Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T17:42:18.237Z Has data issue: false hasContentIssue false

Mid-IR Astronomy with Large Telescopes

Published online by Cambridge University Press:  04 August 2010

Barbara Jones
Affiliation:
Center for Astrophysics and Space Sciences, University of California, San Diego La Jolla, CA, 92093-0111, USA
Jose M. Rodriguez Espinosa
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Artemio Herrero
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Francisco Sánchez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

This lecture introduces the opportunities presented by ground-based telescopes for new discoveries in the thermal infrared, and discusses techniques used to make sensitive observations in an environment with high background flux levels from atmospheric emission and from the telescope structure and mirrors.

Mid-IR astronomy—opportunities and problems

The capability now exists to observe mid-IR astronomical objects with spatial resolution of a third of an arcsecond and sensitivities reaching well below a mJy. Both imaging and spectroscopy with new array instruments on optimized large telescopes are producing new data on sources from comets, to active galactic nuclei. With sensitivity to emission from cool dust, diagnostic lines from ionized gas and molecular species, and the capability to look through clouds opaque in the visible, many new results are appearing, and many more can be anticipated. In particular, our understanding of the star formation process should improve significantly in the next decade. Yet all of this is achieved operating through the earth's atmosphere which absorbs and distorts the signals, and which, together with the telescope structure itself, radiates into the beam up to a million times the power detected from the source. The problems encountered, and the techniques used to make ground based mid-IR observations will be discussed here.

IRAS (Infrared Astronomical Satellite) revealed how fascinating and complex the IR sky is at wavelengths of 12, 25, 60 and 100 µm. The IRAS mission lasted for 300 days in 1983 completing an all sky survey with a 57-cm diameter cooled telescope.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×