Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T03:43:19.565Z Has data issue: false hasContentIssue false

Chapter 12 - Consumer–Resource Interactions on an Environmental Mosaic

The Role of Top-Down and Bottom-Up Forcing of Ecological Interactions along the Rocky Shores of the Temperate South-Eastern Pacific

Published online by Cambridge University Press:  07 September 2019

Stephen J. Hawkins
Affiliation:
Marine Biological Association of the United Kingdom, Plymouth
Katrin Bohn
Affiliation:
Natural England
Louise B. Firth
Affiliation:
University of Plymouth
Gray A. Williams
Affiliation:
The University of Hong Kong
Get access

Summary

Biogeography, phylogeography and ecology of the diverse assemblage that inhabits the south-east Pacific along the Humboldt Current system (HCS) has received increasing attention. Regions separated by biogeographic break evidence changes in the functional structure of consumer assemblages, likely related to a replacement from tropical to temperate species. The deep temporal signature of coastal oceanography on coastal biogeography and phylogeography is underpinned by the spatial structure of bottom-up effects of ecological processes, which also influence the strong top-down regulation of consumers on the structure of rocky shore communities. Uncertainties still remain about how coastal oceanographic processes regulate species range expansion/contraction and how biotic interactions and environmental filtering define dynamic biogeographic patterns along marine environments. Explicit predictions should be made regarding the persistence and dynamics of species ranges, and changing ecological interactions among species in the face of intensified human harvesting (e.g., kelps) and global change. Clear cooling trends are observed across the HCS, human harvesting is intensifying and presence of coastal artificial infrastructure could trigger species range shift. Aquaculture expansion and the introduction of exotic non-native species have the potential to alter community structure and functioning. Hence, ecosystem services should be managed, and necessary interventions carefully planned to ensure sustainability of use of natural marine resources and coastal ecosystem integrity.

Type
Chapter
Information
Interactions in the Marine Benthos
Global Patterns and Processes
, pp. 307 - 332
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, M. A. (2011). The functional roles of herbivores in the rocky intertidal systems in Chile: a review of food preferences and consumptive effects. Revista Chilena de Historia Natural, 84, 241–61.CrossRefGoogle Scholar
Aguilera, M. A. (2018). Artificial defences in coastal marine ecosystems in Chile: opportunities for spatial planning to mitigate habitat loss and alteration of the marine community structure. Ecological Engineering, 120, 601–10, http://doi.org/10.1016/j.ecoleng.2017.04.021.Google Scholar
Aguilera, M. A. and Navarrete, S. A. (2007). Effects of Chiton granosus (Frembly, 1827) and other molluscan grazers on algal succession in wave exposed mid-intertidal rocky shores of central Chile. Journal of Experimental Marine Biology and Ecology, 349, 8498.Google Scholar
Aguilera, M. A. and Navarrete, S. A. (2011). Distribution and activity patterns in an intertidal grazer assemblage: temporal and spatial organization influence inter-specific associations. Marine Ecology Progress Series, 431, 119–36.CrossRefGoogle Scholar
Aguilera, M. A. and Navarrete, S. A. (2012a). Functional identity and functional structure change through succession in a rocky intertidal marine herbivore assemblage. Ecology, 93, 7589.CrossRefGoogle Scholar
Aguilera, M. A. and Navarrete, S. A. (2012b). Interspecific competition for shelters in territorial and gregarious intertidal grazers: consequences for individual behaviour. PLoS ONE, 7(9), e46205.Google Scholar
Aguilera, M. A., Navarrete, S. A. and Broitman, B. R. (2013a). Differential effects of grazer species on periphyton of a temperate rocky shore. Marine Ecology Progress Series, 484, 6378.CrossRefGoogle Scholar
Aguilera, M. A., Valdivia, N. and Broitman, B. R. (2013b). Spatial niche differentiation and coexistence at the edge: co-occurrence distribution patterns in Scurria limpets. Marine Ecology Progress Series, 483, 185–98.Google Scholar
Aguilera, M. A., Valdivia, N. and Broitman, B. R. (2015a). Herbivore-alga interaction strength influences spatial heterogeneity in a kelp- dominated intertidal community. PLoS ONE, 10(9), e0137287.Google Scholar
Aguilera, M. A., Valdivia, N. and Broitman, B. R. (2015b). Facilitative effect of a generalist herbivore on the recovery of a perennial alga: consequences for persistence at the edge of their geographic range. PLoS ONE, 10, e0146069.Google Scholar
Aguirre, C., Pizarro, O., Strub, P. T., Garreaud, R. and Barth, J. A. (2012). Seasonal dynamics of the near-surface alongshore flow off central Chile. Journal of Geophysical Research: Oceans, 117, 117.Google Scholar
Ahumada, R. B., Pinto, L. and Camus, P. A. (2000) The Chilean Coast. In Sheppard, C. R. C. , eds. Seas at the Millennium: An Environmental Analysis. Pergamon Press, Oxford, pp. 699717.Google Scholar
Airoldi, L., Turon, X., Perkol-Finkel, S. and Rius, M. (2015). Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Diversity and Distributions, 21, 114.Google Scholar
Aldana, M., González, K., Loot, G., Pulgar, J. and Marquet, P. (2009). First intermediate host of the Digenean Trematode Proctoeces lintoni (Fellodistomidae) in Chile. Journal of Parasitology, 95, 1408–14.CrossRefGoogle ScholarPubMed
Arenas, F., Sánchez, I., Hawkins, S. J. and Jenkins, S. R. (2006). The invasibility of marine algal assemblages: role of functional diversity and identity. Ecology, 87, 2851–61.Google Scholar
Bakun, A. and Weeks, S. J. (2008). The marine ecosystem off Peru: what are the secrets of its fishery productivity and what might its future hold? Progress in Oceanography, 79, 290–9.Google Scholar
Barker, P. F. and Thomas, E. (2004). Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Reviews, 66, 143–62.Google Scholar
Bell, T. W., Cavanaugh, K. C., Reed, D. C. and Siegel, D. A. (2015). Geographic variability in the controls of giant kelp biomass dynamics. Journal of Biogeography, 42, 2010–21.CrossRefGoogle Scholar
Bellwood, D. R., Hughes, T., Folke, C. and Nystrom, M. (2004). Confronting the coral reef crisis. Nature, 429, 827–33.Google Scholar
Bellwood, D. R., Hoey, A. S. and Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters, 6, 281–5.Google Scholar
Berlow, E. L., Navarrete, S. A., Briggs, C. J., Power, M. E. and Menge, B. A. (1999). Quantifying variation in the strengths of species interactions. Ecology, 80, 2206–24.Google Scholar
Borges, C. D., Hawkins, S. J., Crowe, T. P. and Doncaster, C. P. (2016). The influence of simulated exploitation on Patella vulgata populations: protandric sex change is size‐dependent. Ecology and Evolution, 6, 514–31.Google Scholar
Botsford, L. W., Castilla, J. C. and Peterson, C. H. (1997). The management of fisheries and marine ecosystems. Science, 277, 509–15.Google Scholar
Branch, G. (1976). Interspecific competition experienced by South African Patella species. Journal of Animal Ecology, 45, 507–29.CrossRefGoogle Scholar
Brante, A., Fernández, M. and Viard, F. (2012). Phylogeography and biogeography concordance in the marine gastropod Crepipatella dilatata (calyptraeidae) along the southeastern pacific coast. Journal of Heredity, 103, 630–7.Google Scholar
Brattström, H. and Johanssen, A. (1983). Ecological and regional zoogeography of the marine benthic fauna of Chile. Sarsia, 68, 289339.Google Scholar
Broitman, B., Navarrete, S. A., Smith, F. and Gaines, S. (2001). Geographic variation of southeastern Pacific intertidal communities. Marine Ecology Progress Series, 224, 2134.Google Scholar
Broitman, B. R., Véliz, F., Manzur, T. et al. (2011). Geographic variation in diversity of wave exposed rocky intertidal communities along central Chile. Revista Chilena de Historia Natural, 84, 143–54.Google Scholar
Bulleri, F. and Airoldi, L. (2005). Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea. Journal of Applied Ecology, 42, 1063–72.CrossRefGoogle Scholar
Bulleri, F. Tamburello, L. and Benedetti-Cecchi, L. (2009). Loss of consumers alters the effects of resident assemblages on the local spread of an introduced macroalga. Oikos, 118, 269–79.CrossRefGoogle Scholar
Burrows, M. T., Schoeman, D. S., Buckley, L. B. et al. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334, 652–5.Google Scholar
Buschmann, A. H., García, C., Espinoza, C., Filún, L. and Vásquez, J. A. (2003). Sea Urchin and Kelp (Macrocystis pyrifera) Interaction in Protected Areas in Southern Chile. In Lawrence, J., ed. Sea Urchins and Fisheries. CRC, Boca Raton, FL, pp. 120–30.Google Scholar
Buschmann, A. H., Vásquez, J. A., Osorio, P. et al. (2004). The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp (Phaeophyta) at different latitudes. Marine Biology, 145, 849–62.Google Scholar
Buschmann, A. H., Moreno, C., Vásquez, J. A. and Hernández-Carmona, M. (2006). Reproduction strategies of Macrocystis pyrifera (paheophyta) in southern Chile: the importance of population dynamics. Journal of Applied Phycology, 18, 575–82.Google Scholar
Camus, P. A. (1994). Recruitment of the intertidal kelp Lessonia nigrescens Bory in northern Chile: successional constraints and opportunities. Journal of Experimental Marine Biology and Ecology, 184, 171–81.CrossRefGoogle Scholar
Camus, P. A. (2001). Marine biogeography of continental Chile. Revista Chilena de Historia Natural, 74, 587617.Google Scholar
Camus, P. A. (2005). Introducción de especies en ambientes marinos chilenos: no solo exóticas, no siempre evidentes. Revista Chilena de Historia Natural, 78, 155–9.Google Scholar
Camus, P. A. (2008). Understanding biological impacts of ENSO on the eastern Pacific: an evolving scenario. International Journal of Environment and Health, 2, 519.Google Scholar
Camus, P. A., Daroch, K. and Opazo, F. L. (2008). Potential for omnivory and apparent intraguild predation in rocky intertidal herbivore assemblages from northern Chile. Marine Ecology Progress Series, 361, 3545.CrossRefGoogle Scholar
Cancino, J. and Castilla, J. C. (1988). Emersion behaviour and foraging ecology of the common clingfish Sicyases sanguineus (Pisces: Gobiesocidae). Journal of Natural History, 22, 249–61.Google Scholar
Cárdenas, L., Castilla, J. C. and Viard, F. (2009). A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod Concholepas concholepas. Journal of Biogeography, 36, 969–81.Google Scholar
Castilla, J. C. (1999). Coastal marine communities: trends and perspectives from human-exclusion experiments. Trends in Ecology and Evolution, 7, 280–3.Google Scholar
Castilla, J. C. and Camus, P. A. (1992). The Humboldt-El Niño scenario: coastal benthic resources and anthropogenic influences, with particular reference to the 1982/83 ENSO. South African Journal of Marine Science, 12, 111–19.Google Scholar
Castilla, J. C. and Durán, L. R. (1985). Human exclusion from the rocky intertidal zone of Central Chile: the effects on Concholepas Concholepas (Gastropoda). Oikos, 45, 391–9.Google Scholar
Castilla, J. C. and Fernández, M. (1998). Small-scale benthic fisheries in Chile: on co-management and sustainable use of benthic invertebrates. Ecological Applications, 8, S124–32.Google Scholar
Castilla, J. C. and Neill, P. (2009). Marine Bioinvasions in the Southeastern Pacific: Status, Ecology Economic Impacts, Conservation and Management. In Rilov, G. and Crooks, J. A., eds. Biological Invasions. Springer-Verlag, Berlin.Google Scholar
Castilla, J. C. and Paine, R. T. (1987). Predation and community organization in Eastern Pacific, temperate zone, rocky intertidal shores. Revista Chilena de Historia Natural, 60, 131–51.Google Scholar
Castilla, J. C., Uribe, M., Bahamonde, N. et al. (2005). Down under the southeastern Pacific: marine non-indigenous species in Chile. Biological Invasions, 7, 213–32.Google Scholar
Chaigneau, A. and Pizarro, O. (2005). Mean surface circulation and mesoscale turbulent flow characteristics in the eastern South Pacific from satellite tracked drifters. Journal of Geophysical Research, 110, 117.Google Scholar
Chapman, M. and Underwood, A. J. (1992). Foraging Behaviour of Marine Benthic Grazers. In John, D. M., Hawkins, S. J. and Price, J. H., eds. Plant−Animal Interactions in the Marine Benthos. Clarendon Press, Oxford, pp. 289317.Google Scholar
Dayton, P. K., Currie, V., Gerrodette, T. et al. (1984). Patch dynamic and stability of some Californian kelp communities. Ecological Monographs, 54, 253–89.CrossRefGoogle Scholar
Dayton, P. K. (1985). Ecology of kelp communities. Annual Review of Ecology, Evolution, and Systematics, 16, 215–45.Google Scholar
Dong, Y., Huang, X., Wang, W., Li, Y. and Wang, J. (2016). The marine ‘great wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Diversity and Distributions, 22, 731–44.CrossRefGoogle Scholar
Dumont, C. P., Harris, L. G. and Gaymer, C. F. (2011). Anthropogenic structures as a spatial refuge from predation for the invasive bryozoan Bugula neritina. Marine Ecology Progress Series, 427, 95103.Google Scholar
Escobar, J. and Navarrete, S. A. (2011). Risk recognition and variability in escape responses among intertidal molluskan grazers to the sun star Heliaster helianthus. Marine Ecology Progress Series, 421, 151–61.Google Scholar
Escribano, R., Daneri, G., Farías, L. et al. (2004). Biological and chemical consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: a synthesis. Deep Sea Research Part II: Topical Studies in Oceanography, 51, 2389–411.Google Scholar
Espoz, C. and Castilla, J. C. (2000). Escape responses of four Chilean intertidal limpets to seastars. Marine Biology, 137, 887–92.CrossRefGoogle Scholar
Espoz, C., Lindberg, D. R., Castilla, J. C. and Simison, B. (2004). Los patelogastrópodos intermareales de Chile y Perú. Revista Chilena de Historia Natural, 77, 257–83.Google Scholar
Fenberg, P. B. and Rivadeneira, M. M. (2015). Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. Journal of Biogeography, 38, 2286–98.Google Scholar
Fenberg, P. B. and Roy, K. (2008). Ecological and evolutionary consequences of size‐selective harvesting: how much do we know? Molecular Ecology, 17, 209–20.Google Scholar
Fernández, M., Jaramillo, E., Marquet, P. et al. (2000). An overview of the diversity, biogeography and dynamics of nearshore ecosystems in Chile: foundation for marine conservation ecology. Revista Chilena de Historia Natural, 73, 797830.Google Scholar
Firth, L. B. and Crowe, T. P. (2008). Large-scale coexistence and small-scale segregation of key species on rocky shores. Hydrobiologia, 614, 233–41.Google Scholar
Firth, L. B., Crowe, T. P., Moore, P., Thompson, R. C. and Hawkins, S. J. (2009). Predicting impacts of climate‐induced range expansion: an experimental framework and a test involving key grazers on temperate rocky shores. Global Change Biology, 15, 1413–22.Google Scholar
Firth, L. B., Knights, A. M., Bridger, D. et al. (2016). Ocean sprawl: challenges and opportunities for biodiversity management in a changing world. Oceanography and Marine Biology: An Annual Review, 54, 193269.Google Scholar
Fletcher, W. J. and Underwood, A. J. (1987). Interspecific competition among subtidal limpets: effect of substratum heterogeneity. Ecology, 68, 387400.Google Scholar
Gaymer, C. F. and Himmelman, J. H. (2008). A keystone predatory sea star in the intertidal zone is controlled by a higher-order predatory sea star in the subtidal zone. Marine Ecology Progress Series, 370, 143–53.CrossRefGoogle Scholar
Gelcich, S., Godoy, N. and Castilla, J. C. (2009). Artisanal fisher’s perceptions regarding coastal co-management policies in Chile and their potentials to scale-up marine biodiversity conservation. Ocean and Coastal Management, 52, 424–32.Google Scholar
Gelcich, S., Kaiser, M. J., Castilla, J. C. and Edward-Jones, G. (2008). Engagement in co-management of marine benthic resources influences environmental perceptions of artisanal fishers. Environmental Conservation, 35, 3645.Google Scholar
Gelcich, S., Hughes, T. P., Olsson, P. et al. (2010). Navigating transformations in governance of Chilean marine coastal resources. Proceedings of the National Academy of Sciences of the United States of America, 107, 16794–9.Google Scholar
George-Nascimento, M., Lima, M. and Ortiz, E. (1992). A case of parasite-mediated competition? Phenotypic differentiation among hookworms Uncinaria sp. (Nematoda: Ancylostomatidae) in sympatric and allopatric populations of South American sea lions Otaria byronia, and fur seals Arctocephalus australis (Carnivora: Otariidae). Marine Biology, 112, 527–33.Google Scholar
George-Nascimento, M., Garcías, F. and Muñoz, G. (2002). Parasite body volume and infracommunity patterns in the southern pomfret Brama australis (Pisces: Bramidae). Revista Chilena de Historia Natural, 75, 835–9.CrossRefGoogle Scholar
Ghedini, G., Russell, B. D. and Connell, S. D. (2015). Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecology Letters, 18, 182–7.Google Scholar
Glen, A. S., Atkinson, R., Campbell, K. J. et al. (2013). Eradicating multiple invasive species on inhabited islands: the next big step in island restoration? Biological Invasions, 15, 2589–603.Google Scholar
Godoy, C. and Moreno, C. A. (1989). Indirect effects of human exclusion from the rocky intertidal in Southern Chile: a case of cross-linkage between herbivores. Oikos, 54, 101–6.Google Scholar
Godoy, N., Gelcich, S., Vásquez, J. A. and Castilla, J. C. (2010). Spearfishing to depletion: evidence from temperate reef fishes in Chile. Ecological Applications, 20, 1504–11.Google Scholar
Godoy, N., Gelcich, S., Castilla, J. C., Lima, M. and Smith, A. (2016). Artisanal spearfishery in temperate nearshore ecosystems of Chile: exploring the catch composition, revenue, and management needs. Marine and Coastal Fisheries Dynamics, Management and Ecosystem Science, 8, 436–47.Google Scholar
González, A., Beltrán, J. and Hiriart-Bertrand, L. B. (2012). Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). Journal of Phycology, 48, 1153–65.Google Scholar
González, M. T. and Moreno, C. A. (2005). The distribution of the ectoparasite fauna of Sebastes capensis from the southern hemisphere does not correspond with zoogeographical provinces of free-living marine animals. Journal of Biogeography, 32, 1539–47.Google Scholar
Graham, M. H., Vásquez, J. A. and Buschmann, A. H. (2007). Global ecology of the giant kelp Macrocystis: from ecotypes to ecosystems. Oceanography and Marine Biology: An Annual Review, 45, 3988.Google Scholar
Halpern, B. S., Cottenie, K. and Broitman, B. R. (2006). Strong top-down control in southern California kelp forest ecosystems. Science, 312, 1230–2.Google Scholar
Harrold, C. and Pearse, J. S. (1987). The Ecological Role of Echinoderms in Kelp Forests. In Jangoux, M. and Lawrence, J. M., eds. Echinoderm Studies, vol. 2. Balkema, Rotterdam, pp. 137233.Google Scholar
Haye, P. A., Segovia, N. I., Muñoz-Herrera, N. C. et al. (2014). Phylogeographic structure in benthic marine invertebrates of the southeast pacific coast of Chile with differing dispersal potential. PLoS ONE, 9(2), e88613.Google Scholar
Haussermann, V. and Forsterra, G. (2009). Marine Benthic Fauna of Chilean Patagonia. Nature in Focus, Puerto Montt, p. 1000.Google Scholar
Hawkins, S. J. and Hartnoll, R. G. (1983). Grazing of intertidal algae by marine invertebrates. Oceanography and Marine Biology: An Annual Review, 21, 195282.Google Scholar
Hernández, C. E., Moreno, R. A. and Rozbaczylo, N. (2005). Biogeographical patterns and Rapoport’s rule in southeastern Pacific benthic polychaetes of the Chilean coast. Ecography, 28, 363–73.Google Scholar
Hoey, A. and Bellwood, D. (2009). Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems, 12, 1316–28.Google Scholar
Hormazábal, S., Shaffer, G. and Leth, O. (2004). Coastal transition zone off Chile. Journal of Geophysical Research, 109, C01021.Google Scholar
Hu, Z. M. and Guillemin, M.-L. (2016). Coastal upwelling areas as safe havens during climate warming. Journal of Biogeography 43: 25132514.Google Scholar
Ibáñez, C. M., Camus, P. A. and Rocha, F. J. (2009). Diversity and distribution of cephalopod species off the coast of Chile. Marine Biology Research, 5, 374–84.Google Scholar
Iriarte, J. L. and González, H. E. (2004). Phytoplankton size structure during and after the 1997/98 El Niño in a coastal upwelling area of the northern Humboldt current system. Marine Ecology Progress Series, 269, 8390.Google Scholar
Jara, F. and Moreno, C. (1984). Herbivory and structure in a midlittoral rocky community: a case in southern Chile. Ecology, 65, 2838.Google Scholar
Jenkins, S., Coleman, R., Santina, P., Hawkins, S., Burrows, M. and Hartnoll, R. (2005). Regional scale differences in the determinism of grazing effects in the rocky intertidal. Marine Ecology Progress Series, 287, 7786.Google Scholar
Jones, C. G., Lawton, J. H and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 73386.Google Scholar
Kéfi, S., Berlow, E. L., Wieters, E. A. et al. (2012). More than a meal… integrating non-feeding interactions into food webs. Ecology Letters, 15, 291300.Google Scholar
Kéfi, S., Berlow, E. L., Wieters, E. A. et al. (2015). Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology, 96, 291303.Google Scholar
Keller, R. P., Drake, J. M., Drew, M. B. and Lodge, D. M. (2011). Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Diversity and Distributions, 17, 93102.CrossRefGoogle Scholar
Klein, J. C. Underwood, A. J. and Chapman, M. G. (2011). Urban structures provide new insights into interactions among grazers and habitat. Ecological Applications, 21, 427–38.CrossRefGoogle ScholarPubMed
Krumhansl, K. A., Okamoto, D. K., Rassweiler, A. et al. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of Natural Academy of Science of the United States of America, 113, 13785–90.Google Scholar
Lafferty, K. D., Dobson, A. P. and Kuris, A. M. (2006). Parasites dominate food web links. Proceeding of the National Academy of Sciences of the United States of America, 103, 11211–16.Google Scholar
Lafferty, K. D., Harvell, C. D., Conrad, J. M. et al. (2015). Infectious disease affect marine fisheries and aquaculture economics. Annual Review of Marine Science, 7, 471–96.Google Scholar
Lagos, N. A., Tapia, F. J., Navarrete, S. A. and Castilla, J. C. (2007). Spatial synchrony in the recruitment of intertidal invertebrates along the coast of central Chile. Marine Ecology Progress Series, 350, 2939.Google Scholar
Lancellotti, D. A. and Vásquez, J. A. (1999). Biogeographical patterns of benthic macroinvertebrates in the Southeastern Pacific littoral. Journal of Biogeography, 26, 1001–6.Google Scholar
Lawrence, J. M. (1975). On the relationships between marine plants and sea urchins. Oceanography and Marine Biology: an Annual Review, 13, 213–86.Google Scholar
Lima, F. P. and Wethey, D. S. (2012). Three decades of high-resolution coastal sea surface temperatures reveal more than warming. Nature Communications, 3, 113.Google Scholar
Lima, F. P., Queiroz, N., Ribeiro, P. A., Hawkins, S. J. and Santos, A. M. (2006). Recent changes in the distribution of a marine gastropod, Patella rustica Linnaeus, 1758, and their relationship to unusual climatic events. Journal of Biogeography, 33, 812–22.Google Scholar
Ling, S. D., Johnson, C. R., Frusher, S. D. and Ridgway, K. R. (2009). Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proceedings of the National Academy of Sciences of the United States of America, 106, 22341–5.Google Scholar
Llagostera, A. (1979). 9700 years of maritime subsistence on the Pacific: an analysis by means of bioindicators in the north of Chile. American Antiquity, 44, 309–23.Google Scholar
Lleellish, J., Fernández, E. and Hooker, Y. (2001). Disturbancia del bosque submareal de Macrocystis pyrifera durante El Niño 1997–1998 en la Bahía de Pucusana. In Alveal, K. and Antezana, T., eds. Sustentabilidad de la biodiversidad. Un problema actual: bases científico técnicas, teorizaciones y proyecciones. Ediciones Universidad de Concepción, Concepción, pp. 331–50.Google Scholar
Loot, G., Blanchet, S., Aldana, M. and Navarrete, S. A. (2008). Evidence of plasticity in the reproduction of a trematode parasite: the effect of host removal. Journal of Parasitology, 94, 23–7.Google Scholar
Longhurst, A. (1998). Ecological Geography of the Sea. Academic Press, San Diego, CA.Google Scholar
Lourenço, C. R. Zardi, G. I., McQuaid, C. D. et al. (2016). Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. Journal of Biogeography, 43, 1595–607.Google Scholar
Lubchenco, J. and Gaines, S. D. (1981). A unified approach to marine plant–herbivore interactions. I. Populations and communities. Annual Review of Ecology and Systematics, 12, 405–37.Google Scholar
MacArthur, R. and Wilson, E. (1967). The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.Google Scholar
Manríquez, P. H., Castilla, J. C., Ortiz, V. and Jara, M. E. (2016). Empirical evidence for large-scale human impact on intertidal aggregations, larval supply and recruitment of Pyura praeputialis around the Bay of Antofagasta, Chile. Austral Ecology, 41, 701–14.Google Scholar
Martin, P. and Zuccarello, G. C. (2012). Molecular phylogeny and timing of radiation in Lessonia (Phaeophyceae, Laminariales). Phycological Research, 60, 276–87.CrossRefGoogle Scholar
Manzur, T., Vidal, F., Pantoja, J. F., Fernández, M. and Navarrete, S. A. (2014). Behavioural and physiological responses of limpet prey to a seastar predator and their transmission to basal trophic levels. Journal of Animal Ecology, 83, 923–33.Google Scholar
Meneses, I. and Santelices, B. (2000). Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Revista Chilena de Historia Natural, 73, 615–23.Google Scholar
Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. and Yamada, S. B. (1994). The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecological Monographs, 64, 249–86.Google Scholar
Mieszkowska, N., Sugden, H., Firth, L. B. and Hawkins, S. J. (2014). The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372, 20130339.Google Scholar
Montecinos, V. and Lange, C. B. (2009). The Humboldt current system: ecosystem components and processes, fisheries, and sediment studies. Progress in Oceanography, 83, 6579.Google Scholar
Montecinos, A., Broitman, B., Faugeron, S., Haye, P. A., Tellier, F. and Guillermin, M. L. (2012). Species replacement along a lineal coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east Pacific. BMC Evolutionary Biology, 12, 117.Google Scholar
Moreno, C. A. (2001). Community patterns generated by human harvesting on Chilean shores: a review. Aquatic Conservation: Marine and Freshwater Ecosystems, 11, 1930.Google Scholar
Moreno, C. A. and Jaramillo, E. (1983). The role of grazers in the zonation of intertidal macroalgae of the Chilean coast. Oikos, 41, 73–6.Google Scholar
Moreno, C. A., Sutherland, J. and Jara, F. (1984). Man as predator in the intertidal zone of southern Chile. Oikos, 42, 155–60.Google Scholar
Moreno, C. A., Lunecke, K. M. and Lépez, M. I. (1986). The response of an intertidal Concholepas concholepas (Gastropoda) population to protection from man in Southern Chile and the effects on benthic sessile assemblages. Oikos, 46, 359–64.Google Scholar
Moreno, R. A., Hernández, C. E., Rivadeneira, M. M., Vidal, M. A. and Rozbaczylo, N. (2006a). Patterns of endemism in south-eastern Pacific benthic polychaetes of the Chilean coast. Journal of Biogeography, 33, 750–9.Google Scholar
Moreno, R. A., Neill, P. E. and Rozbaczylo, N. (2006b). Native and non-indigenous boring polychaetes in Chile: a threat to native and commercial mollusc species. Revista Chilena de Historia Natural, 79, 263–78.Google Scholar
Moy, C. M., Seltzer, G. O., Rodbell, D. T. Y. and Anderson, D. M. (2002). Variability of El Niño/southern oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162–5.Google Scholar
Muñoz, G. and George-Nascimento, M. (2002). Spiracanthus bovichthys n. gen. n. sp. Acanthocephala: Arhythmacanthidae), a parasite of littoral fishes of the central-south coast of Chile. Journal of Parasitology, 88, 141–5.Google Scholar
Muñoz, J., Finke, R., Camus, P. and Bozinovic, F. (2005). Thermoregulatory behavior, heat gain and thermal tolerance in intertidal snails: the case of the periwinkle Echinolittorina peruviana in central Chile. Comparative Biochemistry and Physiology A, 142, 92–8.Google Scholar
Muñoz, V., Hernandez, M. C., Buschmann, A. H., Graham, M. H. and Vásquez, J. (2004). Variability in per capita oogonia and sporophyte production from giant kelp gametophyte (Macrocystis pyrifera, Phaeophyceae). Revista Chilena de Historia Natural, 77, 639–47.Google Scholar
Navarrete, A. H., Lagos, N. A. and Ojeda, F. P. (2014). Latitudinal diversity patterns of Chilean coastal fishes: searching for causal processes. Revista Chilena de Historia Natural, 87, 111.Google Scholar
Navarrete, S. A. and Castilla, J. C. (1988). Foraging activity of Chilean intertidal crabs Acanthocyclus gayi Milne-Edwards et Lucas and A. hassleri Rathburn. Journal of Experimental Marine Biology and Ecology, 118, 115–36.Google Scholar
Navarrete, S. A. and Castilla, J. C. (1990). Resource partitioning between intertidal predatory crabs: interference and refuge utilization. Journal of Experimental Marine Biology and Ecology, 143, 101–12.Google Scholar
Navarrete, S. A. and Menge, B. A. (1996). Keystone predation and interaction strength: interactive effects of predators on their main prey. Ecological Monographs, 66, 409–29.Google Scholar
Navarrete, S. A., Broitman, B., Wieters, E. A., Finke, G. R., Venegas, R. M. and Sotomayor, A. (2002). Recruitment of intertidal invertebrates in the southeast Pacific: interannual variability and the 1997–1998 El Niño. Limnology and Oceanography, 47, 791802.Google Scholar
Navarrete, S. A. and Castilla, J. C. (2003). Experimental determination of predation intensity in an intertidal predator guild: dominant versus subordinate prey. Oikos, 100, 251–62.Google Scholar
Navarrete, S. A., Wieters, E. A., Broitman, B. and Castilla, J. C. (2005). Scales of benthic-pelagic coupling and the intensity of species interactions: from recruitment limitation to top-down control. Proceedings of the National Academy of Sciences of the United States of America, 102, 18046–51.Google Scholar
Naylor, R., Williams, S. and Strong, D. (2001). Aquaculture – a gateway for exotic species. Science, 294, 1655–6.Google Scholar
Neill, P. E., Alcalde, O., Faugeron, S., Navarrete, S. A. and Correa, J. A. (2006). Invasion of Codium fragile ssp. tomentosoides in northern Chile: a new threat for Gracilaria farming. Aquaculture, 259, 202–10.Google Scholar
Nielsen, K. J. and Navarrete, S. A. (2004). Mesoscale regulation comes from the bottom-up: intertidal interactions between consumers and upwelling. Ecology Letters, 7, 3141.Google Scholar
Ojeda, F. P. and Muñoz, A. (1999). Feeding selectivity of the herbivorous fish Scartichthys viridis: Effects on macroalgal community structure in a temperate rocky intertidal coastal zone. Marine Ecology Progress Series, 184, 219–29.Google Scholar
Oliva, D. and Castilla, J. C. (1986). The effects of human exclusion on the population structure of keyhole limpets Fissurella crassa and Fissurella limbata in the coast of Central Chile. Marine Ecology, 7, 201–17.Google Scholar
Oliva, M. and González, M. T. (2005). The decay of similarity over geographical distance in parasite communities of marine fishes. Journal of Biogeography, 32, 1327–32.Google Scholar
Olden, J .D., Poff, N. L., Douglas, M. R., Douglas, M. E. and Fausch, K. D. (2004). Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution, 19, 1824.Google Scholar
Oróstica, M., Aguilera, M. A., Donoso, G., Vásquez, J. and Broitman, B. R. (2014). Effect of grazing on distribution and recovery of harvested stands of Lessonia berteroana kelp in northern Chile. Marine Ecology Progress Series, 511, 7182.Google Scholar
Ortiz, M. and Wolff, M. (2002). Trophic models of four benthic communities in Tongoy Bay (Chile): comparative analysis and preliminary assessment of management strategies. Journal of Experimental Marine Biology and Ecology, 268, 205–35.Google Scholar
Ortlieb, L. (1995). Paleoclimas cuaternarios en el norte grande de Chile. In Argollo, J. and Mourguiart, P., eds. Cambios Cuaternarios en América del Sur, ORSTOM-Bolivia, La Paz, pp. 225–46.Google Scholar
Ortlieb, L., Guzmán, N. and Marquardt, C. (2003). A Longer-Lasting and Warmer Interglacial Episode during Isotopic Stage 11: Marine Terrace Evidence in Tropical Western Americas. In Droxler, A. W., Poore, R. Z. and Burckle, L. H., eds. Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question. American Geophysical Union, Washington, DC, Geophysical Monograph 137, pp. 157–80.Google Scholar
Otto, S. B., Berlow, E. L., Rank, N. E., Smiley, J. and Brose, U. (2008). Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology, 89, 134–44.Google Scholar
Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. Journal of Animal Ecology, 49, 666–85.Google Scholar
Paine, R. T. (1992). Food-web analysis through field measurement of per capita interaction strength. Nature, 355, 73–5.Google Scholar
Paine, R. T., Castilla, J. C. and Cancino, J. (1985). Perturbation and recovery patterns of starfish-dominated intertidal assemblages in Chile, New Zealand, and Washington State. The American Naturalist, 125, 679–91.Google Scholar
Palma, A. T., Pardo, L. M., Veas, R. et al. (2006). Coastal brachyuran decapods: Settlement and recruitment under contrasting coastal geometry conditions. Marine Ecology Progress Series, 316, 139–53.Google Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637–69.Google Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 3742.Google Scholar
Pérez-Matus, A., Ferry-Graham, L. A., Cea, A. and Vásquez, J. A. (2007). Community structure of temperate reef fishes in kelp-dominated subtidal habitats of northern Chile. Marine and Freshwater Research, 58, 1069–85.Google Scholar
Pérez-Matus, A., Pledger, S., Díaz, F. J, Ferry, L. A. and Vásquez, J. A. (2012). Plasticity in feeding selectivity and trophic structure of kelp forest associated fishes from northern Chile. Revista Chilena de Historia Natural, 85, 2948.Google Scholar
Pfuhl, H. A. and McCave, N. I. (2005). Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth and Planetary Science Letters, 235, 715–28.Google Scholar
Poloczanska, E., Hawkins, S. J., Southward, A. J. and Burrows, M. T. (2008). Modeling the response of populations of competing species to climate change. Ecology, 89, 3138–49.Google Scholar
Poore, A. G. B., Campbell, A. H., Coleman, R. A. et al. (2012). Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 15, 912–22.Google Scholar
Poulin, E., Palma, A. T., Leiva, G. et al. (2002). Avoiding offshore transport of competent larvae during upwelling events: The case of the gastropod Concholepas concholepas in central Chile. Limnology and Oceanography, 47, 1248–55.Google Scholar
Poulin, R. (1999). The functional importance of parasites in animal communities: many roles at many levels? International Journal of Parasitology, 29, 903–14.CrossRefGoogle ScholarPubMed
Rahn, D. A., Rosenbluth, B. and Rutlland, J. A. (2014). Detecting subtle seasonal transitions of upwelling in North-Central Chile. Journal of Physical Oceanography, 45, 854–68.Google Scholar
Rivadeneira, M. and Fernández, M. (2005). Shifts in southern endpoints of distribution in rocky intertidal species along the south‐eastern Pacific coast. Journal of Biogeography, 32, 203–9.Google Scholar
Rivadeneira, M. M. and Marquet, P. A. (2007). Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology, 33, 455–68.Google Scholar
Rivadeneira, M. M., Hernáez, P., Baeza, J. A. et al. (2012). Testing the abundant-centre hypothesis using intertidal porcelain crabs along the Chilean coast: linking abundance and life-history variation. Journal of Biogeography 37, 486–98.Google Scholar
Ritchie, M. E. and Olff, H. (1999). Spatial scaling laws yield a synthetic theory of biodiversity. Nature, 400, 557–60.Google Scholar
Rodríguez, S. R. and Ojeda, F. P. (1993). Distribution patterns of Tetrapygus niger Echinodermata: Echinoidea) off the central Chilean coast. Marine Ecology Progress Series, 101, 157–62.Google Scholar
Rosenfeld, R. (2002). Functional redundancy in ecology and conservation. Oikos, 98, 156–62.Google Scholar
Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., García-Reyes, M., Black, B. A. and Bograd, S. J. (2015). Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophysical Research Letters, 42, 6424–31.Google Scholar
Sala, E. and Graham, M. H. (2002). Community-wide distribution of predator-prey interaction strength in kelp forests. Proceedings of the National Academy of Sciences of the United States of America, 99, 3678–83.Google Scholar
Sánchez, R., Sepúlveda, R. D., Brante, A. and Cárdenas, L. (2011). Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series, 434, 121–31.Google Scholar
Santelices, B. (1980). Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia, 19, 112.Google Scholar
Santelices, B., Castilla, J. C., Cancino, J. and Schmiede, P. (1980). Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in central Chile. Marine Biology, 59, 119–32.Google Scholar
Santelices, B. and Ojeda, P. (1984). Recruitment, growth and durvival of Lessonia nigrescens (Phaeophyta) at various tidal levels in exposed habitats of central Chile. Marine Ecology Progress Series, 19, 7382.Google Scholar
Santelices, B., Vásquez, J. and Meneses, I. (1986). Patrones de distribución ydietas de un gremio de moluscos herbívoros en habitats intermareales expuestos de Chile central. In Simposio Internacional. Usos y funciones de las algas marinas bentónicas, 147–71.Google Scholar
Seeley, R. H. and Schlesinger, W. H. (2012). Sustainable seaweed cutting? The rockweed (Ascophyllum nodosum) industry of Maine and the Maritime Provinces. Annals of the New York Academy of Sciences, 1249, 84103.Google Scholar
Sepúlveda, R. D., Camus, P. A. and Moreno, C. A. (2016). Diversity of faunal assemblages associated with ribbed mussel beds along the South American coast: relative roles of biogeography and bioengineering. Marine Ecology, 37, 943–56.Google Scholar
Shinen, J. L. and Navarrete, S. A. (2010). Coexistence and intertidal zonation of chthamalid barnacles along central Chile: Interference competition or a lottery for space? Journal of Experimental Marine Biology and Ecology, 392, 176–87.Google Scholar
Smale, D. A. and Wernberg, T. (2013) Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B, 280, 2012–29.Google Scholar
Smale, D. A. and Vance, T. (2016). Climate-driven shifts in species’ distributions may exacerbate the impacts of storm disturbances on North-east Atlantic kelp forests. Marine and Freshwater Research, 67, 6574.Google Scholar
Soto, D., Jara, F. and Moreno, C. (2001). Escaped salmon in the inner southern Chile: facing ecological and social conflicts. Ecological Applications, 11, 1750–62.Google Scholar
Spalding, M. D., Fox, H. E., Allen, G. R. et al. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience, 57, 573–83.Google Scholar
Stachowicz, J. J., Graham, M., Bracken, M. and Szoboszlai, A. (2008). Diversity enhances cover and stability of seaweed assemblage: the role of heterogeneity and time. Ecology, 89, 3008–19.Google Scholar
Steneck, R. S. and Watling, L. (1982). Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Marine Biology, 68, 299319.Google Scholar
Steinberg, P. D., Estes, J. A. and Winter, F. C. (1995). Evolutionary consequences of food chain length in kelp forest communities. Proceedings of the National Academy of Sciences of the United States of America, 92, 8145–8.Google Scholar
Strub, P., Mesías, J., Montecino, V., Rutlant, J. and Salinas, S. (1998). Coastal Ocean Circulation off Western South America Coastal Segment. In Robinson, A. and Brink, K. H., eds. Global Coastal Ocean, vol. 11. Harvard University Press, Cambridge, MA.Google Scholar
Sydeman, W. J., García-Reyes, M., Schoeman, M. S. et al. (2014). Climate change and wind intensification in coastal upwelling ecosystems. Science, 345, 7780.Google Scholar
Sullivan, K. and Bustamante, G. (1999). Setting Geographic Priorities for Marine Conservation in Latin America and the Caribbean. The Nature Conservancy, Arlington, VA, p. 141.Google Scholar
Sunday, J. M., Bates, A. E. and Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change, 2, 686–90.Google Scholar
Takesue, R. K., van Geen, A., Carriquiry, J. D. et al. (2004). Influence of coastal upwelling and El Niño-southern oscillation on nearshore water along Baja California and Chile: shore-based monitoring during 1997–2000. Journal of Geophysical Research-Oceans, 109 , C03009.Google Scholar
Tapia, F. J., Navarrete, S. A., Castillo, M. et al. (2009). Thermal indices of upwelling effects on inner-shelf habitats. Progress in Oceanography, 83, 278–87.Google Scholar
Tapia, F. J., Largier, J., Castillo, M., Wieters, E. A. and Navarrete, S. A. (2014). Latitudinal discontinuity in thermal conditions along the nearshore of central-northern Chile. PLoS ONE, 9, e110841.Google Scholar
Teagle, H., Hawkins, S. J., Moore, P. J. and Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, http://doi.org/10.1016/j.jembe.2017.01.017.Google Scholar
Tellier, F., Tapia, J., Faugeron, S., Destombe, C. and Valero, M. (2011). The Lessonia nigrescens species complex (Laminariales, phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. Journal of Phycology, 47, 894903.Google Scholar
Thiel, M., Macaya, E., Acuña, E. et al. (2007). The Humboldt current system of northern-central Chile: oceanographic processes, ecological interactions and socio-economic feedback. Oceanography and Marine Biology: An Annual Review, 45, 195345.Google Scholar
Thomas, F. and Poulin, R. (1998). Manipulation of a mollusc by a trophically transmitted parasite: convergent evolution or phylogenetic inheritance? Parasitology, 116, 431–6.Google Scholar
UACH. (2006). Actualización y validación de la clasificación de las zonas biogeográficas litorales. Universidad austral de Chile, Informe Final proyecto FIP 204-28. Fondo de Investigación Pesquera, Santiago, www.fip.cl/Archivos/Hitos/Informes/inffinal%202004-28.pdf.Google Scholar
Underwood, A. J. (1992). Competition and Marine Plant–Animal Interactions. In John, D. M., Hawkins, S. J. and Price, J. H., eds. Plant–Animal Interactions in the Marine Benthos. Clarendon Press, Oxford, pp. 443–75.Google Scholar
Valle-Levinson, A., Atkinson, L. P., Figueroa, D. and Castro, L. (2003). Flow induced by upwelling winds in an equatorward facing bay: Gulf of Arauco, Chile. Journal of Geophysical Research, 108, 114.Google Scholar
Valdivia, N., Aguilera, M. A., Navarrete, S. A. and Broitman, B. R. (2015). Disentangling the effects of propagule supply and environmental filtering on the spatial structure of a rocky shore metacommunity. Marine Ecology Progress Series, 538, 6779.Google Scholar
Valdovinos, C., Navarrete, S. A. and Marquet, P. (2003). Mollusk species diversity in the Southeastern Pacific: why are there more species towards the pole? Ecography, 26, 139–44.Google Scholar
Vásquez, J. A. (1992). Lessonia trabeculata, a subtidal bottom kelp in northern Chile: a case of study for a structural and geographical comparison. In Seeliger, U., ed. Coastal Plant Communities of Latin America. Academic Press Inc., San Diego, CA, pp. 7789.Google Scholar
Vásquez, J. A. (1993a). Patrones de distribución de poblaciones submareales de Lessonia trabeculata (Laminariales, Phaeophyta) en el norte de Chile. Serie Ocasional, Facultad de Ciencias del Mar, Universidad Católica del Norte, 2, 187211.Google Scholar
Vásquez, J. A. (1993b). Abundance, distributional patterns and diets of main herbivorous and carnivorous species associated with Lessonia trabeculata kelp beds in northern Chile. Serie Ocasional, Facultad de Ciencias del Mar, Universidad Católica del Norte 2, 213–29.Google Scholar
Vásquez, J. A. and Buschmann, A. (1997). Herbivory-kelp interactions in subtidal Chilean communities: a review. Revista Chilena de Historia Natural, 70, 4152.Google Scholar
Vásquez, J. A., Camus, P. A. and Ojeda, F. P. (1998). Diversidad, estructura y funcionamiento de ecosistemas costeros rocosos del norte de Chile. Revista Chilena de Historia Natural, 71, 479–99.Google Scholar
Vásquez, J. A., Fonck, E. and Vega, J. A. M. (2001a). Comunidades submareales rocosas dominadas por macroalgas en el norte de Chile: diversidad, abundancia y variabilidad temporal. In Alveal, K. and Antezana, T., eds. Sustentabilidad de la biodiversidad. Un problema actual, bases científico-técnicas, teorizaciones y perspectivas. Universidad de Concepción, Concepción, pp. 281–92.Google Scholar
Vásquez, J. A., Veliz, D. and Pardo, L. M. (2001b). Biodiversidad bajo las grandes algas. In Alveal, K. and Antezana, T., eds. Sustentabilidad de la biodiversidad. Un problema actual, bases científico-técnicas, teorizaciones y perspectivas. Universidad de Concepción, Concepción, pp. 293308.Google Scholar
Vásquez, J. A. and Vega, J. M. A. (2004). El Niño 1997–1998 en el norte de Chile: efectos en la estructura y en la organización de comunidades submareales dominadas por algas pardas. In Avaria, S., Carrasco, J., Rutland, J. and Yañez, E., eds. El Niño-La Niña 1997-2000: su efecto en Chile. Comité Oceanográfico Nacional, Valparaíso, pp. 115–36.Google Scholar
Vásquez, J. A., Vega, J. M. A. and Buschmann, A. H. (2006). Long term studies on El Niño-La Niña in northern Chile: effects on the structure and organization of subtidal kelp assemblages. Journal of Applied Phycology 18, 505–19.Google Scholar
Vásquez, J. A., Piaget, N. and Vega, J. M. A. (2012). Chilean Lessonia nigrescens fishery in northern Chile: how do you harvest is more important than how much do you harvest. Journal of Applied Phycology, 24, 417–26.Google Scholar
Vásquez, J. A. and Donoso, G. (2013). Loxechinus albus: Biology and Ecology. Development in Aquaculture and Fisheries Science. Elsevier, Amsterdam.Google Scholar
Vega, J. M. A., Vásquez, J. A. and Buschmann, A. H. (2005). Population biology of the subtidal kelps Macrocystis integrifolia and Lessonia trabeculata (Laminariales, Phaeophyceae) in an upwelling ecosystem of northern Chile: interannual variability and El Niño 1997–98. Revista Chilena de Historia Natural, 78, 3350.Google Scholar
Vega, J. M. A., Broitman, B. R. and Vásquez, J. A. (2014). Monitoring the sustainability of Lessonia nigrescens complex (Laminariales, Phaeophyta) in northern Chile under string harvest pressure. Journal Applied Phycology, 26, 791801.Google Scholar
Velásquez, C., Jaramillo, E., Camus, P. A., Manzano, M. and Sánchez, R. (2016). Biota del intermareal rocoso expuesto de la Isla Grande de Chiloé, Archipiélago de Chiloé, Chile: Patrones de diversidad e implicancias ecológicas y biogeográficas. Revista de Biología Marina y Oceanografía, 51, 3350.Google Scholar
Vergés, A., Doropoulos, C., Malcolm, H. A. et al. (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proceeding of the National Academy of Science, 113, 13791–6.Google Scholar
Villaseñor-Parada, C., Pauchard, A. and Macaya, E. C. (2017). Ecology of marine invasions in continental Chile: what do we know and we need to know? Revista Chilena de Historia Natural, 52, 17.Google Scholar
Villouta, E. and Santelices, B. (1984). Estructura de la comunidad submareal de Lessonia (Phaeophyta, Laminariales) en Chile norte y central. Revista Chilena de Historia Natural, 57, 111–22.Google Scholar
Viviani, C. (1979). Ecogeografía del litoral chileno. Studies on Neotropical Fauna and Environment, 14, 65123.Google Scholar
Walls, A. M., Edwards, M. D., Firth, L. B. and Johnson, M. P. (2017). Successional changes of epibiont fouling communities of the cultivated kelp Alaria esculenta: predictability and influences. Aquaculture Environment Interactions, 9, 5569.Google Scholar
Wang, D., Gouhier, T. C., Menge, B. A. and Ganguly, A. R. (2015). Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 518, 390–4.Google Scholar
Webb, O. C., Ackerly, D. D., McPeek, M. A. and Donoughue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475505.Google Scholar
Wernberg, T., Smale, D. A., Tuya, F. et al. (2013). An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nature Climate Change, 3, 7882.Google Scholar
Wieters, E. A. (2005). Upwelling control of positive interactions over mesoscales: A new link between bottom-up and top-down processes on rocky shores. Marine Ecology Progress Series, 301, 4354.Google Scholar
Wieters, E. A., Kaplan, D. M., Navarrete, S. A. et al. (2003). Alongshore and temporal variability in chlorophyll a concentration in Chilean nearshore waters. Marine Ecology Progress Series, 249, 93105.Google Scholar
Wood, S., Lilley, S., Schiel, D. and Shurin, J. (2010). Organismal traits are more important than environment for species interactions in the intertidal zone. Ecology Letters, 13, 1160–71.Google Scholar
Wood, C. L., Micheli, F., Fernández, M., Gelcich, S., Castilla, J. C. and Carvajal, J. (2013). Marine protected areas facilitate parasite populations among four fished host species of central Chile. Journal of Animal Ecology, 82, 1276–87.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×