Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- Chapter 1 The IPM paradigm: concepts, strategies and tactics
- Chapter 2 Economic impacts of IPM
- Chapter 3 Economic decision rules for IPM
- Chapter 4 Decision making and economic risk in IPM
- Chapter 5 IPM as applied ecology: the biological precepts
- Chapter 6 Population dynamics and species interactions
- Chapter 7 Sampling for detection, estimation and IPM decision making
- Chapter 8 Application of aerobiology to IPM
- Chapter 9 Introduction and augmentation of biological control agents
- Chapter 10 Crop diversification strategies for pest regulation in IPM systems
- Chapter 11 Manipulation of arthropod pathogens for IPM
- Chapter 12 Integrating conservation biological control into IPM systems
- Chapter 13 Barriers to adoption of biological control agents and biological pesticides
- Chapter 14 Integrating pesticides with biotic and biological control for arthropod pest management
- Chapter 15 Pesticide resistance management
- Chapter 16 Assessing environmental risks of pesticides
- Chapter 17 Assessing pesticide risks to humans: putting science into practice
- Chapter 18 Advances in breeding for host plant resistance
- Chapter 19 Resistance management to transgenic insecticidal plants
- Chapter 20 Role of biotechnology in sustainable agriculture
- Chapter 21 Use of pheromones in IPM
- Chapter 22 Insect endocrinology and hormone-based pest control products in IPM
- Chapter 23 Eradication: strategies and tactics
- Chapter 24 Insect management with physical methods in pre- and post-harvest situations
- Chapter 25 Cotton arthropod IPM
- Chapter 26 Citrus IPM
- Chapter 27 IPM in greenhouse vegetables and ornamentals
- Chapter 28 Vector and virus IPM for seed potato production
- Chapter 29 IPM in structural habitats
- Chapter 30 Fire ant IPM
- Chapter 31 Integrated vector management for malaria
- Chapter 32 Gypsy moth IPM
- Chapter 33 IPM for invasive species
- Chapter 34 IPM information technology
- Chapter 35 Private-sector roles in advancing IPM adoption
- Chapter 36 IPM: ideals and realities in developing countries
- Chapter 37 The USA National IPM Road Map
- Chapter 38 The role of assessment and evaluation in IPM implementation
- Chapter 39 From IPM to organic and sustainable agriculture
- Chapter 40 Future of IPM: a worldwide perspective
- Index
- References
Chapter 12 - Integrating conservation biological control into IPM systems
Published online by Cambridge University Press: 01 September 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- Acknowledgements
- Chapter 1 The IPM paradigm: concepts, strategies and tactics
- Chapter 2 Economic impacts of IPM
- Chapter 3 Economic decision rules for IPM
- Chapter 4 Decision making and economic risk in IPM
- Chapter 5 IPM as applied ecology: the biological precepts
- Chapter 6 Population dynamics and species interactions
- Chapter 7 Sampling for detection, estimation and IPM decision making
- Chapter 8 Application of aerobiology to IPM
- Chapter 9 Introduction and augmentation of biological control agents
- Chapter 10 Crop diversification strategies for pest regulation in IPM systems
- Chapter 11 Manipulation of arthropod pathogens for IPM
- Chapter 12 Integrating conservation biological control into IPM systems
- Chapter 13 Barriers to adoption of biological control agents and biological pesticides
- Chapter 14 Integrating pesticides with biotic and biological control for arthropod pest management
- Chapter 15 Pesticide resistance management
- Chapter 16 Assessing environmental risks of pesticides
- Chapter 17 Assessing pesticide risks to humans: putting science into practice
- Chapter 18 Advances in breeding for host plant resistance
- Chapter 19 Resistance management to transgenic insecticidal plants
- Chapter 20 Role of biotechnology in sustainable agriculture
- Chapter 21 Use of pheromones in IPM
- Chapter 22 Insect endocrinology and hormone-based pest control products in IPM
- Chapter 23 Eradication: strategies and tactics
- Chapter 24 Insect management with physical methods in pre- and post-harvest situations
- Chapter 25 Cotton arthropod IPM
- Chapter 26 Citrus IPM
- Chapter 27 IPM in greenhouse vegetables and ornamentals
- Chapter 28 Vector and virus IPM for seed potato production
- Chapter 29 IPM in structural habitats
- Chapter 30 Fire ant IPM
- Chapter 31 Integrated vector management for malaria
- Chapter 32 Gypsy moth IPM
- Chapter 33 IPM for invasive species
- Chapter 34 IPM information technology
- Chapter 35 Private-sector roles in advancing IPM adoption
- Chapter 36 IPM: ideals and realities in developing countries
- Chapter 37 The USA National IPM Road Map
- Chapter 38 The role of assessment and evaluation in IPM implementation
- Chapter 39 From IPM to organic and sustainable agriculture
- Chapter 40 Future of IPM: a worldwide perspective
- Index
- References
Summary
Most agricultural production systems harbor many species of herbivorous arthropods capable of damaging crops. However, the vast majority of these species do not reach damaging levels. In this chapter we explore the role of predators and parasitoids in suppressing pest abundance and damage. In particular, we focus on factors that influence the abundance of beneficial arthropods in agricultural landscapes. Finally, we address ways to manage these systems to increase the effectiveness of beneficial arthropods.
There are three primary means by which managers influence biological control of insects. Importation of natural enemies against pests of exotic origin is sometimes referred to as classical biological control, while augmentation is the rearing and release of natural enemies already present to increase their effectiveness. Conservation of natural enemies involves improving conditions for existing natural enemies by reducing factors which interfere with natural enemies or increasing access to resources that they require to be successful (Ehler, 1998). Habitat management is considered a subset of conservation practices that focus on manipulating habitats within agricultural landscapes to provide resources to enhance natural enemies (Landis et al., 2000).
Managing agricultural landscapes to improve biological control relies on a detailed understanding of factors that influence both pest and natural enemy abundance (Fig. 12.1). We begin by examining landscape processes that influence pests and beneficial insects at larger spatial scales. Next we focus on processes that influence these organisms and their interactions at local scales.
- Type
- Chapter
- Information
- Integrated Pest ManagementConcepts, Tactics, Strategies and Case Studies, pp. 151 - 162Publisher: Cambridge University PressPrint publication year: 2008
References
- 2
- Cited by