean Sea. CIESM Publishers, Monaco.Google Scholar
Vousdoukas, M., Velegrakis, A. and Plomaritis, T. (2007). Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Science Reviews, 85, 2346.CrossRefGoogle Scholar
Wahl, M., Buchholz, B., Winde, V. et al. 2015. A mesocosm concept for the simulation of near‐natural shallow underwater climates: The Kiel Outdoor Benthocosms (KOB). Limnology and Oceanography: Methods, 13, 651–63.Google Scholar
Walther, G. R., Post, E., Convey, P. et al. 2002. Ecological responses to recent climate change. Nature, 416, 389–95.Google Scholar
Wright, J. T., McKenzie, L. A. and Gribben, P. E. (2007). A decline in the abundance and condition of a native bivalve associated with Caulerpa taxifolia invasion. Marine and Freshwater Research, 58, 263–72.Google Scholar
Yeruham, E. (2013). Possible Explanations for Paracentrotus lividus (European purple sea urchin) Population Collapse in South-East Mediterranean. Tel Aviv University, Tel Aviv.Google Scholar
Yeruham, E., Rilov, G., Shpigel, M. and Abelson, A. (2015). Collapse of the echinoid Paracentrotus lividus populations in the Eastern Mediterranean – result of climate change? Scientific Reports, 5, 13479.CrossRefGoogle ScholarPubMed
Zamir, R., Alpert, P. and Rilov, G. (2018). Increase in weather patterns generating extreme desiccation events: implications for Mediterranean rocky shore ecosystems. Estuaries and Coasts, http://dx.doi.org/10.1007/s12237-018-0408-5.CrossRefGoogle Scholar
Ziderman, I. I. (2008). The biblical dye tekhelet and its use in Jewish textiles. Dyes in History and Archaeology, 21, 3644.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×