Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T08:26:33.479Z Has data issue: false hasContentIssue false

15 - Molecular mechanisms of cellular mechanotransduction in wound healing

from Part II - Recent progress in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 266 - 294
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alegre-Cebollada, J., Kosuri, P., Giganti, D., Eckels, E., Rivas-Pardo, J. A., Hamdani, N., Warren, C. M., et al. (2014). “S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding.” Cell 156: 12351246.CrossRefGoogle ScholarPubMed
Altroff, H., Choulier, L. and Mardon, H. J. (2003). “Synergistic activity of the ninth and tenth FIII domains of human fibronectin depends upon structural stability.” J Biol Chem 278: 491497.CrossRefGoogle ScholarPubMed
Ananthanarayanan, B., Kim, Y. and Kumar, S. (2011). “Elucidating the mechanobiology of malignant brain tumors using a brain matrix-mimetic hyaluronic acid hydrogel platform.” Biomaterials 32: 79137923.CrossRefGoogle ScholarPubMed
Aratyn-Schaus, Y. and Gardel, M. L. (2010). “Transient frictional slip between integrin and the ECM in focal adhesions under myosin II tension.” Curr Biol 20: 11451153.CrossRefGoogle ScholarPubMed
Aratyn-Schaus, Y., Oakes, P. W. and Gardel, M. L. (2011). “Dynamic and structural signatures of lamellar actomyosin force generation.” Mol Biol Cell 22: 13301339.CrossRefGoogle ScholarPubMed
Arora, P. D., Narani, N. and Mcculloch, C. A. (1999). “The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts.” Am J Pathol 154: 871882.CrossRefGoogle ScholarPubMed
Baird, A., Schubert, D., Ling, N. and Guillemin, R. (1988). “Receptor- and heparin-binding domains of basic fibroblast growth factor.” Proc Natl Acad Sci USA 85: 23242328.CrossRefGoogle ScholarPubMed
Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., et al. (2001). “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates.” Nat Cell Biol 3: 466472.CrossRefGoogle ScholarPubMed
Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. and Hinz, B. (2012). “The mechanical memory of lung myofibroblasts.” Integr Biol (Camb) 4: 410421.CrossRefGoogle ScholarPubMed
Barker, T. H., et al. (2004a). “Thy-1 regulates fibroblast focal adhesions, cytoskeletal organization and migration through modulation of p190 RhoGAP and Rho GTPase activity.” Exp Cell Res 295: 488496.CrossRefGoogle ScholarPubMed
Barker, T. H., et al. (2004b). “Thrombospondin-1-induced focal adhesion disassembly in fibroblasts requires Thy-1 surface expression, lipid raft integrity, and Src activation.” J Biol Chem 279: 2351023516.CrossRefGoogle ScholarPubMed
Barry-Hamilton, V., Spangler, R., Marshall, D., McCauley, S., Rodriguez, H. M., Oyasu, M., Mikels, A., et al. (2010). “Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment.” Nat Med 16: 10091017.CrossRefGoogle ScholarPubMed
Betz, P., Nerlich, A., Wilske, J., Tubel, J., Penning, R. and Eisenmenger, W. (1993). “Immunohistochemical localization of collagen types I and VI in human skin wounds.” Int J Legal Med 106: 3134.CrossRefGoogle ScholarPubMed
Bhadriraju, K., Yang, M., Alom Ruiz, S., Pirone, D., Tan, J. and Chen, C. S. (2007). “Activation of ROCK by RhoA is regulated by cell adhesion, shape, and cytoskeletal tension.” Exp Cell Res 313: 36163623.CrossRefGoogle Scholar
Boettiger, D. (2012). “Mechanical control of integrin-mediated adhesion and signaling.” Curr Opin Cell Biol 24: 592599.CrossRefGoogle ScholarPubMed
Booth, A. J., Hadley, R., Cornett, A. M., Dreffs, A. A., Matthes, S. A., Tsui, J. L., Weiss, K., et al. (2012). “Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation.” Am J Respir Crit Care Med 186: 866876.CrossRefGoogle ScholarPubMed
Brown, A. C., Baker, S. R., Douglas, A. M., Keating, M., Alvarez-Elizondo, M. B., Botvinick, E. L., Guthold, M., Barker, T. H. (2015). “Molecular interference of fibron’s divalent polymerization mechanism enables modulation of multiscale material properties.” Biomaterials 49: 2736.CrossRefGoogle ScholarPubMed
Brown, A. C., Fiore, V. F., Sulchek, T. A. and Barker, T. H. (2013). “Physical and chemical microenvironmental cues orthogonally control the degree and duration of fibrosis-associated epithelial-to-mesenchymal transitions.” J Pathol 229: 2535.CrossRefGoogle ScholarPubMed
Brown, A. C., Rowe, J. A. and Barker, T. H. (2011). “Guiding epithelial cell phenotypes with engineered integrin-specific recombinant fibronectin fragments.” Tissue Eng Part A 17: 139150.CrossRefGoogle ScholarPubMed
Brown, E. J. and Frazier, W. A. (2001). “Integrin-associated protein (CD47) and its ligands.” Trends Cell Biol 11: 130135.CrossRefGoogle ScholarPubMed
Calderwood, D. A., Zent, R., Grant, R., Rees, D. J., Hynes, R. O. and Ginsberg, M. H. (1999). “The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation.” J Biol Chem 274: 2807128074.CrossRefGoogle ScholarPubMed
Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., Van De Rijn, M., Botstein, D. and Brown, P. O. (2002). “Diversity, topographic differentiation, and positional memory in human fibroblasts.” Proc Natl Acad Sci USA 99: 1287712882.CrossRefGoogle ScholarPubMed
Chaudhuri, O., Koshy, S. T., Branco Da Cunha, C., Shin, J. W., Verbeke, C. S., Allison, K. H. and Mooney, D. J. (2014). “Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium.” Nat Mater 13: 970978.CrossRefGoogle ScholarPubMed
Chen, W., Lou, J., Evans, E. A. and Zhu, C. (2012). “Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells.” J Cell Biol 199: 497512.CrossRefGoogle ScholarPubMed
Choi, C. K., Vicente-Manzanares, M., Zareno, J., Whitmore, L. A., Mogilner, A. and Horwitz, A. R. (2008). “Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner.” Nat Cell Biol 10: 10391050.CrossRefGoogle Scholar
Choquet, D., Felsenfeld, D. P. and Sheetz, M. P. (1997). “Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages.” Cell 88: 3948.CrossRefGoogle ScholarPubMed
Chrzanowska-Wodnicka, M. and Burridge, K. (1996). “Rho-stimulated contractility drives the formation of stress fibers and focal adhesions.” J Cell Biol 133: 14031415.CrossRefGoogle ScholarPubMed
Del Pozo, M. A., Alderson, N. B., Kiosses, W. B., Chiang, H. H., Anderson, R. G. and Schwartz, M. A. (2004). “Integrins regulate Rac targeting by internalization of membrane domains.” Science 303: 839842.CrossRefGoogle ScholarPubMed
Del Rio, A., Perez-Jimenez, R., Liu, R., Roca-Cusachs, P., Fernandez, J. M. and Sheetz, M. P. (2009). “Stretching single talin rod molecules activates vinculin binding.” Science 323: 638641.CrossRefGoogle ScholarPubMed
Discher, D. E., Janmey, P. and Wang, Y. L. (2005). “Tissue cells feel and respond to the stiffness of their substrate.” Science 310: 11391143.CrossRefGoogle Scholar
Dolhnikoff, M., Mauad, T. and Ludwig, M. S. (1999). “Extracellular matrix and oscillatory mechanics of rat lung parenchyma in bleomycin-induced fibrosis.” Am J Respir Crit Care Med 160: 17501757.CrossRefGoogle ScholarPubMed
Driskell, R. R., Lichtenberger, B. M., Hoste, E., Kretzschmar, K., Simons, B. D., Charalambous, M., Ferron, S. R., et al. (2013). “Distinct fibroblast lineages determine dermal architecture in skin development and repair.” Nature 504: 277281.CrossRefGoogle ScholarPubMed
Dumbauld, D. W., Lee, T. T., Singh, A., Scrimgeour, J., Gersbach, C. A., Zamir, E. A., Fu, J., et al. (2013). “How vinculin regulates force transmission.” Proc Natl Acad Sci USA 110: 97889793.CrossRefGoogle ScholarPubMed
Ebihara, T., Venkatesan, N., Tanaka, R. and Ludwig, M. S. (2000). “Changes in extracellular matrix and tissue viscoelasticity in bleomycin-induced lung fibrosis. Temporal aspects.” Am J Respir Crit Care Med 162: 15691576.CrossRefGoogle ScholarPubMed
Eggeling, C., Ringemann, C., Medda, R., Schwarzmann, G., Sandhoff, K., Polyakova, S., Belov, V. N., et al. (2009). “Direct observation of the nanoscale dynamics of membrane lipids in a living cell.” Nature 457: 11591162.CrossRefGoogle Scholar
Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. and Stossel, T. P. (2011). “Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A.” Nature 478: 260263.CrossRefGoogle ScholarPubMed
Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L. and Discher, D. E. (2004). “Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments.” J Cell Biol 166: 877887.CrossRefGoogle ScholarPubMed
Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. (2006). “Matrix elasticity directs stem cell lineage specification.” Cell 126: 677689.CrossRefGoogle ScholarPubMed
Evans, E. A. and Calderwood, D. A. (2007). “Forces and bond dynamics in cell adhesion.” Science 316: 11481153.CrossRefGoogle ScholarPubMed
Fiore, V. F., Ju, L., Chen, Y., Zhu, C. and Barker, T. H. (2014). “Dynamic catch of a Thy-1-alpha5beta1+syndecan-4 trimolecular complex.” Nat Commun 5: 4886.CrossRefGoogle ScholarPubMed
Friedland, J. C., Lee, M. H. and Boettiger, D. (2009). “Mechanically activated integrin switch controls alpha5beta1 function.” Science 323: 642644.CrossRefGoogle ScholarPubMed
Fritsch, C., Orian-Rousseaul, V., Lefebvre, O., Simon-Assmann, P., Reimund, J. M., Duclos, B. and Kedinger, M. (1999). “Characterization of human intestinal stromal cell lines: response to cytokines and interactions with epithelial cells.” Exp Cell Res 248: 391406.CrossRefGoogle ScholarPubMed
Galbraith, C. G., Yamada, K. M. and Galbraith, J. A. (2007). “Polymerizing actin fibers position integrins primed to probe for adhesion sites.” Science 315: 992995.CrossRefGoogle ScholarPubMed
Galbraith, C. G., Yamada, K. M. and Sheetz, M. P. (2002). “The relationship between force and focal complex development.” J Cell Biol 159: 695705.CrossRefGoogle ScholarPubMed
Garcia-Alvarez, B., De Pereda, J. M., Calderwood, D. A., Ulmer, T. S., Critchley, D., Campbell, I. D., Ginsberg, M. H. et al. (2003). “Structural determinants of integrin recognition by talin.” Mol Cell 11: 4958.CrossRefGoogle ScholarPubMed
Gardel, M. L., Sabass, B., Ji, L., Danuser, G., Schwarz, U. S. and Waterman, C. M. (2008). “Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed.” J Cell Biol 183: 9991005.CrossRefGoogle ScholarPubMed
Gardel, M. L., Schneider, I. C., Aratyn-Schaus, Y. and Waterman, C. M. (2010). “Mechanical integration of actin and adhesion dynamics in cell migration.” Annu Rev Cell Dev Biol 26: 315333.CrossRefGoogle ScholarPubMed
Gaus, K., Le Lay, S., Balasubramanian, N. and Schwartz, M. A. (2006). “Integrin-mediated adhesion regulates membrane order.” J Cell Biol 174: 725734.CrossRefGoogle ScholarPubMed
Geiger, B., Spatz, J. P. and Bershadsky, A. D. (2009). “Environmental sensing through focal adhesions.” Nat Rev Mol Cell Biol 10: 2133.CrossRefGoogle ScholarPubMed
Geiger, B. and Yamada, K. M. (2011). “Molecular architecture and function of matrix adhesions.” Cold Spring Harb Perspect Biol 3.CrossRefGoogle ScholarPubMed
Goetz, J. G., Minguet, S., Navarro-Lerida, I., Lazcano, J. J., Samaniego, R., Calvo, E., Tello, M., et al. (2011). “Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis.” Cell 146: 148163.CrossRefGoogle ScholarPubMed
Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J. J. and Hinz, B. (2006). “Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers.” J Cell Biol 172: 259268.CrossRefGoogle ScholarPubMed
Goswami, D., Gowrishankar, K., Bilgrami, S., Ghosh, S., Raghupathy, R., Chadda, R., Vishwakarma, R., et al. (2008). “Nanoclusters of GPI-anchored proteins are formed by cortical actin-driven activity.” Cell 135: 10851097.CrossRefGoogle ScholarPubMed
Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., Mclean, M. A. (2010). “Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics.” Nature 466: 263266.CrossRefGoogle ScholarPubMed
Guilluy, C., Swaminathan, V., Garcia-Mata, R., O’Brien, E. T., Superfine, R. and Burridge, K. (2011). “The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins.” Nat Cell Biol 13: 722727.CrossRefGoogle ScholarPubMed
Gurtner, G. C., Werner, S., Barrandon, Y. and Longaker, M. T. (2008). “Wound repair and regeneration.” Nature 453: 314321.CrossRefGoogle ScholarPubMed
Hagood, J. S., Lasky, J. A., Nesbitt, J. E. and Segarini, P. (2001). “Differential expression, surface binding, and response to connective tissue growth factor in lung fibroblast subpopulations.” Chest 120: 64S66S.CrossRefGoogle ScholarPubMed
Hagood, J. S., Mangalwadi, A., Guo, B., Macewen, M. W., Salazar, L. and Fuller, G. M. (2002). “Concordant and discordant interleukin-1-mediated signaling in lung fibroblast thy-1 subpopulations.” Am J Respir Cell Mol Biol 26: 702708.CrossRefGoogle ScholarPubMed
Hagood, J. S., Miller, P. J., Lasky, J. A., Tousson, A., Guo, B., Fuller, G. M. and Mcintosh, J. C. (1999). “Differential expression of platelet-derived growth factor-alpha receptor by Thy-1(-) and Thy-1(+) lung fibroblasts.” Am J Physiol 277: L218L224.Google ScholarPubMed
Hagood, J. S., Prabhakaran, P., Kumbla, P., Salazar, L., Macewen, M. W., Barker, T. H., Ortiz, L. A., et al. (2005). “Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis.” Am J Pathol 167: 365379.CrossRefGoogle ScholarPubMed
Hattori, N., Mochizuki, S., Kishi, K., Nakajima, T., Takaishi, H., D’armiento, J. and Okada, Y. (2009). “MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing.” Am J Pathol 175: 533546.CrossRefGoogle Scholar
Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G. and Chaponnier, C. (2001). “Alpha-smooth muscle actin expression upregulates fibroblast contractile activity.” Mol Biol Cell 12: 27302741.CrossRefGoogle ScholarPubMed
Horowitz, J. C., Rogers, D. S., Simon, R. H., Sisson, T. H. and Thannickal, V. J. (2008). “Plasminogen activation induced pericellular fibronectin proteolysis promotes fibroblast apoptosis.” Am J Respir Cell Mol Biol 38: 7887.CrossRefGoogle ScholarPubMed
Hu, K., Ji, L., Applegate, K. T., Danuser, G. and Waterman-Storer, C. M. (2007). “Differential transmission of actin motion within focal adhesions.” Science 315: 111115.CrossRefGoogle ScholarPubMed
Huang, X., Yang, N., Fiore, V. F., Barker, T. H., Sun, Y., Morris, S. W., Ding, Q., et al. (2012). “Matrix stiffness-induced myofibroblast differentiation is mediated by intrinsic mechanotransduction.” Am J Respir Cell Mol Biol 47: 340348.CrossRefGoogle ScholarPubMed
Humphries, J. D., Byron, A., Bass, M. D., Craig, S. E., Pinney, J. W., Knight, D. and Humphries, M. J. (2009). “Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6.” Sci Signal 2: ra51.CrossRefGoogle ScholarPubMed
Humphries, J. D., Wang, P., Streuli, C., Geiger, B., Humphries, M. J. and Ballestrem, C. (2007). “Vinculin controls focal adhesion formation by direct interactions with talin and actin.” J Cell Biol 179: 10431057.CrossRefGoogle ScholarPubMed
Hynes, R. O. (2002). “Integrins: bidirectional, allosteric signaling machines.” Cell 110: 673687.CrossRefGoogle ScholarPubMed
Ingber, D. E. (2003). “Tensegrity I. Cell structure and hierarchical systems biology.” J Cell Sci 116: 11571173.CrossRefGoogle ScholarPubMed
Ingber, D. E., Madri, J. A. and Folkman, J. (1987). “Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion.” In Vitro Cell Dev Biol 23: 387394.CrossRefGoogle ScholarPubMed
Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. and Sheetz, M. P. (2003). “Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin.” Nature 424: 334337.CrossRefGoogle ScholarPubMed
Jiang, G., Huang, A. H., Cai, Y., Tanase, M. and Sheetz, M. P. (2006). “Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha.” Biophys J 90: 18041809.CrossRefGoogle Scholar
Johnson, C. P., Tang, H. Y., Carag, C., Speicher, D. W. and Discher, D. E. (2007). “Forced unfolding of proteins within cells.” Science 317: 663666.CrossRefGoogle ScholarPubMed
Jurchenko, C., Chang, Y., Narui, Y., Zhang, Y. and Salaita, K. S. (2014). “Integrin-generated forces lead to streptavidin-biotin unbinding in cellular adhesions.” Biophys J 106: 14361446.CrossRefGoogle ScholarPubMed
Kanchanawong, P., Shtengel, G., Pasapera, A. M., Ramko, E. B., Davidson, M. W., Hess, H. F. and Waterman, C. M. (2010). “Nanoscale architecture of integrin-based cell adhesions.” Nature 468: 580584.CrossRefGoogle ScholarPubMed
Kapanci, Y., Desmouliere, A., Pache, J. C., Redard, M. and Gabbiani, G. (1995). “Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor beta and tumor necrosis factor alpha.” Am J Respir Crit Care Med 152: 21632169.CrossRefGoogle ScholarPubMed
Kendall, R. T. and Feghali-Bostwick, C. A. (2011). “Fibroblasts in fibrosis: novel roles and mediators.” Front Pharmacol 5: 123.Google Scholar
Kim, C., Ye, F. and Ginsberg, M. H. (2011). “Regulation of integrin activation.” Annu Rev Cell Dev Biol 27: 321345.CrossRefGoogle ScholarPubMed
Klingberg, F., Hinz, B. and White, E. S. (2013). “The myofibroblast matrix: implications for tissue repair and fibrosis.” J Pathol 229: 298309.CrossRefGoogle ScholarPubMed
Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. and Zhu, C. (2009). “Demonstration of catch bonds between an integrin and its ligand.” J Cell Biol 185: 12751284.CrossRefGoogle ScholarPubMed
Kong, F., Li, Z., Parks, W. M., Dumbauld, D. W., Garcia, A. J., Mould, A. P., Humphries, M. J. and Zhu, C. (2013). “Cyclic mechanical reinforcement of integrin-ligand interactions.” Mol Cell 49: 10601068.CrossRefGoogle ScholarPubMed
Kostic, A. and Sheetz, M. P. (2006). “Fibronectin rigidity response through Fyn and p130Cas recruitment to the leading edge.” Mol Biol Cell 17: 26842695.CrossRefGoogle Scholar
Krammer, A., Lu, H., Isralewitz, B., Schulten, K. and Vogel, V. (1999). “Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch.” Proc Natl Acad Sci USA 96: 13511356.CrossRefGoogle ScholarPubMed
Kulasekaran, P., Scavone, C. A., Rogers, D. S., Arenberg, D. A., Thannickal, V. J. and Horowitz, J. C. (2009). “Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation.” Am J Respir Cell Mol Biol 4: 484493.CrossRefGoogle Scholar
Kuo, J. C., Han, X., Hsiao, C. T., Yates, J. R., 3rd, and Waterman, C. M. (2011). “Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation.” Nat Cell Biol 13: 383393.CrossRefGoogle ScholarPubMed
Leahy, D. J., Aukhil, I. and Erickson, H. P. (1996). “2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region.” Cell 84: 155164.CrossRefGoogle ScholarPubMed
Leitinger, B. and Hogg, N. (2002). “The involvement of lipid rafts in the regulation of integrin function.” J Cell Sci 115: 963972.CrossRefGoogle ScholarPubMed
Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., Fong, S. F., et al. (2009). “Matrix crosslinking forces tumor progression by enhancing integrin signaling.” Cell 139: 891906.CrossRefGoogle ScholarPubMed
Li, L., Huang, H. H., Badilla, C. L. and Fernandez, J. M. (2005). “Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module.” J Mol Biol 345: 817826.CrossRefGoogle Scholar
Lingwood, D. and Simons, K. (2007). “Detergent resistance as a tool in membrane research.” Nat Protoc 2: 21592165.CrossRefGoogle ScholarPubMed
Lingwood, D. and Simons, K. (2010). “Lipid rafts as a membrane-organizing principle.” Science 327: 4650.CrossRefGoogle ScholarPubMed
Little, W. C., Schwartlander, R., Smith, M. L., Gourdon, D. and Vogel, V. (2009). “Stretched extracellular matrix proteins turn fouling and are functionally rescued by the chaperones albumin and casein.” Nano Lett 9: 41584167.CrossRefGoogle ScholarPubMed
Liu, F., Mih, J. D., Shea, B. S., Kho, A. T., Sharif, A. S., Tager, A. M. and Tschumperlin, D. J. (2010). “Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression.” J Cell Biol 190: 693706.CrossRefGoogle ScholarPubMed
Liu, Y., Medda, R., Liu, Z., Galior, K., Yehl, K., Spatz, J. P., Cavalcanti-Adam, E. A. et al. (2014). “Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission.” Nano Lett 14: 55395546.CrossRefGoogle ScholarPubMed
Liu, Y., Yehl, K., Narui, Y. and Salaita, K. (2013). “Tension sensing nanoparticles for mechano-imaging at the living/nonliving interface.” J Am Chem Soc 135: 53205323.CrossRefGoogle ScholarPubMed
Luo, B. H., Carman, C. V. and Springer, T. A. (2007). “Structural basis of integrin regulation and signaling.” Annu Rev Immunol 25: 619647.CrossRefGoogle ScholarPubMed
Machacek, M., Hodgson, L., Welch, C., Elliott, H., Pertz, O., Nalbant, P., Abell, A., et al. (2009). “Coordination of Rho GTPase activities during cell protrusion.” Nature 461: 99103.CrossRefGoogle ScholarPubMed
Margadant, F., Chew, L. L., Hu, X., Yu, H., Bate, N., Zhang, X. and Sheetz, M. (2011). “Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin.” PLoS Biol 9: e1001223.CrossRefGoogle ScholarPubMed
Markowski, M. C., Brown, A. C. and Barker, T. H. (2012). “Directing epithelial to mesenchymal transition through engineered microenvironments displaying orthogonal adhesive and mechanical cues.” J Biomed Mater Res A 100: 21192127.CrossRefGoogle ScholarPubMed
Martino, M. M., Briquez, P. S., Guc, E., Tortelli, F., Kilarski, W. W., Metzger, S., Rice, J. J., (2011). “Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing.” Science 343: 885888.CrossRefGoogle Scholar
Martino, M. M., Briquez, P. S., Ranga, A., Lutolf, M. P. and Hubbell, J. A. (2013). “Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix.” Proc Natl Acad Sci USA 110: 45634568.CrossRefGoogle ScholarPubMed
Martino, M. M., Mochizuki, M., Rothenfluh, D. A., Rempel, S. A., Hubbell, J. A. and Barker, T. H. (2009). “Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability.” Biomaterials 30: 10891097.CrossRefGoogle ScholarPubMed
Miroshnikova, Y. A., Jorgens, D. M., Spirio, L., Auer, M., Sarang-Sieminski, A. L. and Weaver, V. M. (2011). “Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties.” Phys Biol 8: 026013.CrossRefGoogle ScholarPubMed
Moore, S. W., Roca-Cusachs, P. and Sheetz, M. P. (2010). “Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing.” Dev Cell 19: 194206.CrossRefGoogle ScholarPubMed
Na, S., Collin, O., Chowdhury, F., Tay, B., Ouyang, M., Wang, Y. and Wang, N. (2008). “Rapid signal transduction in living cells is a unique feature of mechanotransduction.” Proc Natl Acad Sci USA, 105: 66266631.CrossRefGoogle ScholarPubMed
Nakamura, F., Song, M., Hartwig, J. H. and Stossel, T. P. (2014). “Documentation and localization of force-mediated filamin A domain perturbations in moving cells.” Nat Commun 5: 4656.CrossRefGoogle ScholarPubMed
Ng, S. P., Billings, K. S., Randles, L. G. and Clarke, J. (2008). “Manipulating the stability of fibronectin type III domains by protein engineering.” Nanotechnology 19: 384023.CrossRefGoogle ScholarPubMed
Nobes, C. D. and Hall, A. (1995). “Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia.” Cell 81: 5362.CrossRefGoogle ScholarPubMed
Nurden, A. T., Nurden, P., Sanchez, M., Andia, I. and Anitua, E. (2008). “Platelets and wound healing.” Front Biosci 13: 35323548.Google ScholarPubMed
Oakes, P. W., Beckham, Y., Stricker, J. and Gardel, M. L. (2012). “Tension is required but not sufficient for focal adhesion maturation without a stress fiber template.” J Cell Biol 196: 363374.CrossRefGoogle Scholar
Oberhauser, A. F., Badilla-Fernandez, C., Carrion-Vazquez, M. and Fernandez, J. M. (2002). “The mechanical hierarchies of fibronectin observed with single-molecule AFM.” J Mol Biol 319: 433447.CrossRefGoogle ScholarPubMed
Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. and Gundersen, G. G. (2004). “Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling.” Science 303: 836839.CrossRefGoogle ScholarPubMed
Parker, M. W., Rossi, D., Peterson, M., Smith, K., Sikstrom, K., White, E. S., Connett, J. E. (2014). “Fibrotic extracellular matrix activates a profibrotic positive feedback loop.” J Clin Invest 124: 16221635.CrossRefGoogle ScholarPubMed
Pasapera, A. M., Schneider, I. C., Rericha, E., Schlaepfer, D. D. and Waterman, C. M. (2010). “Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation.” J Cell Biol 188: 877890.CrossRefGoogle ScholarPubMed
Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., et al. (2005). “Tensional homeostasis and the malignant phenotype.” Cancer Cell 8: 241254.CrossRefGoogle ScholarPubMed
Pelham, R. J. Jr. and Wang, Y. (1997). “Cell locomotion and focal adhesions are regulated by substrate flexibility.” Proc Natl Acad Sci USA 94: 1366113665.CrossRefGoogle ScholarPubMed
Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. and Danuser, G. (2004). “Two distinct actin networks drive the protrusion of migrating cells.” Science 305: 17821786.CrossRefGoogle ScholarPubMed
Popova, A. P., Bozyk, P. D., Goldsmith, A. M., Linn, M. J., Lei, J., Bentley, J. K. and Hershenson, M. B. (2010). “Autocrine production of TGF-beta1 promotes myofibroblastic differentiation of neonatal lung mesenchymal stem cells.” Am J Physiol Lung Cell Mol Physiol 298: L735L743.CrossRefGoogle ScholarPubMed
Ridley, A. J. and Hall, A. (1992). “The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.” Cell 70: 389399.CrossRefGoogle ScholarPubMed
Riveline, D., Zamir, E., Balaban, N. Q., Schwarz, U. S., Ishizaki, T., Narumiya, S., Kam, Z., et al. (2001). “Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism.” J Cell Biol 153: 11751186.CrossRefGoogle ScholarPubMed
Rossier, O., Octeau, V., Sibarita, J. B., Leduc, C., Tessier, B., Nair, D., Gatterdam, V., (2012). “Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations inside focal adhesions.” Nat Cell Biol 14: 10571067.CrossRefGoogle ScholarPubMed
Rubashkin, M. G., Cassereau, L., Bainer, R., Dufort, C. C., Yui, Y., Ou, G., Paszek, M. J. (2014). “Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate.” Cancer Res 74: 45974611.CrossRefGoogle ScholarPubMed
Saez, A., Buguin, A., Silberzan, P. and Ladoux, B. (2005). “Is the mechanical activity of epithelial cells controlled by deformations or forces?Biophys J 89: L5254.CrossRefGoogle ScholarPubMed
Sanders, Y. Y., Kumbla, P. and Hagood, J. S. (2007). “Enhanced myofibroblastic differentiation and survival in Thy-1(-) lung fibroblasts.” Am J Respir Cell Mol Biol 36: 226235.CrossRefGoogle ScholarPubMed
Sanders, Y. Y., Pardo, A., Selman, M., Nuovo, G. J., Tollefsbol, T. O., Siegal, G. P. and Hagood, J. S. (2008). “Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis.” Am J Respir Cell Mol Biol 39: 610618.CrossRefGoogle ScholarPubMed
Sansores, R. H., Ramirez-Venegas, A., Perez-Padilla, R., Montano, M., Ramos, C., Becerril, C., Gaxiola, M., et al. (1996). “Correlation between pulmonary fibrosis and the lung pressure-volume curve.” Lung 174: 315323.CrossRefGoogle ScholarPubMed
Santhanam, L., Tuday, E. C., Webb, A. K., Dowzicky, P., Kim, J. H., Oh, Y. J., Sikka, G., et al. (2010). “Decreased S-nitrosylation of tissue transglutaminase contributes to age-related increases in vascular stiffness.” Circ Res 107: 117125.CrossRefGoogle ScholarPubMed
Schiller, H. B., Hermann, M. R., Polleux, J., Vignaud, T., Zanivan, S., Friedel, C. C., Sun, Z., et al. 2013. “Beta1– and alphav-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments.” Nat Cell Biol 15: 625636.CrossRefGoogle ScholarPubMed
Sharma, P., Varma, R., Sarasij, R. C., Ira, , Gousset, K., Krishnamoorthy, G., Rao, M. et al. (2004). “Nanoscale organization of multiple GPI-anchored proteins in living cell membranes.” Cell 116: 577589.CrossRefGoogle ScholarPubMed
Shattil, S. J. (2005). “Integrins and Src: dynamic duo of adhesion signaling.” Trends Cell Biol 15: 399403.CrossRefGoogle ScholarPubMed
Shima, T., Nada, S. and Okada, M. (2003). “Transmembrane phosphoprotein Cbp senses cell adhesion signaling mediated by Src family kinase in lipid rafts.” Proc Natl Acad Sci USA 100: 1489714902.CrossRefGoogle ScholarPubMed
Simons, K. and Gerl, M. J. (2010). “Revitalizing membrane rafts: new tools and insights.” Nat Rev Mol Cell Biol 11: 688699.CrossRefGoogle ScholarPubMed
Simons, K. and Ikonen, E. (1997). “Functional rafts in cell membranes.” Nature 387: 569572.CrossRefGoogle ScholarPubMed
Smilenov, L. B., Mikhailov, A., Pelham, R. J., Marcantonio, E. E. and Gundersen, G. G. (1999). “Focal adhesion motility revealed in stationary fibroblasts.” Science 286: 11721174.CrossRefGoogle ScholarPubMed
Smith, M. L., Gourdon, D., Little, W. C., Kubow, K. E., Eguiluz, R. A., Luna-Morris, S. and Vogel, V. (2007). “Force-induced unfolding of fibronectin in the extracellular matrix of living cells.” PLoS Biol: e268.CrossRefGoogle ScholarPubMed
Sohier, J., Carubelli, I., Sarathchandra, P., Latif, N., Chester, A. H. and Yacoub, M. H. (2014). “The potential of anisotropic matrices as substrate for heart valve engineering.” Biomaterials 35: 18331844.CrossRefGoogle ScholarPubMed
Solon, J., Levental, I., Sengupta, K., Georges, P. C. and Janmey, P. A. (2007). “Fibroblast adaptation and stiffness matching to soft elastic substrates.” Biophys J 93: 44534461.CrossRefGoogle ScholarPubMed
Sorrell, J. M. and Caplan, A. I. (2009). “Fibroblasts-a diverse population at the center of it all.” Int Rev Cell Mol Biol 276: 161214.CrossRefGoogle Scholar
Specks, U., Nerlich, A., Colby, T. V., Wiest, I. and Timpl, R. (1995). “Increased expression of type VI collagen in lung fibrosis.” Am J Respir Crit Care Med 151: 19561964.CrossRefGoogle ScholarPubMed
Stabenfeldt, S. E., Gourley, M., Krishnan, L., Hoying, J. B., Barker, T. H. (2012). “Engineering fobrin polymers through engagement of alternative polymerization mechanisms.” Biomaterials 33: 535544.CrossRefGoogle ScholarPubMed
Stricker, J., Aratyn-Schaus, Y., Oakes, P. W. and Gardel, M. L. (2011). “Spatiotemporal constraints on the force-dependent growth of focal adhesions.” Biophys J 100: 28832893.CrossRefGoogle ScholarPubMed
Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C., Pinter, J., Pajerowski, J. D., et al. (2013). “Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation.” Science 341: 1240104.CrossRefGoogle ScholarPubMed
Takagi, J., Petre, B. M., Walz, T. and Springer, T. A. (2002). “Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling.” Cell 110: 599611.CrossRefGoogle ScholarPubMed
Tan, Y., Tajik, A., Chen, J., Jia, Q., Chowdhury, F., Wang, L., Chen, J., et al. (2014). “Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression.” Nat Commun 5: 4619.CrossRefGoogle ScholarPubMed
Tee, S. Y., Fu, J., Chen, C. S. and Janmey, P. A. (2011). “Cell shape and substrate rigidity both regulate cell stiffness.” Biophys J 100: L25L27.CrossRefGoogle ScholarPubMed
Thievessen, I., Thompson, P. M., Berlemont, S., Plevock, K. M., Plotnikov, S. V., Zemljic-Harpf, A., Ross, R. S., et al. (2013). “Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth.” J Cell Biol 202: 163177.CrossRefGoogle ScholarPubMed
Thomas, S. M. and Brugge, J. S. (1997). “Cellular functions regulated by Src family kinases.” Annu Rev Cell Dev Biol 13: 513609.CrossRefGoogle ScholarPubMed
Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. and Brown, R. A. (2002). “Myofibroblasts and mechano-regulation of connective tissue remodelling.” Nat Rev Mol Cell Biol 3: 349363.CrossRefGoogle ScholarPubMed
Trappmann, B. and Chen, C. S. (2013). “How cells sense extracellular matrix stiffness: a material’s perspective.” Curr Opin Biotechnol 24: 948953.CrossRefGoogle ScholarPubMed
Tse, J. R. and Engler, A. J. (2010). “Preparation of hydrogel substrates with tunable mechanical properties.” Curr Protoc Cell Biol Chapter 10: Unit 10.16.Google Scholar
Vadillo-Rodriguez, V., Bruque, J. M., Gallardo-Moreno, A. M. and Gonzalez-Martin, M. L. (2013). “Surface-dependent mechanical stability of adsorbed human plasma fibronectin on Ti6Al4V: domain unfolding and stepwise unraveling of single compact molecules.” Langmuir 29: 85548560.CrossRefGoogle ScholarPubMed
van den Bogaart, G., Meyenberg, K., Risselada, H. J., Amin, H., Willig, K. I., Hubrich, B. E., Dier, M., et al. (2011). “Membrane protein sequestering by ionic protein-lipid interactions.” Nature 479: 552555.CrossRefGoogle ScholarPubMed
van Zanten, T. S., Cambi, A., Koopman, M., Joosten, B., Figdor, C. G. and Garcia-Parajo, M. F. (2009). “Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion.” Proc Natl Acad Sci USA 106: 1855718562.CrossRefGoogle ScholarPubMed
Velasquez, L. S., Sutherland, L. B., Liu, Z., Grinnell, F., Kamm, K. E., Schneider, J. W., Olson, E. N. et al. (2013). “Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing.” Proc Natl Acad Sci USA 110: 1685016855.CrossRefGoogle ScholarPubMed
Vinogradova, O., Velyvis, A., Velyviene, A., Hu, B., Haas, T., Plow, E. and Qin, J. (2002). “A structural mechanism of integrin alpha(IIb)beta(3) ‘inside-out’ activation as regulated by its cytoplasmic face.” Cell 110: 587597.CrossRefGoogle Scholar
von Wichert, G., Jiang, G., Kostic, A., De Vos, K., Sap, J. and Sheetz, M. P. (2003). “RPTP-alpha acts as a transducer of mechanical force on alphav/beta3-integrin-cytoskeleton linkages.” J Cell Biol 161: 143153.CrossRefGoogle ScholarPubMed
Wang, N., Butler, J. P. and Ingber, D. E. (1993). “Mechanotransduction across the cell surface and through the cytoskeleton.” Science 260: 11241127.CrossRefGoogle ScholarPubMed
Wang, X. and Ha, T. (2013). “Defining single molecular forces required to activate integrin and notch signaling.” Science 340: 991994.CrossRefGoogle ScholarPubMed
Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y. and Chien, S. (2005). “Visualizing the mechanical activation of Src.” Nature 434: 10401045.CrossRefGoogle ScholarPubMed
Watanabe, N., Madaule, P., Reid, T., Ishizaki, T., Watanabe, G., Kakizuka, A., Saito, Y., et al. (1997). “p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin.” EMBO J 16: 30443056.CrossRefGoogle ScholarPubMed
Wei, Y., Czekay, R. P., Robillard, L., Kugler, M. C., Zhang, F., Kim, K. K., Xiong, J. P., (2005). “Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding.” J Cell Biol 168: 501511.CrossRefGoogle ScholarPubMed
Wei, Y., Lukashev, M., Simon, D. I., Bodary, S. C., Rosenberg, S., Doyle, M. V. and Chapman, H. A. (1996). “Regulation of integrin function by the urokinase receptor.” Science 273: 15511555.CrossRefGoogle ScholarPubMed
Winer, J. P., Oake, S. and Janmey, P. A. (2009). “Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation.” PLoS One 4: e6382.CrossRefGoogle ScholarPubMed
Wipff, P. J., Rifkin, D. B., Meister, J. J. and Hinz, B. (2007). “Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix.” J Cell Biol 179: 13111323.CrossRefGoogle ScholarPubMed
Wiseman, P. W., Brown, C. M., Webb, D. J., Hebert, B., Johnson, N. L., Squier, J. A., Ellisman, M. H. et al. (2004). “Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy.” J Cell Sci 117: 55215534.CrossRefGoogle ScholarPubMed
Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J. and Keely, P. J. (2003). “ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix.” J Cell Biol 163: 583595.CrossRefGoogle Scholar
Wynn, T. A. (2007). “Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.” J Clin Invest 117: 524529.CrossRefGoogle ScholarPubMed
Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., et al. (2005). “Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion.” Cell Motil Cytoskeleton 60: 2434.CrossRefGoogle ScholarPubMed
Yoshitake, H., Takeda, Y., Nitto, T., Sendo, F. and Araki, Y. (2003). “GPI-80, a beta2 integrin associated glycosylphosphatidylinositol-anchored protein, concentrates on pseudopodia without association with beta2 integrin during neutrophil migration.” Immunobiology 208: 391399.CrossRefGoogle ScholarPubMed
Zhang, Y., Fan, W., Ma, Z., Wu, C., Fang, W., Liu, G. and Xiao, Y. (2010). “The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7.” Acta Biomater 6: 30213028.CrossRefGoogle ScholarPubMed
Zhou, Y., Hagood, J. S. and Murphy-Ullrich, J. E. (2004). “Thy-1 expression regulates the ability of rat lung fibroblasts to activate transforming growth factor-beta in response to fibrogenic stimuli.” Am J Pathol 165: 659669.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×