Introduction
“Without women, life is pure prose,” wrote Nicaraguan poet Rubén Darío. Not only have women inspired male poetic creativity, but they have also contributed to progress in the world, and evidence of female artistic and intellectual attributes has been left behind throughout history. During prehistoric times, women must have been anonymous inventors, creating a number of objects and activities needed for everyday survival while the men were off hunting. The creative potential of the “fairer sex” has been marginalized, limited, and unacknowledged due to unequal gender treatment at different periods in human history.
This chapter attempts to shed light on the efforts that women inventors from three emerging countries – Brazil, India, and Mexico – have undertaken to overcome the obstacles of inequality and how relevant these challenges can be for economic development and society. In particular, it seeks to (1) analyze gender differentiation in creativity, innovation, and science; (2) define the nature and dynamics of female inventive activity by using data provided by the U.S. Patent and Trademark Office (USPTO) on patents granted in Brazil, India, and Mexico; (3) determine which factors influencing the growing propensity of women to invent help reduce gender inequality in knowledge economies; and (4) contribute policy proposals that target greater female participation in inventive activities.
The key questions for this research are thus: What are the characteristics and dynamics of female inventive activity in emerging countries with different economic development paths? What factors influence women’s propensity to invent? Do female inventive skills complement those of men?
We consider that women possess potential abilities for invention-innovation and that their propensity to be inventors, by themselves or in co-participation with men, will depend on their scientific background and variables related to inventive activity.
The findings of this research suggest that factors influence, to varying degrees, the propensity of women to invent in Brazil, India, and Mexico. Each case offers different strands of analysis according to the innovation trajectories of each country and the incorporation of women into scientific and technological (S&T) research. For instance, the fact that the stock of prior knowledge is significant only in the size of inventor teams has a positive influence on women inventors in Brazil and Mexico. Concerning patents, patents by firms positively affect women inventors in Mexico and India, while patents by institutions and individuals only affect Mexico and Brazil, respectively. Regarding the technological field, mechanical is significant in Mexico, while pharmaceutical, medical, electrical and electronics, and “others” are important in Brazil. In contrast, in India, no particular field is influential on the propensity of women to invent. The presence of foreign researchers increases this propensity in Mexico. The outcomes suggest specific policies that will promote the incorporation of women and the development of their inventive potential in the different technological fields. To that extent, gender inequalities in inventive activity can be overcome, and this will be expressed through improved economic growth and social welfare.
The following section provides a short, specialized literature review on the factors influencing women’s ability to display their inventive capabilities. The second section deals with whether policies geared toward reducing gender inequalities in education, science, and technological knowledge have been implemented in Brazil, India, and Mexico. The third section focuses on analyzing the dynamics of female inventive activity in these emerging countries, specifying the empirical model used to test the hypotheses, analyze the results, and formulate policy proposals. The last section presents conclusions and advances some policy recommendations.
7.1 Review of Literature on Women Inventors
Despite women’s enormous potential to contribute to economic growth through scientific, technological, inventive, management, and business activities, they have historically been marginalized in education, particularly in S&T fields of study (Asgeirsdottir, 200Reference Asgeirsdottir6). The growing incorporation of women into S&T careers and their professional performance in these fields is seen as a potential source of economic growth and well-being in society (Hunt et al., Reference Hunt, Garant, Herman and Munroe2012; Huyer, Reference Huyer2015; Kahler, Reference Kahler2012; UKIPO, 2016). As more women develop new scientific knowledge and technological innovations, a positive impact on countries’ productivity, economic growth, and social well-being is expected (European Commission, 2008). Especially when women are involved in science, technology, engineering, and mathematics (STEM) fields, they acquire the skills to develop new S&T ideas that have innovative potential and foster entrepreneurship (Kuschel et al., Reference Kuschel, Ettl, Díaz-Garcia and Alsos2020).
Some authors maintain that women have participated in the development of science since the beginning. Yet, their involvement and contributions have been mainly ignored by historians or deliberately concealed behind male figures (van den Eynde, Reference van den Eynde1994). Today, the deficiencies in women’s participation in science and technology are more visible (UNESCO, 2018).Footnote 1
Historic gender discrimination notwithstanding, some women have succeeded in standing out for their scientific work. For example, Marie Curie received two Nobel Prizes: in 1903 for physics, shared with her husband Pierre and Henri Becquerel, and in 1911 for chemistry, all by herself. Rosalind Franklin’s X-ray diffraction photographs were crucial for the double helix model of DNA, for which James Watson and Francis Crick were awarded the Nobel Prize in Physiology or Medicine in 1962.
In the realm of technology, women have also developed inventions that have significantly impacted industrially and successful businesses at different times in history. Women’s inventions have moved from household utensils, clothing, and other fields to inventions of greater technological complexity (Table 7A.1). Women inventors in developed countries stand out. As developing nations have made efforts in science and technology, women involved in these fields – albeit in a much smaller proportion than men – have been publishing scientific findings in journals, patenting inventions, and receiving awards – including “Women in Science” Awards from UNESCO–L’Oréal–ABC (Agência Brasil, 2018). Concerning the emerging countries selected in this study, India reports significant scientific achievements from women in various fields (Ramesh, Reference Ramesh2020). Brazilian women scientists have been critical players in life sciences and health, and women in Mexico have made essential contributions in the same area (Table 7A.1).
The interest in studying the contributions of women inventors is recent. Several studies offer a historical focus, giving an account of the social impact of inventions made by women in different periods and industrialized countries (Blashfield, Reference Blashfield1996; Braun, Reference Braun2007; Currie, Reference Currie2001; Karnes and Bean, Reference Karnes and Bean1995; Whittington and Smith-Doerr, Reference Whittington and Smith-Doerr2008, among others). Others have made remarkable efforts to identify women inventors across countries, regions, technological fields, and sectors, using data on Patent Cooperation Treaty (PCT) applications from the World Intellectual Property Organization between 1995 and 2015 (Martínez et al., Reference Lax-Martínez, Raffo and Saito2016). Another effort to identify women inventors was made by the UK Intellectual Property Office (2016), which analyzed ninety million documents compiled from the European Patent Office (EPO) and its Worldwide Patent Statistical Database (PATSTAT). Additionally, the USPTO (2020) has analyzed patent data from 1976 to 2019 to identify women inventors compared to men. The findings of these studies coincided, identifying that a vital gender gap still exists, but there is a growing trend in the incorporation of women in inventor teams. There are also differences between countries in the technological fields in which women are involved (Martínez et al., Reference Lax-Martínez, Raffo and Saito2016; UKIPO, 2016; USPTO, 2020).
Some studies centered on analyzing patented inventions with female inventors’ participation in information technology (Ashcraft and Breitzman, Reference Ashcraft and Breitzman2012; Kahler, Reference Kahler2012). Still, other studies have spotlighted the problem of the significant gap in female participation as inventors, as patent owners, and in the commercialization of inventions (Frietsch et al., Reference Frietsch, Haller, Funken-Vrohlings and Grupp2009; Giuri et al., Reference Giuri, Grimaldi, Kochenkova, Munari and Toschi2020; Hunt et al., Reference Hunt, Garant, Herman and Munroe2012; Jung and Ejermo, Reference Jung and Ejermo2014; Kahler, Reference Kahler2012; Milli et al., Reference Milli, Gault, Williams-Baron, Xia and Berlan2016; Whittington and Smith-Doerr, Reference Whittington and Smith-Doerr2008) (Table 7A.2).Considering that women have gradually increased their participation in academia over the past sixty years, some studies have focused on women’s working conditions, seeking to identify reasons that inhibit greater female involvement in S&T research projects. Some authors point out that family/career tradeoffs disadvantage women’s academic positions and, therefore, women in science may value authorship of scientific articles more than inventorship reflected by patents (Lissoni et al., Reference Lissoni, Montobbio and Zirulia2013). In the view of these authors, women are less likely to patent than men (Whittington and Smith-Doerr, Reference Whittington and Smith-Doerr2008), even if they have a similar history of publications (Azoulay et al., Reference Azoulay, Ding and Stuart2007; Breschi et al., Reference Breschi, Lissoni and Montobbio2005; Stephan et al., Reference Stephan, Gurmu, Sumell and Black2007, cited by Lissoni et al., Reference Lissoni, Montobbio and Zirulia2013).
Either way, gender-differentiated academic performance is seen across scientific fields and countries in terms of the number of women and men authors and their productivity, citations, recognition, and salary. This seems related to diverse publishing, career longevity, and dropout rates, particularly in academic careers across STEM fields (Huang et al., Reference Huang, Gates, Sinatra and Barabási2020). The fact that women graduate with STEM degrees in a lower proportion than men means that they have fewer opportunities to operate in business and commercialization circuits, even if they are inventors (Giuri et al., Reference Giuri, Grimaldi, Kochenkova, Munari and Toschi2020; Kuschel et al., Reference Kuschel, Ettl, Díaz-Garcia and Alsos2020; Lissoni et al., Reference Lissoni, Montobbio and Zirulia2013). However, in some fields, such as biotechnology, women scientists are more likely to become inventors in patents by firms, especially when those firms are more flexible and less hierarchical in their organizational management and favor collaboration with academia and other companies.
Other reasons explaining the persistent academic gender productivity gap include “differences in family responsibilities, … career absences, resource allocation, the role of peer review, collaboration, role stereotypes, academic rank, specialization, and work climate.” Insofar as the case studies are limited, the analysis of this phenomenon needs to be deepened, covering the whole longitudinal, disciplinary, and geographical landscape (Huang et al., Reference Huang, Gates, Sinatra and Barabási2020: 4609).
As for emerging and developing countries, studies of Mexico (Guzmán, 2012) and comparative studies of Latin American countries (Sifontes Fernandez and Morales Valera, Reference Sifontes Fernandez and Morales Valera2014) have been conducted. These studies show the huge gap in female participation in inventive activities, identify the technological sectors in which women participate, and explain the rate of female involvement in an innovative activity associated with external collaboration and the patenting of universities and institutions (Sifontes and Morales, Reference Sifontes and Morales2020).
The literature on women inventorsFootnote 2 and, in particular, on factors affecting women’s propensity to invent remains limited. However, once the barriers faced by women in accessing patenting and commercializing innovations have been identified, the authors put forward interesting suggestions to overcome these barriers (Hunt et al., Reference Hunt, Garant, Herman and Munroe2012; Meng, Reference Meng2018; Milli et al., Reference Milli, Gault, Williams-Baron, Xia and Berlan2016). The relevance of this research resides in the fact that it identifies factors influencing the propensity of women to be inventors, in addition to characterizing the activity and dynamics of inventive activity involving at least one woman in three emerging countries. This analysis allows us to corroborate the extent to which the U.N. Sustainable Development Goals are met, which will contribute positively to their economic and social development (Table 7A.2).
7.2 Have There Been Policies in Brazil, India, or Mexico for Reducing Gender Inequalities in Education, Science, and Technological Knowledge?
A crucial aspect of sizing gender inequalities in the knowledge economy is highlighting the stylized facts,Footnote 3 of the gaps in the Gender Development Index (GDI)Footnote 4 and in human capital specialization by gender. This paves the way for the empirical analysis of women inventors in the emerging countries selected. Therefore, the next section deals with whether policies geared toward reducing gender inequalities in education, science, and technological knowledge have been implemented.
7.2.1 Gender Inequality Index: Brazil, India, and Mexico in the Global Context
According to the Gender Inequality Index (GII),Footnote 5 Brazil and Mexico stand out for nearly converging in the 2014 GDI (with index scores of 0.997 and 0.943, respectively), whereas India has a lower index score of 0.795 (Figure 7A.1). India, however, rose in the GDI in 2018; Mexico and Brazil had marginal improvements. The Latin American countries’ GII scores rank between very high human development (VHHD) and high human development (HHD), while India ranks in the low human development category.
In terms of average years of schooling, gender advances were observed between 2014 and 2018 in the three emerging countries studied (Figure 7.1). Compared with VHHD and HHD countries, the average years of schooling in Brazil, India, and Mexico were lower for both sexes, especially in India. In Mexico, there was a marginal increase in average years of schooling from 8.2 to 8.4, while the corresponding figure remained 8.8 years for men. In Brazil, women exceeded the average years of schooling for men: 8.1 versus 7.6 average years, respectively, in 2018. Finally, there were more significant differentials in India, with only 4.7 average years of schooling for women and 8.2 for men.
7.2.2 Human Capital Specialization by Gender: Toward Which Scientific Disciplines Are Women in Higher Education Oriented?
The graduate gender gap in the scientific field has different dimensions across countries. Having gender gaps in engineering, manufacturing, and construction, as well as in STEM, is a fact for all three countries (Figure 7.2). There has been very little improvement from 2014 to 2017 – with none, in fact, in Mexico in the STEM field. More men than women in Brazil and Mexico graduate in information and communication technologies, and the same is true for India’s agriculture, forestry, fisheries, and veterinary sciences. These gaps have even increased from 2014 to 2017. However, across all three emerging countries, graduation percentages for women are higher in natural sciences, mathematics, and statistics and are robust in health and welfare. Only minor changes have occurred (UNESCO, 2016, 2018).
Participation of female graduates in STEM careers in 2017 registered significant and differentiated progress across countries. In India, female graduates reached parity in information and communication technologies. In health and welfare, women surpassed men in all three countries, especially in Brazil (75 percent women). Women reached parity in natural sciences, mathematics, and statistics, especially in Brazil (59.5 percent). However, women still lagged behind men in traditional fields (Figure 7.2).
7.2.3 Inclusion of Women in S&T Research
The participation of women within the total group of researchers in Brazil and MexicoFootnote 6 improved between 2011 and 2015, when compared with the period between 1996 and 2000 (Figure 7.3). In general, the number of researchers in Mexico increased more for men (an increase of 39,000) than for women, from 8,100 to 34,400 researchers (an increase of 26,300). As for Brazil, the increase was noteworthy and even higher for women (136,000 women researchers compared with 129,000 men researchers).Footnote 7 The differential between Mexico and Brazil (89,500 compared with 312,800 researchers) is most likely associated with the fact that Mexico has had little GDP expenditure on research and development (R&D) (an average of 0.4 percent). In contrast, Brazil intensified its efforts in this area (1 percent) (Table 7A.3).Footnote 8
When identifying researchers by scientific areas in the two Latin American countries between 2011 and 2015, diversification and greater integration of women in the various scientific fields are observed. Although Brazil and Mexico, respectively, have 25 percent and 22 percent of women in medicine, the differential between the two countries in the number of women researchers in this field was substantial (see Figure 7.3). The count for Brazil was 80,600 during 2011–2015, an increase of 9.4 times from 1996 to 2000, and the corresponding figure for Mexico was 17,300 researchers during 2011–2015, an increase of 4.6 times. Other areas of importance are agriculture and biological sciences, biochemistry, genetics, and molecular biology (an average of 10 percent each) and, to a lesser degree, immunology, and microbiology (5 percent), with only marginal percentages in other fields.
7.2.4 Launch of Knowledge Empowerment Policies
We find STEM and Gender Advancement (SAGA) among the international projects. Efforts have focused on pushing for reforms to close gender gaps in STEM at the education and research levels – and also drawing lessons from evidence and the policy mix to improve national science, technology, and innovation (STI) policies. These efforts encourage the incorporation of women into the knowledge economy. In addition, they develop a better understanding of women and girls in science. Finally, they provide estimates and help build sex-disaggregated data, and design and implement the STI policy instruments that affect gender equality in STEM (UNESCO, 2016).
As noted in the UNESCO study, there are several important facts about women researchers: (1) Women are slightly less likely than men to collaborate across academic and corporate sectors on research papers; (2) there is a relatively slight variation between comparator countries and regions in the percentage of cross-sector collaboration between academia and industry; (3) the proportion of scholarly output resulting from the academic–corporate collaboration is slightly lower for women researchers than for men researchers; (4) women tend to have a slightly higher share of the top 10 percent of interdisciplinary scholarly output relative to their total scholarly output than men; (5) among researchers, women are generally less internationally mobile than men; and (6) the highest citation impact is associated with transitory researchers (those who move internationally for periods of less than two years) (Elsevier Research Intelligence, 2017: 7).
7.3 Empirical Study: Factors Affecting the Propensity of Women to Invent
This section analyzes the nature and dynamics of female inventive activity in Mexico, Brazil, and India and then tests a hypothesis. First, we characterize the inventive activity of USPTO patents granted to those emerging countries where at least one woman participates. Second, we state the hypothesis and specify the econometric model seeking to identify the factors that contribute to increasing the propensity of women to invent. Third, we verify the validity of the hypothesis and analyze the results.
7.3.1 Nature and Dynamics of Female Inventive Activity: Data
Our analysis of emerging female inventors focuses on three countries in the study: India, Brazil, and Mexico. We have used the USPTO database of patents granted to the holders in three countries. The period for each country is different: Mexico, 1980–2015; Brazil, 1997–2013; and India, 1997–2010. We identified those patents with at least one woman inventor and then organized the list of women inventors, associating with them the information on the patent(s).
We observe different growth dynamic paths for USPTO patents granted to the three countries. On the one hand, India was favored by a ten-year transition period following the adoption of the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS Agreement), showing an increasing dynamic in the case of pharmaceuticals. From 1997 to 2010, 2,685 patents were granted to Indian holders, of which 1,219 involved at least one woman inventor and 1,416 involved only men inventors (see Figure 7.4). India registered an annual average growth rate (AAGR) of 20.9 percent, which was higher for those patents with at least one woman inventor (24.7 percent). Two subperiods stand out in the evolution of patents granted to Indian holders. The first, 1997–2003, showed an AAGR of 40 percent on total patents, and patents with female collaboration were notably higher (54.2 percent). The second subperiod, 2004–2010, had a lower AAGR of 8.34 percent, particularly for patents with women inventors (6.7 percent) (Figure 7.4). Perhaps in the following years, patent expansion grew and was equaled by that of at least one woman.
On the other hand, we have Mexico with lower growth. Indeed, 1,193 USPTO patents were granted to Mexican assignees from 1986 to 2015, with an AAGR of 8.4 percent. Although female participation in total patents is characterized by a large gap, the 108 patents identified with at least one woman inventor were slightly higher (AAGR of 8.7 percent). Women’s collaboration increased in 2007, with seven patents, and reached seventeen in 2014 (Figure 7.5). Innovative activity in Mexico remains low because of a lack of entrepreneurial and institutional investment in R&D activities that target innovation and patenting.
Concerning Brazil, of the 1,434 patents granted to Brazilians between 1997 and 2013, 388 (27 percent) had at least one woman inventor on the team of researchers. The growth path was very similar to that for all patents. The country has a small and volatile trajectory, but this trajectory is growing as the R&D/GDP percentage increases (Figure 7.6). Although the most significant proportion of patents with female involvement in Brazil is individual, teams with two or more inventors have become the practice since the end of the 1990s.
In short, the evolution of granted patents analyzed shows that even if the participation of women inventors in each country is still marginal, it has been increasing, especially in India. It is worth pointing out that men are also on those inventor teams with at least one woman inventor. The differentiated abilities across genders seem to strengthen the scope of innovation.Footnote 9 We assume that the increase of women in inventor teams is associated with the increasing incorporation of female inventors in STEM careers and related research activities. This phenomenon is more evident in India and Brazil. There is growth in Mexico but at a lower level.
7.3.2 Nature of Innovation
We proceed to identify the features of patents involving women inventors. It is interesting to compare the patent number by team size in the three emerging countries in this study. In general, the teams are mixed, except in patents with only one inventor. India leads with 45 percent of patents with groups including women, followed by Brazil with 24 percent and Mexico with just 21 percent. During the total period analyzed, the whole patents with teams of two to five inventors predominate in all three countries: two-thirds in India and just over 70 percent in Mexico and Brazil.
Regarding teams with more than six researchers, India stands out, with almost one-third of the patents, and the two Latin American countries have around 10 percent. Individual women’s participation in patenting is relatively marginal. This is especially the case for India, where 3.4 percent of patents are characterized as individual patents. Mexico and Brazil slightly exceed 15 percent. In contrast, for patents in which only men participate, individual participation is significant in Brazil and Mexico, but the figure is lower in India (see Table 7.1).
Country | Team size | Total number of patents | Number of patents with at least one female inventor by team size | Number of patents with only male inventors by team size |
---|---|---|---|---|
Mexico | One inventor | 227 | 20 | 207 |
Two to five | 324 | 87 | 237 | |
Six or more inventors | 36 | 16 | 20 | |
Brazil | One inventor | 631 | 62 | 569 |
Two to five | 688 | 256 | 432 | |
Six or more inventors | 115 | 31 | 84 | |
India | One inventor | 348 | 41 | 307 |
Two to five | 1,801 | 796 | 1,005 | |
Six or more inventors | 537 | 371 | 166 |
Regarding patent assignees, institution holders are prominent in India (65 percent) and Mexico (54 percent). In contrast, firms have greater weight in Brazil (73 percent), although there has been less participation in patents with women inventors in Mexico (44 percent) and India (34 percent) (Figure 7.7).
During 1997–2013 in Brazil, 401 female inventors were identified, representing 18.5 percent of all inventors. In 2003, the Natura companies and the Johnson & Johnson subsidiary in Brazil had the greatest participation, in many cases with inventor teams composed of several researchers. In 2006, a similar situation was seen with the Foundation for Research Support in the State of São Paulo. There is a clear growing trend, which has been most noteworthy in the past few years and seems to be associated with a higher incidence of larger inventor teams.
During 1980–2015 in Mexico, sixty-one female inventors were identified, representing 5.3 percent of the total number of inventors. Outstanding for their participation are Sabritas (six of the sixty-one), Mabe (three), El Instituto Mexicano del Petróleo (nine), and the Universidad Nacional Autónoma de México (seven). As in Brazil, the trend is for working in relatively large teams. The average number of researchers per patent is three, but as many as five in the chemical, pharmaceutical, and medical sectors. Individual patents are registered only in the electrical and electronic sectors.
From 1997 to 2010 in India, 219 female and 659 male inventors were identified in the 1,208 patents with at least one woman. Over half (53 percent) of the patents had the Council of Scientific and Industrial Research as the patent assignee. Companies that had more than seven patents were Aurobind–Pharma (seven), Dr. Reddy’s Laboratories (nineteen), Hetero Drugs (twelve), Indian Oil Corporation (twelve), Ittiam Systems (fourteen), and Reliance Life Sciences (forty-one). A trend toward working in increasingly larger teams of inventors has been recorded in India, as it is the country with the most effective teams – in fact, with ten inventors in the “others” category and nine inventors in chemical. In Brazil, the largest teams of inventors are in pharmaceutical and medical (nine inventors), chemical (seven inventors), and “others” (seven inventors).
For the field of technology, where patents are classified, we underscore the following evidence. In all three countries, women’s participation stands out in pharmaceutical, medical, and chemical patents. Specifically, nearly two-fifths of India’s women inventors are in the pharmaceutical and medical sector, and 42 percent are in the chemical sector, according to the higher percentage of women graduates in these sectors and their integration as researchers (Table 7A.3). Studies have found a positive correlation between the increasing number of women graduates in STEM careers and research activities and a higher number of female inventors (Giuri et al., Reference Giuri, Grimaldi, Kochenkova, Munari and Toschi2020; Kuschel et al., Reference Kuschel, Ettl, Díaz-Garcia and Alsos2020; Lissoni et al., Reference Lissoni, Montobbio and Zirulia2013). However, this study did not explore such correlations due to a lack of information on each woman.
The distribution of women inventors in Brazil and Mexico is similar in the pharmaceutical and medical sectors – 37 percent and 29 percent, respectively. In the chemical sector, the distribution is 31 percent and 26 percent, respectively. Few women inventors, however, are found in mechanical, electrical, and electronic sectors, with percentages ranging between 2 percent and 4 percent. In the “others” category, differentials are observed among the three countries, with Mexico – where women inventors collaborate on a third of the patents – standing out.
In every patent document, previously consulted patents are recorded as Backward Patent Citations (BwPatCit) to show that the work done by the researchers is state of the art in their technological field. We consider this variable the stock of previous technological knowledge. We estimate this indicator based on the average of BwPatCit per patent where a woman is present. Mexico has the highest average (forty-seven citations per patent), whereas India and Brazil have averages of fifteen and sixteen citations, respectively.
Regarding patent value, we use the number of forward patent citations (FwPatCit) per patent as a proxy variable. We observe that, in all three countries, the importance is still relatively low, especially in India.
India has a notably higher percentage of claims in the pharmaceutical and medical sector and the chemical sector (a combined 83 percent). Both sectors are essential for the other two countries, but with a lower proportion: 66 percent for Mexico and 68 percent for Brazil. The percentages for the “others” category are 29 percent and 19 percent, respectively. There is marginal diversification in the other technology categories.
Table 7.2 shows the distribution of patents with at least one woman inventor by variable, which we consider the nature of innovation, and by technological field. It summarizes what was previously said.
Mexico | Brazil | India | ||
---|---|---|---|---|
TechField | % | % | % | |
Chemical | 26 | 29 | 42 | |
Computer and communication | 3 | 4 | 8 | |
Drugs and medicals | 31 | 37 | 40 | |
Electrical and electronic | 3 | 2 | 2 | |
Mechanical | 2 | 4 | 3 | |
Others | 34 | 24 | 6 | |
Total | 100 | 100 | 100 | |
% | % | % | ||
Chemical | 51 | 28 | 4 | |
Computer and communication | 1 | 2 | 9 | |
Drugs and medicals | 8 | 46 | 75 | |
Electrical and electronic | 2 | 2 | 2 | |
Mechanical | 0 | 5 | 2 | |
Others | 38 | 17 | 8 | |
100 | 100 | 100 | ||
ValuePat | % | % | % | |
Chemical | 34 | 29 | 28 | |
Computer and communication | 0 | 5 | 3 | |
Drugs and medicals | 18 | 45 | 57 | |
Electrical and electronic | 1 | 0 | 2 | |
Mechanical | 0 | 2 | 3 | |
Others | 47 | 18 | 7 | |
100 | 100 | 100 | ||
TechInnScope | % | % | % | |
Chemical | 38 | 29 | 42 | |
Computer and communication | 3 | 4 | 7 | |
Drugs and medicals | 28 | 39 | 41 | |
Electrical and electronic | 2 | 3 | 1 | |
Mechanical | 0 | 6 | 3 | |
Others | 29 | 19 | 5 | |
Total | 100 | 100 | 100 | |
AssigPat | % | % | % | |
Individual | 2 | 1 | 1 | |
Institution | 54 | 26 | 65 | |
Firm | 44 | 73 | 34 | |
Total | 100 | 100 | 100 | |
MobInv | % | % | % | |
1 | 93 | 90 | 99 | |
More than 1 | 7 | 10 | 1 | |
Total | 100 | 100 | 100 | |
SizeRT | Average | Average | Average | |
Chemical | 5 | 7 | 9 | |
Computer and communication | 2 | 6 | 5 | |
Drugs and medicals | 5 | 9 | 9 | |
Electrical and electronic | 1 | 4 | 1 | |
Mechanical | 3 | 6 | 6 | |
Others | 4 | 7 | 10 | |
Total average | 3 | 7 | 7 | |
Women by team participation | % | % | % | |
Chemical | 50 | 45 | 35 | |
Computer and communication | 75 | 43 | 47 | |
Drugs and medicals | 67 | 50 | 40 | |
Electrical and electronic | 100 | 59 | 56 | |
Mechanical | 66 | 49 | 37 | |
Others | 60 | 64 | 36 | |
Total average | 70 | 52 | 42 |
7.3.3 Hypothesis Research and Model Specification
Considering the historical marginalization of women in S&T activities, we expect that women possess potential abilities for invention-innovation and that their inclusion in the sphere, in co-participation with men, will positively affect the creation of new processes and technological products. The factors associated with innovation that especially affect this propensity are (1) the stock of previous knowledge, (2) the type of patent assignee, (3) the technological field of the patent, (4) the invention scope of each patent, (5) international inventor mobility, and (6) patent value. Therefore, we propose a regression model, which is estimated for each woman inventor in Mexico, Brazil, and India and is specified in the following equation:
Where the dependent variable:
According to this estimate, a reduced WmjPropInvij is shown in the three countries (Table 7.3). Compared with Mexico, India and Brazil are relatively higher. They are similar in all technological fields – except that India is higher in the electrical and electronics sector while Brazil is higher in the pharmaceutical and medical sectors. Mexico is notably lower in almost all sectors, although less so in the pharmaceutical, medical, and chemical sectors.
Mexico | Brazil | India | ||
---|---|---|---|---|
WmjPropInvij | Average | Average | Average | |
Chemical | 0.19 | 0.26 | 0.21 | |
Computer and communication | 0.08 | 0.22 | 0.23 | |
Drugs and medicals | 0.22 | 0.4 | 0.26 | |
Electrical and electronic | 0.08 | 0.23 | 0.12 | |
Mechanical | 0.16 | 0.24 | 0.21 | |
Others | 0.14 | 0.24 | 0.21 | |
Total average | 0.15 | 0.27 | 0.21 |
The independent variables are taken from USPTO patent information. They characterize the inventions. Based on the literature reviewed, these variables allow us to assume how each invention influences WmjPropInvij (Table 7.4).
Variable | Variable proxy | It is expected that |
---|---|---|
Stock of previous knowledge. Number of BwPatCit as a proxy variable | … the higher the BwPatCit, which reflects increased R&D expenditure, the higher is the propensity of women to become inventors (Aldieri et al., Reference Aldieri, Carlucci, Paolo Vinci and Yigitcanlar2019; Duguet and MacGarvie, Reference Duguet and MacGarvie2005; Guzmán et al., Reference Guzmán, Brown and Acatitla2020; Hall, Reference Hall, Fagerberg and Mowery2005; Jaffe et al., Reference Jaffe, Trajtenberg and Henderson1993) | |
SizeRT | Size of research teams. Number of inventors involved in the generation of the patent | … a larger research team, by incorporating women, increases the diversity of new technological ideas and therefore the propensity of women to become inventors (Bianco and Venezia, Reference Bianco and Venezia2019; Breitzman and Thomas, Reference Breitzman and Thomas2015) |
AssigPat | Patent assignee. 1 = Firm; 2 = Institution; 3 = Individual; 4 = Co-patent firms; 5 = Co-patent firm-institution | … the higher number of firms patents a greater probability to scale at the industrial level, to eventually commercialize, and for government and university innovation efforts to crystallize in patents, and therefore contributed to a higher propensity of women to become inventors (Chatterjee and Ramu, Reference Chatterjee and Ramu2017; Giuri et al., Reference Giuri, Grimaldi, Kochenkova, Munari and Toschi2020; Meng, Reference Meng2018; Murray, Reference Murray2004; Whittington and Smith-Doerr, Reference Whittington and Smith-Doerr2008; Woolley, Reference Woolley2019) |
TechField | Technological field of the patent. 1 = Chemical; 2 = Computer and communication; 3 = Drugs and medical; 4 = Electrical and electronic; 5 = Mechanical and 6 = Others | … the higher distribution of women inventors by technological fields will be differentiated among countries according to the importance of those fields and the advances in science and technology in each case (Cook and Kongcharoen, Reference Cook and Kongcharoen2010; Hunt et al., Reference Hunt, Garant, Herman and Munroe2012; Kahler, Reference Kahler2012; Maldonado Carbajal et al., Reference Maldonado Carbajal, Chávez and de Jesús Peredo2015; Martínez et al., Reference Lax-Martínez, Raffo and Saito2016) |
TechInnScope | Invention scope of each patent. Number of claims as the proxy variable | … the higher the number of claims, the higher is the propensity of women to become inventors (Jensen et al., Reference Jensen, Kovács and Sorenson2018) |
MobIn | International inventor mobility. Dummy variable, where 0 = inventors of the same nationality; 1 = foreign inventors | … the higher mobility favors the spillover of codified and tacit knowledge, and therefore contributes to as higher propensity of women to become inventors (Bianco and Venezia, Reference Bianco and Venezia2019) |
ValuePat | Value of the patent. This variable specifies the number of patent citations made in successive patents. A proxy variable is the number of FwPatCit obtained | … the larger the FwPatCit, which suggests a wider diffusion of new patents and increased importance of new knowledge, the higher is the propensity of women to become inventors (Bransteter, Reference Branstetter2003; Branstetter and Ogura, Reference Branstetter and Ogura2005; Breschi et al., Reference Breschi, Lissoni and Montobbio2005) |
7.3.4 Analysis of Outcomes
According to the results of each model, we have partially verified our hypothesis, with a different pattern in each of the three countries. The independent variables – the stock of prior knowledge, the size of inventor teams, the type of patent holder, technological field, and presence of foreign influence – impact positively on women’s propensity to invent (WmjPropInvij) in a differentiated manner in each country. In some cases, they did not. These results are detailed subsequently and shown in Table 7.5.
Variable | Mexico | Brazil | India |
---|---|---|---|
0.0004** | 0 | ||
SizeRT | 0.020*** | 0.051*** | 0 |
AssigPat | |||
Institution | 0.020*** | ||
Firm | 0.081*** | 0.006 | 0.0442*** |
Individual | 0.104** | ||
TechField | |||
Computer and communication; | -0.004 | -0.023 | 0.03 |
Drugs and medicals | -0.007 | 0.055** | 0.024 |
Electrical and electronic | -0.035 | 0.157*** | 0.008 |
Mechanical | 0.039** | 0.017 | -0.023 |
Others | -0.031 | 0.130*** | 0.019 |
TechInnScope | 0 | 0.0002*** | |
MobInv | 0.140*** | -0.083 | 0.017 |
ValuePat | 0 | 0 | 0.045 |
_cons | 0.046 | -0.073 | -0.05 |
0.236 | 0.163 | 0.477 | |
N | 61 | 299 | 728 |
R2 | 0.67 | 0.76 | 0.68 |
F | 6.89 | 9.14 | 3.06 |
Note: p < 0.01*** p < 0.05** p < 0.010*
Concerning the stock of previous knowledge, has been statistically significant only in Mexico. According to our elasticity estimation (0.012), if the number of BwPatCit increases by 10 percent, the propensity for women to invent grows by 0.12 percent. In the tradition of Griliches (Reference Griliches1990), several authors have used BwPatCit to study knowledge flows and FwPatCit to analyze the invention value (Gay et al., Reference Gay, Latham and Le Bas2008; Lerner and Seru, Reference Lerner and Seru2017, among others). An essential aspect to consider, however, is when it is used as a proxy value for knowledge links among inventors to explore the nature of knowledge flows and the factors affecting these flows (Jaffe and Rassenfosse, Reference Jaffe and de Rassenfosse2017). In this research, we consider BwPatCit as the stock of previous knowledge upon which inventors develop their new ideas. As references to prior technology that has been used or on which current patents build (Hall, Reference Hall, Fagerberg and Mowery2005), BwPatCit involves an R&D effort, which, when increased, makes it possible to include women in inventive activities. The fact that it has positively impacted WmjPropInvij is a reminder of the need to disclose patents, just as they are meant to be.
Relative to SizeRT, there is a positive influence in Mexico and Brazil. When the research team is 10 percent bigger, WmjPropInvij increases 4.9 percent (Mexico) and 10.9 percent (Brazil). Bianco and Venezia (Reference Bianco and Venezia2019: 14) state that “the presence of more members on a team certainly brings more diverse and variegated knowledge and can therefore produce better results.”
Contrary to the importance of institution holders in Mexico and India, firms have a positive influence on WmjPropInvij in both countries (0.08 and 0.04, respectively). Institutions have been positively significant for Mexico as well, but only individual assignees are positively significant in Brazil. The reason for a positive effect is understandable considering the importance of public R&D expenditure in Mexico and India, even though such expenditure remains marginal in Mexico. Women academic inventors are key to understanding their involvement in scientific research – and eventually the discovery of new products and processes that could make it to the productive sphere, depending on the degree of links between firms and institutions. According to Murray (Reference Murray2004: 643), “The first element that the firm may leverage is the academic’s local laboratory network – a network to current and former students and advisors established by the inventor through his laboratory life.”
Although Martínez et al. (Reference Lax-Martínez, Raffo and Saito2016), in their study of women inventors from 182 countries with PCT patents, do not analyze the causal effects of ownership on WmjPropInvij, they have identified that an average of 48 percent of women participate in the academic sector, while only 28 percent are in the business sector. Their findings coincide with previous studies (Whittington and Smith-Doerr, Reference Whittington and Smith-Doerr2008). It is pointed out that China, Brazil, and Spain have higher percentages of PCT patent applications with women inventors in the academic sector (around two-thirds). In particular, Mexico has 69 percent participation in the academic sector and 26 percent in firms (Martínez et al., Reference Lax-Martínez, Raffo and Saito2016). Unlike India, Mexico has few entrepreneurial businesspeople, and technological dependence dominates every sector. Women in India have increased their presence in business activities, and they discuss the challenges that they have to face to reduce inequalities (Chatterjee and Ramu, Reference Chatterjee and Ramu2017). In Brazil, however, the increase in R&D efforts surpasses the inventive activity of institutions toward companies (Maldonado Carbajal et al., Reference Maldonado Carbajal, Chávez and de Jesús Peredo2015).
Regarding the technological field, the mechanical sector is statistically significant for Mexico, while the fields of pharmaceutical and medical, electrical and electronic, and others are statistically significant for Brazil. In India, however, not a single field has an impact on WmjPropInvij. We have confirmed the results of previous research on the positive influence of the pharmaceutical and medical sector in Mexico and Brazil, but we are now modeling each woman inventor and not each patent (Guzmán and Orozco, Reference Guzmán, Orozco and Perrotini-Hernández2011; Maldonado Carbajal et al., Reference Maldonado Carbajal, Chávez and de Jesús Peredo2015). The current study is also connected to the importance achieved by female graduates and researchers in medicine and related disciplines. Our findings coincide with the study by Cook and Kongcharoen (Reference Cook and Kongcharoen2010), where advancement by women in life sciences places them in the realms of innovation and marketing. The involvement of women inventors in different technological fields is one of the topics that have been addressed more in studies, especially with a focus on identification. Some of these studies find that technological fields differ across countries (Martínez et al., Reference Lax-Martínez, Raffo and Saito2016) and are probably associated with the country’s technological specialization, as in certain Latin American countries where chemistry and metallurgy are the main sectors (Sifontes Fernandez and Morales Valera, Reference Sifontes Fernandez and Morales Valera2014). Few studies have thus far analyzed the impact of factors relating to the nature of innovation on the propensity of women to invent, let alone provide analysis based on a micro-level model that considers each woman inventor. Hunt et al. (Reference Hunt, Garant, Herman and Munroe2012) find that to close the gender gaps in patenting, it is essential for the participation of women in physics and engineering to grow. That could increase the GDP by 2.7 percent if we keep in mind GDP growth among countries in the long run and that patents are found among explanatory variables of the country.
In economic literature, mobility has been detected as a factor favorably affecting innovation. In Mexico, we find that the presence of foreign inventors has a positive influence on research teams; when there is a 10 percent increase in foreign inventors, WmjPropInvij grows by 0.5 percent. The results reinforce the finding of Bianco and Venezia (Reference Bianco and Venezia2019: 14) that “the presence of external inventors broadens the scope of the patent, [and] longer working experience of inventors affects technological and market value, whereas inventors who have already patented in the past develop new product architectures, with broader scope and higher scientific value.” The results also confirm consistency with contributions by previous authors, underscoring that openness and experience positively influence the innovative capabilities of teams. In India, female researcher mobility tends to occur outwardly, and knowledge spillovers take place in research centers with other colleagues. The need for such mobility finally finds channels of communication in India.
We cannot, however, confirm the influence of patent value for any country. The fact that the countries studied are emerging may mean their innovations are essentially incremental as they follow leading countries, so they are not as well recognized as industrialized countries yet. Patent value is still low, but it might be interesting to study Indian, Brazilian, and Mexican inventors collaborating on patents in developed countries and identify the contributions of women therein. New technology patented by mixed teams is often cited in the following patents. This suggests that diversity of ideas could lead to the development of patents that are more useful and consequently more successful (Hunt et al., Reference Hunt, Garant, Herman and Munroe2012).
Conclusion and Recommended Policies
Some countries have achieved gender parity in scientific training or are close to doing so. For others, the gap remains wide. Among emerging countries, Brazil, India, and Mexico have made progress in overcoming gender disparities in education, with differences in specializations. Brazil and India stood out for striving to increase R&D spending, thereby helping to incorporate more researchers – among them women – while expanding innovative domestic capacities. Such development is especially notable in India, whose patents are in high technology (Mani, Reference Mani2015).
Analyzing each country separately, we observed different patterns for women inventors in the three countries. We also found that some policies could be furthered through our model’s estimations.
The evidence of factors in Mexico that positively affect WmjPropInvij indicates that policies must be oriented toward fostering diffusion of the technological knowledge codified in patent documents. As team inventors increase the number of BwPatCit, the stock of previous knowledge ( and the propensity of women to join as inventors could go up.Footnote 10 Another recommendation is to increase inventor team size and include more women inventors. Indeed, an increase in innovation in firms and institutions favors WmjPropInvij. As Mexico has specialized in the mechanical sector, one recommendation is to support development and innovation in this area, incorporating more women inventors and thus diminishing gender inequalities. That, nevertheless, does not eliminate the importance of other fields, especially those with greater knowledge intensity. Finally, the presence of foreign researchers in the inventor teams could be suggested as a way of having positive effects on increasing WmjPropInvij.
In Brazil, the results suggest a focus on the following policies: (1) increasing the number of researchers on teams, encouraging women to join; (2) further stimulating individual innovation (surprisingly for this Latin American country); and (3) coinciding with Brazil’s specialization, strengthening patented innovation in the pharmaceutical and medical, electrical and electronic, and sectors in the “others” category.
Finally, in India, the right policies could be directed to improve innovative firms, and therefore patents, and incorporate more women in R&D activities – especially in the pharmaceutical and medical sector, the electrical and electronic sector, and sectors in the “others” category. Encouraging an increase in claims per patent (TechInnScope), which is apparently associated with seeking a broader range of claims, requires not only the talents of men but also women. This requirement differs from the idea that each sex has different creative abilities neurologically. While India is the most backward country in terms of the various aspects of the GII, the country has registered steps forward that make greater inventive activity possible for women and are thus reflected in the dynamism of patent growth, especially those that are more technologically intense. The potential growth and well-being of nations in the world will have to be supported by the merging of cognitive skills and innovation of women and men.
This empirical study focused on a model where independent variables correspond to patent data that characterize innovation in each USPTO patent. However, the results could be strengthened by incorporating individual information from women inventors on their level of education and age, among other characteristics. In future research, we can go deeper with new model proposals.