[Agresti, 1990] Agresti, A. (1990). Categorical Data Analysis. Wiley.
[Aine et al, 1998] Aine, C.J., Huang, M., Christner, R., Stephen, J., Meyer, J., Silveri, J., & Weisend, M. (1998). New developments in source localization algorithms: clinical examples. International Journal of Psychophysiology, 30, 198.
[Akaike, 1973] Akaike, H. (1973). Information theory and the extension of the maximum likelihood principle. Pages 267-281 of: Petrov, B.N., & Csaki, F. (eds), Second International Symposium on Information Theory. Akademiai Kiado.
[Amari, 1985] Amari, S.-I. (1985). Differential Geometrical Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer.
[Amari, 1997] Amari, S.-I. (1997). Neural learning in structured parameter spaces – natural Riemannian gradient. Pages 127-133 of: Advances in Neural Information Processing Systems, vol. 9. MIT Press.
[Amari, 1998] Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2), 251–276.
[Amari et al, 1996] Amari, S.-I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind signal separation. Pages 757-763 of: Touretzky, D., Mozer, M., & Hasselmo, M. (eds), Advances in Neural Information Processing Systems, vol. 8.
[Amari et al., 1997] Amari, S.-I., Chen, T.-P., & Cichocki, A. (1997). Stability analysis of adaptive blind source separation. Neural Networks, 10(8), 1345–1351.
[Amari et al, 1998] Amari, S.-I., Douglas, S.C., & Cichocki, A. (1998). Multichannel blind deconvolution and source separation using the natural gradient. IEEE Transactions on Signal Processing, 101-104.
[Atick & Redlich, 1990] Atick, J.J., & Redlich, A.N. (1990). Towards a theory of early visual processing. Neural Computation, 2, 308–320.
[Atick et al, 1995] Atick, J.J., Griffin, P.A., & Redlich, A.N. (1995). Statistical approach to shape from shading: reconstruction of 3-dimensional face surfaces from single 2-dimensional images. Neural Computation, 8(6), 1321–1340.
[Attias, 1999a] Attias, H. (1999a). Independent factor analysis. Neural Computation, 11(5), 803–852.
[Attias, 1999b] Attias, H. (1999b). Inferring parameters and structure of latent variable models by variational Bayes. Pages 21-30 of: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence.
[Attias, 2000] Attias, H. (2000). A variational bayesian framework for graphical models. T., Leenet al. (eds), Advances in Neural Information Processing Systems, vol. 12. MIT Press. Available from http://www.gatsby.ucl.ac.uk/~hagai/papers.html.
[Attias & Schreiner, 1998] Attias, H., & Schreiner, C.E. (1998). Blind source separation and deconvolution – the dynamic component analysis algorithm. Neural Computation, 10(6), 1373–1424.
[Back & Weigend, 1998] Back, A.D., & Weigend, A.S. (1998). A first application of independent component analysis to extracting structure from stock returns. International Journal on Neural Systems, 8(4), 473–484.
[Bae et al., 2000] Bae, U.-M., Lee, T.-W., & Lee, S.-Y. (2000). Blind signal separation in teleconferencing using the ICA mixture model. IEE Electronics Letters, 36(7), 680–682.
[Barber & Bishop, 1998] Barber, D., & Bishop, C.M. (1998). Ensemble learning in Bayesian neural networks. Pages 215–237 of: Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems, vol. 10. MIT Press.
[Barlow, 1961a] Barlow, H.B. (1961a). The coding of sensory messages. Pages 330-360 of: Thorpe, & Zangwill (eds), Current Problems in Animal Behavior. Cambridge University Press.
[Barlow, 1961b] Barlow, H.B. (1961b). Possible principles underlying the transformation of sensory messages. Pages 217-234 of: Rosenblith, W.A. (ed), Sensory Communication. MIT Press.
[Barlow, 1989] Barlow, H.B. (1989). Unsupervised learning. Neural Computation, 1, 295–311.
[Bar-Ness et al, 1982] Bar-Ness, Y., Carlin, J., & Steinberger, M. (1982). Bootstrapping adaptive cross-pol canceller for satellite communications. Pages 4F.5.1–4F.5.5 of: Proc IEEE Int Conf Comunications.
[Barros & Ohnishi, 1999] Barros, A.K., & Ohnishi, N. (1999). Removal of quasi-periodic sources from physiological measurements. Pages 185-190 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Bartlett et al, 1997] Bartlett, M.S., Stewart, M., & Sejnowski, T.J. (1997). Viewpoint invariant face recognition using independent component attractor networks. Pages 817-823 of: M., Mozer, M., Jordan, T., Petsche (ed), Advances in Neural Information Processing Systems, vol. 9. Available from http: //www.cnl.salk.edu/~marni.
[Bartlett et al, 1998] Bartlett, M.S., Lades, H.M., & Sejnowski, T.J. (1998). Independent components representations for face recognition. Pages 528-539 of: Rogowitz, & Pappas (eds), Proceedings of the SPIE Symposium on Electronic Imaging: Science and Technology: Conference on Human Vision and Electronic Imaging HI, vol. 3299. SPIE Press. Available from http://www.cnl.salk.edu/~mami.
[Beale & Mallows, 1959] Beale, E.M.L., & Mallows, C.L. (1959). Scale mixing of symmetric distributions with zero means. Annals of Mathematical Statistics, 30, 1145-1151.
[Bell & Sejnowski, 1995] Bell, A.J., & Sejnowski, T.J. (1995). An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.
[Bell & Sejnowski, 1997] Bell, A.J., & Sejnowski, T.J. (1997). The “independent components” of natural scenes are edge filters. Vision Research, 37(23), 3327–3338.
[Belouchrani & Cardoso, 1994] Belouchrani, A., & Cardoso, J.-F. (1994). Maximum likelihood source separation for discrete sources. Pages 768-771 of: Proc EUSIPCO.
[Belouchrani & Cardoso, 1995] Belouchrani, A., & Cardoso, J.-F. (1995). Maximum likelihood source separation by the expectation-maximization technique: deterministic and stochastic implementation. Pages 49-53 of: Proceedings of 1995 International Symposium on Non-Linear Theory and Applications.
[Belouchrani et al., 1993] Belouchrani, A., Abed Meraim, K., Cardoso, J.-F., & Moulines, E. (1993). Second order blind separation of correlated sources. Pages 346-351 of: Proceedings of International Conference on Digital Signal Processing.
[Belouchrani et al., 1997] Belouchrani, A., Abed Meraim, K., Cardoso, J.-F., & Moulines, E. (1997). A blind source separation technique based on second order statistics. IEEE Transactions on Signal Processing, 45(2), 434–44.
[Ben-Tal & Zibulevsky, 1997] Ben-Tal, A., & Zibulevsky, M. (1997). Penalty/barrier multiplier methods for convex programming problems. SIAM Journal on Optimization, 7(2), 347–366.
[Bezdek, 1981] Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press.
[Bingham & Hyvärinen, 2000] Bingham, E., & Hyvärinen, A. (2000). A fast fixed-point algorithm for independent component analysis of complex-valued signals. International Journal of Neural Systems, 10(1), 1–8.
[Bishop, 1994] Bishop, C.M. (1994). Mixture density networks. Tech. rept. Neural Computing Research Group, Aston University.
[Bishop, 1995] Bishop, C.M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.
[Bishop, 1998] Bishop, C.M. (1998). GTM: the generative topographic mapping. Neural Computation, 10, 215–234.
[Bishop, 1999] Bishop, C.M. (1999). Variational principal components. Pages 509-514 of: International Conference on Artificial Neural Networks.
[Bofill & Zibulevsky, 2000a] Bofill, P., & Zibulevsky, M. (2000a). Blind separation of more sources than mixtures using the sparsity of the short-time Fourier transform. Pajunen, P. (ed), International Workshop on Independent Component Analysis and Blind Signal Separation.
[Bofill & Zibulevsky, 2000b] Bofill, P., & Zibulevsky, M. (2000b). Sparse underdetermined ICA: estimating the mixing matrix and the sources separately. Tech. rept. UPC-DAC-2000-7. Universitat Politecnica de Catalunya. Available from http://www.ac.upe.es/homes/pau/sounds.html.
[Box & Tiao, 1973] Box, G., & Tiao, G. (1973). Bayesian Inference in Statistical Analysis. Wiley.
[Bradwood, 1978] Bradwood, D. (1978). Cross-coupled cancellation systems for improving cross-polarisation discrimination. Pages 41-45 of: Proceedings of IEEE International Conference on Antennas and Propagation, vol. I.
[Brandwood, 1983] Brandwood, D. (1983). A complex gradient operator and its application in adaptive array theory. I EE Proceedings, 130(1), 11–16.
[Bregman, 1990] Bregman, A.S. (1990). Auditory Scene Analysis. MIT Press.
[Brehm & Stammler, 1987] Brehm, H., & Stammler, W. (1987). Description and generation of spherically invariant speech-model signals. Signal Processing, 12, 119–141.
[Buckheit et al, 1995] Buckheit, J., Chen, S.S., Donoho, D.L., Johnstone, I., & Scargle, J. (1995). About WaveLab. Tech. rept. Department of Statistics, Stanford University. Available from http://www-stat.Stanford.edu/~donoho/Reports/.
[Burel, 1992] Burel, G. (1992). Blind separation of sources: A nonlinear neural algorithm. Neural Networks, 5, 937–947.
[Cardoso, 1994] Cardoso, J.-F. (1994). On the performance of orthogonal source separation algorithms. Pages 776-779 of: Proceedings of EUSIP CO.
[Cardoso, 1997] Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind separation. IEEE Signal Processing Letters, 4(4), 112–114.
[Cardoso, 1998a] Cardoso, J.-F. (1998a). Blind signal separation: statistical principles. Proceedings of the IEEE. Special issue on blind identification and estimation, 9(10), 2009-2025.
[Cardoso, 1998b] Cardoso, J.-F. (1998b). On the stability of source separation algorithms. Pages 13-22 of: Costantinides, A., Kung, S.-Y., Niranjan, M., & Wilson, E. (eds), Neural Networks for Signal Processing VIII. IEEE.
[Cardoso, 1999a] Cardoso, J.-F. (1999a). High-order contrasts for independent component analysis. Neural Computation, 11, 157–192.
[Cardoso, 1999b] Cardoso, J.-F. (1999b). JADE for real-valued data. Available from http://sig.enst.fr:80~cardoso/guidesepsou.html.
[Cardoso, 2000] Cardoso, J.-F. (2000). On the stability of source separation algorithms. Journal of VLSI Signal Processing Systems, 26(1), 7–14. Available from http://tsi.enst.fr/~cardoso/.
[Cardoso & Comon, 1996] Cardoso, J.-F., & Comon, P. (1996). Independent component analysis, a survey of some algebraic methods. Pages 93-96 of: Proceedings of ISCAS'96, vol. 2. Available from ftp://sig.enst.fr/pub/jfc/Papers/iscas96_algebra.ps.gz.
[Cardoso & Laheld, 1996] Cardoso, J.-F., & Laheld, B. (1996). Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 45(2), 434–444.
[Cardoso & Souloumiac, 1993] Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE Proceedings F, 140(6), 362–370.
[Cardoso & Souloumiac, 1996] Cardoso, J.-F., & Souloumiac, A. (1996). Jacobi angles for simultaneous diagonalization. SI AM Journal of Matrix Analysis and Applications, 17(1), 161–164.
[Chen et al, 1995] Chen, S.S., Donoho, D.L., Saunders, M.A., Johnstone, I., & Scargle, J. (1995). About Atomizer. Tech. rept. Department of Statistics, Stanford University. Available from http://www-stat.Stanford.edu/~donoho/Reports/.
[Chen et al, 1996] Chen, S.S., Donoho, D.L., & Saunders, M.A. (1996). Atomic decomposition by basis pursuit. Tech. rept. Department of Statistics, Stanford University. Available from http://www-stat.Stanford.edu/~donoho/Reports/.
[Chevalier et al, 1999] Chevalier, P., Capdevielle, V., & Comon, P. (1999). Performance of HO blind source separation methods: experimental results on ionospheric HF links. Pages 443-448 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Chin et al, 1999] Chin, E., Weigend, A.S., & Zimmermann, H. (1999). Computing portfolio risk using Gaussian mixtures and independent component analysis. Proceedings of the 1999 IEEE/IAFE/INFORMS Conference on Computational Intelligence for Financial Engineering (CIFEr'99). IAFE.
[Choi et al., 1998] Choi, S., Cichocki, A., & Amari, S.-I. (1998). Flexible independent component analysis. Pages 83-92 of: Costantinides, A., Kung, S.-Y., Niranjan, M., & Wilson, E. (eds), Neural Networks for Signal Processing VIII. IEEE.
[Choudrey et al., 2001] Choudrey, R., Penny, W., & Roberts, S. (2001). An ensemble learning approach to independent component analysis. Neural Networks for Signal Processing X. IEEE. Available from http://www.robots.ox.ac.uk/~sjrob/pubs.html.
[Cichocki & Unbehauen, 1996] Cichocki, A., & Unbehauen, R. (1996). Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Transactions on Circuits and Systems, 43(11), 894-906.
[Cichocki et al, 1999] Cichocki, A., Zhang, L., Choi, S., & Amari, S.-I. (1999). Nonlinear dynamic independent component analysis using state-space and neural network models. Pages 99-104 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Coifman & Wickerhauser, 1992] Coifman, R.R., & Wickerhauser, M.V. (1992). Entropy-based algorithms for best-basis selection. IEEE Transactions on Information Theory, 38, 713–718.
[Coifman et al, 1992] Coifman, R.R., Meyer, Y., & Wickerhauser, M.V. (1992). Wavelet analysis and signal processing. Pages 153-178 of: Ruskai, M.B. (ed), Wavelets and their applications. Jones and Barlett.
[Comon, 1994] Comon, P. (1994). Independent component analysis, a new concept?Signal Processing, 36, 287–314.
[Comon et al., 1991] Comon, P., Jutten, C., & Herault, J. (1991). Blind separation of sources. Part II: problems statement. Signal Processing, 24(1), 11–20.
[Cook et al, 1993] Cook, D., Buja, A., & Cabrera, J. (1993). Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics, 2(3), 225–250.
[Cover & Thomas, 1991] Cover, T., & Thomas, J. (1991). Elements of Information Theory. Vol. 1. Wiley.
[De Bonet & Viola, 1998] De Bonet, J.S., & Viola, P. (1998). A non-parametric multi-scale statistical model for natural images. Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems, vol. 10. MIT Press.
[deCharms & Merzenich, 1998] deCharms, C.R., & Merzenich, M.M. (1998). Characteristic neurons in the primary auditory cortex of the awake primate using reverse correlation. Pages 124-130 of: Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems, vol. 10.
[Deco & Brauer, 1995] Deco, G., & Brauer, W. (1995). Higher order statistical decorrelation by volume conserving neural architectures. Neural Networks, 8, 525–535.
[Deco & Obradovic, 1996] Deco, G., & Obradovic, D. (1996). An Information Theoretic Approach to Neural Computing. Perspectives in Neural Computing. Springer.
[Delfosse & Loubaton, 1995] Delfosse, N., & Loubaton, P. (1995). Adaptive blind separation of independent sources: a deflation approach. Signal Processing, 45, 59–83.
[Dempster et al, 1976] Dempster, A.P., Laird, N.M., & Rubin, D.B. (1976). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.
[Deville et al, 1999] Deville, Y., Damour, J., & Charkani, N. (1999). Improved multi-tag radio-frequency identification systems based on new source separation neural networks. Pages 449-454 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Donoho, 1981] Donoho, D. (1981). On minimum entropy deconvolution. Pages 565-608 of: Findley, D.F. (ed), Applied Time Series Analysis II. Academic Press.
[Douglas & Kung, 2000] Douglas, S.C., & Kung, S.Y. (2000). Gradient adaptive algorithms for contrast-based blind deconvolution. VLSI Signal Processing Journal, 26(1), 47–61.
[Duda & Hart, 1973] Duda, R.O., & Hart, R.E. (1973). Pattern Classification and Scene Analysis. Wiley.
[Everitt, 1984] Everitt, B.S. (1984). An Introduction to Latent Variable Models. Chapman and Hall.
[Everson & Roberts, 1999a] Everson, R.M., & Roberts, S.J. (1999a). ICA: a flexible non-linearity and decorrelating manifold approach. Neural Computation, 11(8), 1957–1983.
[Everson & Roberts, 1999b] Everson, R.M., & Roberts, S.J. (1999b). Non-stationary independent components analysis. Proceedings of International Conference on Artificial Neural Networks (ICANN'99). IEE.
[Everson & Roberts, 2000a] Everson, R.M., & Roberts, S.J. (2000a). Independent component analysis. Pages 153–168 of: Lisboa, P.J.G., Ifeachor, E.C., & Szczepaniak, P.S. (eds), Artificial Neural Networks in Biomedicine. Perspectives in Neural Computing. Springer.
[Everson & Roberts, 2000b] Everson, R.M., & Roberts, S.J. (2000b). Inferring the eigenvalues of covariance matrices from limited, noisy data. IEEE Transactions on Signal Processing, 48(7), 2083–2091.
[Everson & Roberts, 2000c] Everson, R.M., & Roberts, S.J. (2000c). Measuring mutual information. Tech. rept. Exeter University. Available from http://www.dcs.ex.ac.uk/academics/reverson.
[Fearnhead, 1999] Fearnhead, P. (1999). Sequential Monte Carlo methods in filter theory. Ph.D. thesis, University of Oxford.
[Fety & Van Ulffelen, 1988] Fety, L., & Van Ulffelen, J.P. (1988). New methods for signal separation. Pages 226-230 of: Proceedings of 4th International Conference of HF radio systems and techniques. IEE.
[Flury & Gautschi, 1986] Flury, B.N., & Gautschi, W. (1986). An algorithm for the simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly orthogonal form. SI AM Journal of Scientific and Statistical Computing, 7(1), 169-184.
[Fraser & Swinney, 1986] Fraser, A.M., & Swinney, H.L. (1986). Independent coordinates for strange attractors from mutual information. Physical Review, 33A(2).
[Friedman, 1987] Friedman, J. (1987). Exploratory projection pursuit. Journal of the American Statistical Association, 82(397), 249–266.
[Friedman & Tukey, 1974] Friedman, J., & Tukey, J. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Neural Networks, 23, 881–889.
[Gaeta & Lacoume, 1990] Gaeta, M., & Lacoume, J.-L. (1990). Source separation without prior knowledge: the maximum likelihood solution. Pages 621-624 of: Proceedings of EUSIPO.
[Ghahramani & Beal, 2000] Ghahramani, Z., & Beal, M.J. (2000). Variational inference for Bayesian mixtures of factor analysers. Advances in Neural Information Processing Systems, vol. 12. MIT Press.
[Ghahramani & Hinton, 1997] Ghahramani, Z., & Hinton, G.E. (1997). The EM algorithm for mixtures of factor analyzers. Tech. rept. Department of Computer Science, University of Toronto.
[Ghahramani & Jordan, 1997] Ghahramani, Z., & Jordan, M.I. (1997). Factorial hidden Markov models. Machine Learning, 29, 245–273.
[Ghahramani & Roweis, 1999] Ghahramani, Z., & Roweis, S. (1999). Learning nonlinear dynamical systems using an EM algorithm. Pages 599–605 of: Kearns, M.S., Solla, S.A., & Cohn, D.A. (eds), Advances in Neural Information Processing Systems, vol. 11. MIT Press.
[Gill et al., 1995] Gill, P.E., Murray, W., & Wright, M.H. (1995). Practical Optimization. 10th edn. Academic Press.
[Girolami, 1997] Girolami, M. (1997). Self-organising artificial neural networks for signal separation. Ph.D. thesis, Department of Computing and Information Systems, Paisley University.
[Girolami, 1998] Girolami, M. (1998). An alternative perspective on adaptive independent component analysis algorithms. Neural Computation, 10(8), 2103–2114.
[Girolami, 1999a] Girolami, M. (1999a). Hierarchic dichotomizing of polychotomous data – an ICA based data mining tool. Pages 197-202 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Girolami, 1999b] Girolami, M. (1999b). Self-Organising Neural Networks -Independent Component Analysis and Blind Source Separation. Springer.
[Girolami, 2000a] Girolami, M. (2000a). Document representations based on generative multivariate Bernoulli latent topic models. Pages 194-201 of: Proceedings of the 22nd Annual Colloquium on Information Retrieval Research.
[Girolami, 2000b] Girolami, M. (2000b). Kernel based clustering and visualisation in feature space. Tech. rept. ISSN 1461-6122. Computing and Information Systems, University of Paisley.
[Girolami & Fyfe, 1997a] Girolami, M., & Fyfe, C. (1997a). Extraction of independent signal sources using deflationary exploratory projection pursuit network with lateral inhibition. IEE Proceedings on Vision. Image and Signal Processing, 14(5), 299–306.
[Girolami & Fyfe, 1997b] Girolami, M., & Fyfe, C. (1997b). Generalised independent component analysis through unsupervised learning with emergent Bussgang properties. Pages 1788-1891 of: Proceedings of International Conference on Neural Networks.
[Girolami et al, 1998] Girolami, M., Cichocki, A., & Amari, S.-I. (1998). A common neural network model for exploratory data analysis and independent component analysis. IEEE Transactions on Neural Networks, 9(6), 1495–1501.
[Goldman, 1976] Goldman, J. (1976). Detection in the presence of spherically symmetric random vectors. IEEE Transactions on Information Theory, 22(1), 52–59.
[Gordon et al, 1993] Gordon, N., Salmond, D., & Smith, A.F.M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings-F, 140, 107–113.
[Gull & Daniell, 1978] Gull, S.F., & Daniell, G.J. (1978). Image reconstruction from incomplete and noisy data. Nature, 272(5655), 686–690.
[Hansen, 2000] Hansen, L.K. (2000). Blind separation of noisy image mixtures. Pages 161–182 of: Girolami, M. (ed), Advances in Independent Component Analysis. Perspectives in Neural Computing. Springer.
[Haykin, 1994] Haykin, S. (1994). Blind Deconvolution. Information and System Sciences. Prentice-Hall.
[Haykin, 1998] Haykin, S. (1998). Neural Networks – a Comprehensive Foundation. 2nd edn. Prentice-Hall.
[Hecht-Nielsen, 1995] Hecht-Nielsen, R. (1995). Replicator neural networks for universal optimal source coding. Science, 269, 1860–1863.
[Hecht-Nielsen, 1996] Hecht-Nielsen, R. (1996). Data manifolds, natural coordinates, replicator neural networks, and optimal source coding. Pages 41-45 of: Proceedings of 1996 International Conference on Neural Information Processing (ICONIP'96).
[Herault & Jutten, 1986] Herault, J., & Jutten, C. (1986). Space or time processing by neural network models. Denker, J.S. (ed), Proceedings AIP Conference: Neural Networks for Computing, vol. 151. American Institute for Physics.
[Hinton & Sejnowski, 1998] Hinton, G., & Sejnowski, T.J. (eds). (1998). Unsupervised Learning: Foundations of Neural Computation. MIT Press.
[Hinton & van Camp, 1993] Hinton, G.E., & van Camp, D. (1993). Keeping neural networks simple by minimizing the description length of the weights. Pages 5-13 of: Proceedings of the Sixth Annual Conference on Computational Learning Theory.
[Hochreiter & Schmidhuber, 1999] Hochreiter, S., & Schmidhuber, J. (1999). Feature extraction through LOCOCODE. Neural Computation, 11, 679–714.
[Holmstrom & Bjorkman, 1999] Holmstrom, K., & Bjorkman, M. (1999). The TOMLAB NLPLIB. Advanced Modeling and Optimization, 1, 70–86. Available from http://www.ima.mdh.se/tom/.
[Horn & Johnson, 1985] Horn, R.A., & Johnson, C.R. (1985). Matrix Analysis. Cambridge University Press.
[Huang et al, 1998] Huang, M., Leahy, R.M., Mosher, J.C., & Spencer, M.E. (1998). Comparing the source localization accuracy of EEG and MEG for different head modeling techniques using a human skull phantom. International Journal of Psychophysiology, 30, 200.
[Huber, 1985] Huber, P. (1985). Projection pursuit. Annals of Statistics, 13(2), 435–475.
[Hyvärinen, 1997] Hyvärinen, A. (1997). One-unit contrast functions for independent component analysis: a statistical analysis. Pages 388-397 of: Proceedings of IEEE Workshop on Neural Networks for Signal Processing VII.
[Hyvärinen, 1998a] Hyvärinen, A. (1998a). New approximations of differential entropy for independent component analysis and projection pursuit. Pages 273-279 of: Advances in Neural Information Processing Systems, vol. 10. MIT Press.
[Hyvärinen, 1998b] Hyvärinen, A. (1998b). The Fast IC A MATLAB toolbox. Helsinki Univ. of Technology. Available at http://www.eis.hut.fi/projects/ica/fastica/.
[Hyvärinen, 1999a] Hyvärinen, A. (1999a). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.
[Hyvärinen, 1999b] Hyvärinen, A. (1999b). The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Processing Letters, 10(1), 1–5.
[Hyvärinen, 1999c] Hyvärinen, A. (1999c). Gaussian moments for noisy independent component analysis. IEEE Signal Processing Letters, 6(6), 145-147.
[Hyvärinen, 1999d] Hyvärinen, A. (1999d). Survey on independent component analysis. Neural Computing Surveys, 2, 94–128. Available from http://www.icsi.berkeley.edu/~jagota/NCS.
[Hyvärinen & Oja, 1997] Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483-1492.
[Hyvärinen & Oja, 1998] Hyvärinen, A., & Oja, E. (1998). Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing, 64(3), 301–313.
[Hyvärinen & Pajunen, 1999] Hyvärinen, A., & Pajunen, P. (1999). Nonlinear independent component analysis: existence and uniqueness results. Neural Networks, 12, 209–219.
[Hyvärinen et al, 1999a] Hyvärinen, A., Cristescu, R., & Oja, E. (1999a). A fast algorithm for estimating overcomplete ICA bases for image windows. Pages 894-899 of: Proceedings of International Joint Conference on Neural Networks.
[Hyvärinen et al, 1999b] Hyvärinen, A., Hoyer, P., & Oja, E. (1999b). Sparse code shrinkage: denoising by nonlinear maximum likelihood estimation. Pages 473–479 of: Kearns, M.S., Solla, S. A., & Cohn, D.A. (eds), Advances in Neural Information Processing Systems, vol. 11. MIT Press.
[Hyvärinen et al, 1999c] Hyvärinen, A., Särelä, J., & Vigário, R. (1999). Spikes and bumps: artefacts generated by independent component analysis with insufficient sample size. Pages 425-430 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Hyvärinen et al, 2000] Hyvärinen, A., Hoyer, P.O., & Inki, M. (2000). Topographic independent component analysis: Visualizing the independence structure. Proceedings of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000).
[Ikram & Morgan, 2000] Ikram, M., & Morgan, D. (2000). Exploring permutation inconsistency in blind separation of speech signals in a reverberant environment. ICASSP 2000.
[Isard & Blake, 1996] Isard, M., & Blake, A. (1996). Contour tracking by stochastic density propagation of conditional density. Pages 343-356 of: Proceedings of European Conference Computer Vision.
[Isbell & Viola, 1999] Isbell, B.L., & Viola, P. (1999). Restructuring sparse high dimensional data for effective retrieval. Pages 480–486 of: Kearns, M.S., Solla, S. A., & Cohn, D.A. (eds), Advances in Neural Information Processing Systems, vol. 11. MIT Press.
[Jaakkola & Jordan, 1997] Jaakkola, T.S., & Jordan, M.I. (1997). Bayesian logistic regression: a variational approach. Pages 283-294 of: Proceedings of the 1997 Conference on Artificial Intelligence and Statistics.
[Jain & Dubes, 1988] Jain, A.K., & Dubes, R. (1988). Algorithms for Clustering Data. Prentice-Hall.
[Jänich, 1977] Jänich, K. (1977). Einführung in die Funktionentheorie. Springer.
[Jazwinski, 1973] Jazwinski, A.H. (1973). Stochastic Processes and Filtering Theory. Academic Press.
[Jolliffe, 1986] Jolliffe, I.T. (1986). Principal Component Analysis. Springer.
[Jones & Sibson, 1987] Jones, M., & Sibson, R. (1987). What is projection pursuit?Journal of the Royal Statistical Society, series A, 150, 1–36.
[Jordan, 1999] Jordan, M.I. (ed). (1999). Learning in Graphical Models. MIT Press.
[Jung et al, 1998] Jung, T.-R., Humphries, C., Lee, T.-W., Makeig, S., McKeown, M.J., Iragui, V., & Sejnowski, T.J. (1998). Extended ICA removes artifacts from electroencephalographic recordings. Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems, vol. 10. MIT Press.
[Jung et al., 1999a] Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T.J. (1999a). Analyzing and visualizing single-trial event-related potentials. Pages 118-124 of: Kearns, M.S., Solla, S.A., & Cohn, D.A. (eds), Advances in Neural Information Processing Systems, vol. 11. MIT Press.
[Jung et al., 1999b] Jung, T.-R., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T.J. (1999b). Independent component analysis of single-trial event-related potentials. Pages 173-178 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Jung et al, 2000] Jung, T.-P., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., Makeig, S., & Sejnowski, T.J. (2000). Removing electro encephalographic artifacts by blind source separation. Psychophysiology, 37, 163–178.
[Jutten & Herault, 1991] Jutten, C., & Herault, J. (1991). Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 24, 1–10.
[Kaiman & Bucy, 1961] Kaiman, R., & Bucy, R. (1961). New results in linear filtering and prediction theory. Journal of Basic Engineering, Transactions of ASME series D, 83(95-108).
[Karhunen & Joutsensalo, 1994] Karhunen, J., & Joutsensalo, J. (1994). Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 7, 113–127.
[Karhunen & Malaroiu, 1999a] Karhunen, J., & Malaroiu, S. (1999a). Local independent component analysis using clustering. Pages 43-48 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Karhunen & Malaroiu, 1999b] Karhunen, J., & Malaroiu, S. (1999b). Locally linear independent component analysis. Pages 882-887 of: Proceedings of the International Joint Conference on Neural Networks (IJCNN'99).
[Kass et al, 1991] Kass, R.E., Tierney, L., & Kadane, J.B. (1991). Laplace's method in Bayesian analysis. Contemporary Mathematics, 115, 89–99.
[Kawamoto et al, 1998] Kawamoto, M., Matsuoka, K., & Ohnishi, N. (1998). A method of blind separation for convolved non-stationary signals. Neurocomputing, 22, 157–171.
[Kendal & Stuart, 1969] Kendal, M.G., & Stuart, A. (1969). The Advanced Theory of Statistics. Charles Griffin.
[Kirby & Sirovich, 1990] Kirby, M., & Sirovich, L. (1990). Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1), 103–108.
[Kisilev et al, 2000] Kisilev, P., Zibulevsky, M., Zeevi, Y.Y., & Pearlmutter, B.A. (2000). Multiresolution framework for sparse blind source separation. Tech. rept. Technion Israel Institute of Technology.
[Kitagawa, 1996] Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5, 1–25.
[Kiviluoto & Oja, 1998] Kiviluoto, K., & Oja, E. (1998). Independent Component Analysis for parallel economic time series. Pages 895-898 of: Proceedings of ICONIP'98, vol. 2.
[Knuth, 1998a] Knuth, K.H. (1998a). Bayesian source separation and localization. Pages 147-158 of: Mohammad-Djafari, A. (ed), SPIE'98 Proceedings: Bayesian Inference for Inverse Problems.
[Knuth, 1998b] Knuth, K.H. (1998b). Difficulties applying recent blind source separation techniques to EEG and MEG. Pages 209-222 of: Rychert, J.T., & Smith, C.R. (eds), Maximum Entropy and Bayesian Methods. Kluwer.
[Knuth, 1999] Knuth, K.H. (1999). A Bayesian approach to source separation. Pages 283-288 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Koehler & Orglmeister, 1999] Koehler, B.-U., & Orglmeister, R. (1999). Independent component analysis using autoregressive models. Pages 359-364 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Kohonen, 1995] Kohonen, T. (1995). Self-Organizing Maps. Springer.
[Kolenda et al, 2000] Kolenda, T., Hansen, L.K., & Sigurdsson, S. (2000). Independent component analysis in text. Pages 236–256 of: Girolami, M. (ed), Advances in Independent Component Analysis. Perspectives in Neural Computing. Springer.
[Kowalski et al, 1996] Kowalski, N., Depireux, D.A., & Shamma, S.A. (1996). Analysis of dynamic spectra in ferret primary auditory cortex: I. Characteristics of single unit responses to moving ripple spectra. Journal of Neurophysiology, 76(5), 3503–3523.
[Landatter & Harshman, 1990] Landatter, T.K., & Harshman, R. (1990). Indexing by Latent Semantic Analysis. Journal of American Society for Information Science, 41(391-407).
[Lappalainen, 1999] Lappalainen, H. (1999). Ensemble learning for independent component analysis. Pages 7-12 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Lappalainen & Honkela, 2000] Lappalainen, H., & Honkela, A. (2000). Bayesian nonlinear independent component analysis by multi-layer perceptrons. Pages 93-121 of: Girolami, M. (ed), Advances in Independent Component Analysis. Springer.
[Lappalainen & Miskin, 2000] Lappalainen, H., & Miskin, J. (2000). Ensemble learning. Pages 73-92 of: Girolami, M. (ed), Advances in Independent Component Analysis. Springer.
[Lappalainen et al, 2000a] Lappalainen, H., Giannakopoulos, X., Honkela, A., & Karhunen, J. (2000a). Nonlinear independent component analysis using ensemble learning: experiments and discussion. Proceedings of the 2nd International Workshop on Independent Component Analysis and Blind Signal Separation.
[Lappalainen et al., 2000b] Lappalainen, H., Giannakopoulos, X., Honkela, A., & Karhunen, J. (2000b). Nonlinear independent component analysis using ensemble learning: theory. Proceedings of the 2nd International Workshop on Independent Component Analysis and Blind Signal Separation.
[Lee, 1998] Lee, T.-W. (1998). Independent Component Analysis – Theory and Applications. Kluwer.
[Lee & Lewicki, 2000] Lee, T.-W., & Lewicki, M.S. (2000). The generalized Gaussian mixture model using ICA. Proceedings of the 2nd international workshop on ICA.
[Lee & Seung, 1999] Lee, D.D., & Seung, H.S. (1999). Learning the parts of objects by non-negative matrix factorisation. Nature, 401, 788–791.
[Lee et al, 1997] Lee, T.-W., Bell, A.J., & Lambert, R. (1997). Blind separation of delayed and convolved sources. Pages 758-764 of: Mozer, M.C., Jordan, M.I., & Petsche, T. (eds), Advances in Neural Information Processing Systems, vol. 9. MIT Press.
[Lee et al, 1998] Lee, T.-W., Lewicki, M.S., Girolami, M., & Sejnowski, T.J. (1998). Blind source separation of more sources than mixtures using overcomplete representations. IEEE Signal Processing Letters.
[Lee et al, 1999a] Lee, T.-W., Lewicki, M.S., & Sejnowski, T.J. (1999a). ICA mixture models for unsupervised classification and automatic context switching. Pages 209-214 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Lee et al, 1999b] Lee, T.-W., Girolami, M., & Sejnowski, T.J. (1999b). Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Computation, 11, 417–441.
[Lee et al, 1999c] Lee, T.-W., Lewicki, M.S., & Sejnowski, T.J. (1999c). Unsupervised classification with non-Gaussian mixture models using ICA. Pages 508-514 of: Kearns, M.S., Solla, S. A., & Cohn, D.A. (eds), Advances in Neural Information Processing Systems, vol. 11. MIT Press.
[Lee et al, 2000a] Lee, D.D., Rokni, U., & Sompolinsky, H. (2000a). Algorithms for independent component analysis and higher order statistics. Advances in Neural Information Processing Systems, vol. 12. MIT Press.
[Lee et al, 2000b] Lee, T.-W., Girolami, M., Bell, A.J., & Sejnowski, T.J. (2000b). A unifying framework for independent component analysis. International Journal on Mathematical and Computer Models, 39(11), 1-21. Available from http://www.cnl. salk.edu/~tewon/Public/mcm.ps.gz.
[Lewicki, 2000] Lewicki, M.S. (2000). A flexible prior for independent component analysis. Neural Computation. (Submitted).
[Lewicki & Olshausen, 1998] Lewicki, M.S., & Olshausen, B. (1998). Inferring sparse, overcomplete image codes using an efficient coding framework. Pages 556-562 of: Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems, vol. 10.
[Lewicki & Olshausen, 1999] Lewicki, M.S., & Olshausen, B.A. (1999). A probabilistic framework for the adaptation and comparison of image codes. Journal of the Optical Society of America A, 16(7), 1587–1601.
[Lewicki & Sejnowski, 1998] Lewicki, M.S., & Sejnowski, T.J. (1998). Learning nonlinear overcomplete representations for efficient coding. Pages 815–821 of: Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems 10, vol. 10.
[Lewicki & Sejnowski, 2000] Lewicki, M.S., & Sejnowski, T.J. (2000). Learning overcomplete representations. Neural Computation, 12(2), 337-365.
[Liavas & Regalia, 1998] Liavas, A.P., & Regalia, P.A. (1998). Acoustic echo cancellation: do IIR models offer better modeling capabilities than their FIR counterparts?IEEE Transactions on Signal Processing, 46, 2499–2504.
[Lin, 1999] Lin, J.K. (1999). Factorizing probability density functions: generalizing ICA. Pages 313-318 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Lin et al, 1997] Lin, J.K., Grier, D., & Cowan, J. (1997). Faithful representation of separable distributions. Neural Computation, 9, 1305–1320.
[Linsker, 1989] Linsker, R. (1989). An application of the principle of maximum information transfer to linear systems. Touretzky, D.S. (ed), Advances in Neural Information Processing Systems, vol. 1. Morgan Kaufmann.
[Linsker, 1992] Linsker, R. (1992). Local synaptic learning rules suffice to maximise mutual information in a linear network. Neural Computation, 4, 691–702.
[MacKay, 1994] MacKay, D.J.C. (1994). Bayesian non-linear modelling for the energy prediction competition. ASHRAE Transactions, 100, 1053–1062.
[MacKay, 1995] MacKay, D.J.C. (1995). Developments in probabilistic modelling with neural networks – ensemble learning. Pages 191-198 of: Neural Networks: Artificial Intelligence and Industrial Applications. Proceedings of the 3rd Annual Symposium on Neural Networks.
[MacKay, 1996] MacKay, D.J.C. (1996). Maximum likelihood and covariant algorithms for independent component analysis. Tech. rept. University of Cambridge. Available from http://wol.ra.phy.cam.ac.uk/mackay/.
[MacKay, 1999] MacKay, D.J.C. (1999). Monte Carlo methods. Pages 175-204 of: Jordan, M.I. (ed), Learning in Graphical Models. Kluwer.
[Makeig, 1999] Makeig, S. (1999). ICA/EEG toolbox. Computational Neurobiology Laboratory, The Salk Institute. Available from http://www.cnl.salk.edu/~tewon/ica_cnl.html.
[Makeig et al, 1996] Makeig, S., Bell, A.J., Jung, T.-P., & Sejnowski, T.J. (1996). Independent component analysis of electroencephalographic data. Pages 145–151 of: Touretzky, D., Mozer, M., & Hasselmo, M. (eds), Advances in Neural Information Processing Systems, vol. 8. MIT Press.
[Makeig et al, 1997a] Makeig, S., Jung, T.-P., Bell, A.J., Ghahremani, D., & Sejnowski, T.J. (1997a). Blind separation of auditory event-related brain responses into independent components. Proceedings of the National Academy of Sciences, 94, 10979–84.
[Makeig et al, 1997b] Makeig, S., Jung, T-P., Bell, A., Ghahremani, D., & Sejnowski, T.J. (1997b). Transiently time-locked fMRI activations revealed by independent components analysis. Proceedings of the National Academy of Sciences, 95, 803–810.
[Makeig et al, 1999] Makeig, S., Westerfield, M., Townsend, J., Jung, T.-R., Courchesne, E., & Sejnowski, T.J. (1999). Functionally independent components of early event-related potentials in a visual spatial attention task. Philosophical Transactions of the Royal Society: Biological Sciences, 354, 1135–1144.
[Mallat, 1998] Mallat, S. (1998). A Wavelet Tour of Signal Processing. Academic Press.
[Manduchi & Portilla, 1999] Manduchi, R., & Portilla, J. (1999). Independent component analysis of textures. IEEE International Conference on Computer Vision.
[Matsuoka et al, 1995] Matsuoka, K., Ohya, M., & Kawamoto, M. (1995). A neural net for blind separation of nonstationary signals. Neural Networks, 8(3), 411–419.
[McCallum & Nigam, 1998] McCallum, A., & Nigam, K. (1998). A comparison of event models for naive Bayes text classification. AAAI-98 Workshop on Learning for Text Categorisation. Available from http://www.cs.emu.edu/~mccallum.
[McCullagh & Nelder, 1983] McCullagh, P., & Nelder, J.A. (1983). Generalized Linear Models. Chapman and Hall.
[McKeown et al, 1998a] McKeown, M.J., Makeig, S., Brown, G.G., Jung, T.-P., Kindermann, S.S., Bell, A.J., & Sejnowski, T.J. (1998a). Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 6, 160–188.
[McKeown et al, 1998b] McKeown, M.J., Jung, T.-P., Makeig, S., Brown, G.G., Kindermann, G., Lee, T.-W., & Sejnowski, T.J. (1998b). Spatially independent activity patterns in functional magnetic resonance imaging data during the Stroop color-naming task. Proceedings of the National Academy of Sciences, 95, 803–810.
[Minka, 2000] Minka, T.P. (2000). Automatic choice of dimensionality for PC A. Tech. rept. 514. MIT. Available from ftp://whitechapel.media.mit.edu/pub/tech-reports/.
[Mohammad-Djafari, 1999] Mohammad-Djafari, A. (1999). A Bayesian approach to source separation. 19th International Workshop on Maximum Entropy and Bayesian Methods (MaxEnt99).
[Molgedey & Schuster, 1994] Molgedey, L., & Schuster, H.G. (1994). Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters, 72(23), 3634–3637.
[Moreau & Macchi, 1993] Moreau, E., & Macchi, O. (1993). New self-adaptive algorithms for source separation based on contrast functions. Pages 215-219 of: Proceedings of IEEE Signal Processing Workshop on Higher Order Statistics.
[Moulines et al, 1997] Moulines, E., Cardoso, J.-F., & Gassiat, E. (1997). Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. Pages 3617-20 of: Proceedings of ICASSP'97, vol. 5.
[Murata et al, 1997] Murata, N., Ikeda, S., & Ziehe, A. (1997). Adaptive on-line learning in changing environments. Pages 599–605 of: Mozer, M.C., Jordan, M.I., & Petsche, T. (eds), Advances in Neural Information Processing Systems, vol. 9. MIT Press.
[Nadal & Parga, 1994] Nadal, J.-P., & Parga, N. (1994). Non-linear neurons in the low noise limit: a factorial code maximises information transfer. Network, 5, 565 581.
[Neal & Hinton, 1993] Neal, R.M., & Hinton, G.E. (1993). A view of the EM algorithm that justifies incremental, sparse, and other variants. Pages 355–368 of: Jordan, M.I. (ed), Learning in Graphical Models. Kluwer.
[Ochs et al, 1999] Ochs, M., Stoyanova, R., Arias-Mendoza, F., & Brown, T. (1999). A new method for spectral decomposition using a bilinear Bayesian approach. Journal of Magnetic Resonance, 137, 161–176.
[Oja & Kaski, 1999] Oja, E., & Kaski, S. (eds). (1999). Kohonen maps. Elsevier.
[Oja et al, 1997] Oja, E., Karhunen, J, Hyvärinen, A., Vigário, R., & Hurri, J. (1997). Neural independent component analysis – approaches and applications. Pages 167–188 of: Amari, S.-I., & Kasabov, N. (eds), Brain-Like Computing and Intelligent Information Systems. Springer.
[Olshausen & Field, 1996] Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.
[Olshausen & Field, 1997] Olshausen, B.A., & Field, D.J. (1997). Sparse coding with an overcomplete basis set: a strategy employed by VI?Vision Research, 37, 3311–3325.
[O'Ruanaidth & Fitzgerald, 1996] O'Ruanaidth, J.J.K., & Fitzgerald, W.J. (1996). Numerical Bayesian Methods Applied to Signal Processing. Springer.
[O'Toole et al, 1991a] O'Toole, A.J., Abdi, H., Deffenbacher, K.A., & Bartlett, J.C. (1991a). Classifying faces by race and sex using an autoassiciative memory trained for recognition. Pages 847–851 of: Hammond, K.J., & Gentner, D. (eds), Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Lawrence Erlbaum.
[O'Toole et al, 1991b] O'Toole, A.J., Deffenbacher, K.A., Abdi, H., & Bartlett, J.C. (1991b). Simulating the “other-race effect” as a problem in perceptual learning. Connection Science, 3(2), 163–178.
[Pajunen & Girolami, 2000] Pajunen, P., & Girolami, M. (2000). Implementing decisions in binary decision trees using independent component analysis. Second International Workshop on Independent Component Analysis (ICA2000).
[Pajunen & Karhunen, 1997] Pajunen, P., & Karhunen, J. (1997). A maximum likelihood approach to nonlinear blind separation. Pages 541-546 of: Proceedings of 1997 International Conference on Artificial Neural Networks.
[Pajunen et al, 1996] Pajunen, P., Hyvärinen, A, & Karhunen, J. (1996). Non-linear blind source separation by self-organizing maps. Pages 1207-1210 of: International Conference on Neural Information Processing. Springer.
[Papoulis, 1991] Papoulis, A. (1991). Probability, Random Variables and Stochastic Processes. McGraw-Hill.
[Parra, 1998a] Parra, L. (1998a). An Introduction to Independent Component Analysis and Blind Source Separation. Tech. rept. Princeton University. Available from http://www.humanism.org/~lucas/.
[Parra, 1998b] Parra, L. (1998b). Blind source separation based on multiple decorrelations. http://www.sarnoff.com/career_move/tech_papers/BSS.html.
[Parra & Spence, 2000a] Parra, L, & Spence, C. (2000a). Convolutive blind source separation of non-stationary sources. IEEE Transactions on Signal Processing, 320-327.
[Parra & Spence, 2000b] Parra, L, & Spence, C. (2000b). On-line convolutive blind source separation of non-stationary sources. VLSI Signal Processing Journal, 26(1), 39–16.
[Parra et al, 1995] Parra, L. C., Deco, G., & Miesbach, S. (1995). Redundancy reduction with information-preserving maps. Network: Computation in Neural Systems, 6, 61–72.
[Parra et al, 1996] Parra, L., Deco, G., & Miesbach, S. (1996). Statistical independence and novelty detection with information-preserving nonlinear maps. Neural Computation, 8, 260–269.
[Parra et al, 2000] Parra, L., Spence, C., Sajda, P., Ziehe, A., & Millier, K.-R. (2000). Unmixing hyperspectral data. Advances in Neural Information Processing Systems, vol. 12.
[Pearlmutter & Parra, 1996] Pearlmutter, B.A., & Parra, L.C. (1996). A context-sensitive generalization of ICA. Pages 151-157 of: International Conference on Neural Information Processing (ICONIP'96). Springer. Available from http://www.cs.unm.edu/~bap/papers/iconip-96-cica.ps.gz.
[Pearlmutter & Parra, 1997] Pearlmutter, B.A., & Parra, L.C. (1997). Maximum likelihood blind source separation: a context-sensitive generalization of ICA. Pages 613–619 of: Mozer, M.C., Jordan, M.I., & Petsche, T. (eds), Advances in Neural Information Processing Systems, vol. 9. MIT Press.
[Pearson, 1894] Pearson, K. (1894). Contributions to the mathematical study of evolution. Philosophical Transations of the Royal Society, series A, 185(71).
[Pearson, 1901] Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 6, 559.
[Penny et al, 2000] Penny, W.D., Everson, R.M., & Roberts, S.J. (2000). Hidden Markov independent components analysis. Pages 1–22 of: Girolami, M. (ed), Advances in Independent Component Analysis. Springer.
[Pham, 1996] Pham, D.-T. (1996). Blind separation of instantaneous mixture of sources via an independent component analysis. IEEE Transactions on Signal Processing, 44(11), 2668–2779.
[Pham, 1999] Pham, D.-T. (1999). Joint approximate diagonalization of positive definite Hermitian matrices. Tech. rept. Laboratoire de Modélisation et de Calcul. Submitted to Simax. Available from http://www-lmc.imag.fr/lmc-sms/Dinh-Tuan.Pham/jadiag/.
[Pham & Cardoso, 2000a] Pham, D.-T., & Cardoso, J.-F. (2000a). A Cramér-Rao hound for the separation of non-stationary non-Gaussian sources. Available at http://tsi.enst.fr/~cardoso/CRBnSnG.ps and http://www-lmc/lmc-sms/Dinh-Tuan.Pham/BBS/CRBnSnG.ps.
[Pham & Cardoso, 2000b] Pham, D.-T., & Cardoso, J.-F. (2000b). Blind separation of instantaneous mixtures of non-stationary sources. Proceedings of 2nd International Conference on Independent Component Analysis and Blind Source Separation, ICA 2000.
[Pham & Garrat, 1993] Pham, D.-T., & Garrat, P. (1993). Séparation aveugle de sources temporellement corrélées. Pages 317-320 of: Proceedings of Gretsi.
[Pham & Garrat, 1997] Pham, D.-T., & Garrat, P. (1997). Blind separation of mixture of independent sources through a quasi-maximum-likelihood approach. IEEE Transactions on Signal Processing, 45(7), 1712–1725.
[Pham et al., 1992] Pham, D.T., Garrat, P., & Jutten, C. (1992). Separation of a mixture of independent sources through a maximum likelihood approach. Pages 771-774 of: European Signal Processing Conference.
[Pinter, 1996] Pinter, I. (1996). Perceptual wavelet-representation of speech signals and its application to speech enhancement. Computer Speech and Language, 10, 1–22.
[Porrill et al, 2000] Porrill, J., Stone, J.V., Berwick, J., Mayhew, J., & Coffey, P. (2000). Analysis of optical imaging data using weak models and ICA. Pages 217–233 of: Girolami, M. (ed), Advances in Independent Component Analysis. Perspectives in Neural Computing. Springer.
[Press et al, 1992] Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (1992). Numerical recipes in C. 2nd edn. Cambridge University Press.
[Quinlan, 1986] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
[Rabiner & Juang, 1993] Rabiner, L., & Juang, B.-H. (1993). Fundamentals of Speech Recognition. Prentice-Hall.
[Rajan & Rayner, 1997] Rajan, J.J., & Rayner, P.J.W. (1997). Model order selection for the singular value decomposition and the discrete Karhunen-Loeve transform using a Bayesian approach. IEE Proceedings on Vision, Images and Signal Processing, 144(2), 116–123.
[Rangaswamy et al., 1993] Rangaswamy, M., Weiner, D., & Oeztuerk, A. (1993). Non-Gaussian random vector identification using spherically invariant random processes. IEEE Transactions on Aerospace and Electronic Systems, 29(1), 111–123.
[Richardson & Green, 1997] Richardson, S, & Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society, series B), 59(4), 731–758.
[Rissanen, 1978] Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.
[Ristaniemi & Joutsensalo, 1999] Ristaniemi, T., & Joutsensalo, J. (1999). On the performance of blind source separation in CDMA downlink. Pages 437-442 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Roberts, 1998] Roberts, S.J. (1998). Independent component analysis: source assessment and separation, a Bayesian approach. IEE Proceedings, Vision, Image and Signal Processing, 145(3), 149–154.
[Roberts et al, 1999] Roberts, S.J., Everson, R.M., & Rezek, I. (1999). Minimum entropy data partitioning. Pages 844-849 of: Proceedings of the International Conference on Artificial Neural Networks, vol. 2.
[Roth & Baram, 1996] Roth, Z., & Baram, Y. (1996). Multidimensional density by shaping sigmoids. IEEE Transactions on Neural Networks, 7(5), 1291–1298.
[Roweis, 1997] Roweis, S. (1997). EM algorithms for PCA and SPCA. Pages 626–632 of: Jordan, M.I., Kearns, M.J., & Solla, S.A. (eds), Advances in Neural Information Processing Systems, vol. 10.
[Roweis & Ghahramani, 1999] Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305–346.
[Rubin & Thayer, 1982] Rubin, D, & Thayer, D. (1982). EM algorithms for ML factor analysis. Psychometrica, 47, 69–76.
[Ruderman, 1998] Ruderman, D.L. (1998). Origins of scaling in natural images. Vision Research, 37(23), 3385–3398.
[Rupp, 1993] Rupp, Markus. (1993). The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Transactions on Signal Processing, 41(3), 1149–1160.
[Saul & Jordan, 1996] Saul, L., & Jordan, M.I. (1996). Exploiting tractable structures in intractable networks. Touretzky, D., Mozer, M, & Hasselmo, M. (eds), Advances in Neural Information Processing Systems, vol. 8. MIT Press.
[Saul et al, 1996] Saul, L.K., Jaakkola, T., & Jordan, M.I. (1996). Mean field theory of sigmoid belief networks. Journal of Artificial Intelligence Research, 4, 61–76.
[Schießl et al., 1999] Schießl, I., Stetter, M., Mayhew, J.E.W., Askew, S., McLoughlin, N., Levitt, J.B., Lund, J.S., & Obermayer, K. (1999). Blind Separation of spatial signal patterns from optical imaging records. Pages 179-184 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Schießl et al, 2000] Schießl, I., Stetter, M., Mayhew, J.E.W., McLoughlin, N., Lund, J.S., & Obermayer, K. (2000). Blind signal separation from optical imaging recordings with extended spatial decorrelation. IEEE Transactions on Biomedical Engineering, 47.
[Schoebben, 1998] Schoebben, D. (1998). Real room recordings and separation results, http://www.esp.ele.tue.nl/onderzoek/daniels/BSS.html.
[Schöner et al, 2000] Schöner, H., Stetter, M., Schießl, I., Mayhew, J.E.W., Lund, J.S., McLoughlin, N., & Obermayer, K. (2000). Application of blind separation of sources to optical recording of brain activity. Advances in Neural Information Processing Systems, vol. 12.
[Shalvi & Weinstein, 1993] Shalvi, O, & Weinstein, E. (1993). Super-exponential methods for blind deconvolution. IEEE Transactions on Information Theory, 39(2), 504–519.
[Shalvi & Weinstein, 1994] Shalvi, O., & Weinstein, E. (1994). Universal methods for blind deconvolution. Pages 8–59 of: Haykin, S. (ed), Blind Deconvolution. Prentice-Hall.
[Sirovich, 1987] Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. Quarterly of Applied Mathematics, XLV(3), 561-590.
[Sirovich & Everson, 1992] Sirovich, L, & Everson, R.M. (1992). Analysis and management of large scientific databases. International Journal of Supercomputing Applications, 6(1), 50-68.
[Sirovich & Kirby, 1987] Sirovich, L, & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America, 4A(3), 519–524.
[Sivia, 1996] Sivia, D.S. (1996). Data Analysis: a Bayesian Tutorial. Clarendon.
[Souloumiac, 1995] Souloumiac, A. (1995). Blind source detection and separation using second order non-stationarity. Pages 1912-1915 of: International Conference on Acoustics, Speech and Signal Processing.
[Spence & Parra, 2000] Spence, C., & Parra, L. (2000). Hierarchical image probability (HIP) model. Advances in Neural Information Processing Systems, vol. 12. MIT Press.
[Stone et al., 1999] Stone, J.V., Porrill, J., Büchel, C., & Friston, K. (1999). Spatial, temporal and spatiotemporal independent component analysis of fMRI data. Proceedings of the Conference on Spatio-temporal Modelling and its Applications, University of Leeds, UK.
[Taleb & Jutten, 1999] Taleb, A., & Jutten, C. (1999). Source separation in post-nonlinear mixtures. IEEE Transactions on Signal Processing, 47, 2807–2820.
[Tang et al, 1999] Tang, A.C., Pearlmutter, B.A., & Zibulevsky, M. (1999). Blind separation of neuromagnetic responses. Computational Neuroscience. In press as a special issue of Neurocomputing.
[Tang et al., 2000] Tang, A.C., Pearlmutter, B.A., Zibulevsky, M., Hely, T.A., & Weisend, M.P. (2000). An MEG study of response latency and variability in the human visual system during a visual-motor integration task. Pages 185-191 of: Advances in Neural Information Processing Systems, vol. 12. MIT Press.
[Theunissen & Doupe, 1998] Theunissen, F.E., & Doupe, AJ. (1998). Temporal and spectral sensitivity of auditory neurons in the nucleus HVc of male zebra finches. Journal of Neuroscience, 18(10), 3786–3802.
[Thi & Jutten, 1995] Thi, H.-L.N., & Jutten, C. (1995). Blind source separation for convolutive mixtures. Signal Processing, 45(2), 209–229.
[Tipping, 1999] Tipping, M.E. (1999). Probabilistic visualisation of high-dimensional binary data. Pages 592–598 of: Kearns, M.S., Solla, S. A., & Cohn, D.A. (eds), Advances in Neural Information Processing Systems, vol. 11. MIT Press.
[Tipping & Bishop, 1997] Tipping, M.E., & Bishop, C.M. (1997). Probabilistic Principal Component Analysis. Tech. rept. NCRG/97/010. Neural Computing Research Group, Aston University. Available from http://www.ncrg.aston.ac.uk.
[Tipping & Bishop, 1999] Tipping, M.E., & Bishop, C.M. (1999). Mixtures of probabilistic principal component analyzers. Neural Computation, 11(2), 443–482.
[Tong & Liu, 1990] Tong, L., & Liu, R. (1990). Blind estimation of correlated source signals. Proceeding of the Asilomar Conference.
[Torkkola, 1996a] Torkkola, K. (1996a). Blind separation of convolved sources based on information maximization. Pages 2097-2100 of: Proceedings of ICASSP.
[Torkkola, 1996b] Torkkola, K. (1996b). Blind separation of convolved sources based on information maximization. Neural Networks for Signal Processing, vol. VI. IEEE.
[Torkkola, 1996c] Torkkola, K. (1996c). Blind separation of delayed sources based on information maximization. Pages 423-432 of: IEEE Workshop on Neural Networks for Signal Processing.
[Torkkola, 1999] Torkkola, K. (1999). Blind separation of audio signals: are we there yet?Pages 239-244 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99. Available from http://members.home.net/torkkola/bss.html.
[Tsatsanis & Kweon, 1998] Tsatsanis, M.K., & Kweon, C. (1998). Source separation using second order statistics: identifiability conditions and algorithms. Pages 1574-1578 of: Proceedings of the 32nd Asilomar Conference on Signals, Systems, and Computers. IEEE.
[T'so et al, 1990] T'so, D., Frostig, R.D., Lieke, E.E., & Grinvald, A. (1990). Functional organisation of primate visual cortex revealed by high resolution optical imaging. Science, 249, 417–120.
[van Gerven & van Compernolle, 1995] van Gerven, S., & van Compernolle, D. (1995). Signal separation by symmetric adaptive decorrelation: Stability, convergence, and uniqueness. IEEE Transactions on Signal Processing, 43(7), 1602–1612.
[van Hateren & Ruderman, 1998] van Hateren, J.H., & Ruderman, D.L. (1998). Independent component analysis of image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of the Royal Society of London, series B, 265, 2315–2320.
[van Hateren & van der Schaaf, 1998] van Hateren, J.H., & van der Schaaf, A. (1998). Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London, series B, 265, 359–366.
[Vetter et al, 1999] Vetter, R., Vesin, J.-M., Celka, P., & Scherrer, U. (1999). Observer of the autonomic cardiac outflow in humans using non-causal blind source separation. Pages 161-166 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Vigário, 1997] Vigário, R. (1997). Extraction of ocular artifacts from EEG using independent component analysis. Electroenceph. clin. NeurophysioL, 103(3), 395–104.
[Vigário et al, 1999] Vigário, R., Sarela, J., Jousmaki, V., & Oja, E. (1999). Independent component analysis in decomposition of auditory and somatosensory evoked fields. Pages 167-172 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Vigário et al, 2000] Vigário, R., Sarela, J., Hamalainen, M., & Oja, E. (2000). Independent component approach to the analysis of EEG and MEG recordings. IEEE Transactions on Biomedical Engineering.
[Vinokourov & Girolami, 2000] Vinokourov, A., & Girolami, M. (2000). A probabilistic hierarchical clustering method for organising collections of text documents. Proceedings of 15th International Conference on Pattern Recognition.
[Wainwright & Simoncelli, 2000] Wainwright, M.J., & Simoncelli, E.P. (2000). Scale mixtures of Gaussians and the statistics of natural images. Advances in Neural Information Processing Systems, vol. 12. MIT Press.
[Wallace & Boulton, 1968] Wallace, C.S., & Boulton, D.M. (1968). An information measure for classification. Computer Journal, 11(2), 195–209.
[Waterhouse et al, 1996] Waterhouse, S., Mackay, D.J.C., & Robinson, T. (1996). Bayesian methods for mixtures of experts. Touretzky, D., Mozer, M., & Hasselmo, M. (eds), Advances in Neural Information Processing Systems, vol. 8. MIT Press.
[Wax & Kailath, 1985] Wax, M., & Kailath, T. (1985). Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32, 387–392.
[Weinstein et al, 1993] Weinstein, E., Feder, M., & Oppenheim, A.V. (1993). Multi-channel signal separation by decorrelation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1(4), 405–413.
[Weitzer et al, 1997] Weitzer, D., Stanhill, D., & Zeevi, Y.Y. (1997). Nonseparable two-dimensional multiwavelet transform for image coding and compression. Proceedings SPIE, 3309, 944–954.
[Wiibbeler et al, 2000] Wiibbeler, G., Ziehe, A., Mackert, B.-M., Müller, K.-R., Trahms, L., & Curio, G. (2000). Independent component analysis of non-invasively recorded cortical magnetic DC-fields in humans. IEEE Transactions on Biomedical Engineering, 47(5).
[Yang et al, 1998] Yang, H., Amari, S.-I., & Cichocki, A. (1998). Information-theoretic approach to blind separation of sources in non-linear mixture. Signal Processing, 64, 291–300.
[Yen & Zhao, 1999] Yen, K.-C., & Zhao, Y. (1999). Adaptive co-channel speech separation and recognition. IEEE Transactions on Signal Processing, 7(2), 138–152.
[Ypma & Pajunen, 1999] Ypma, A., & Pajunen, P. (1999). Rotating machine vibration analysis with second-order independent component analysis. Pages 37-42 of: Proceedings of First International Conference on Independent Component Analysis and Blind Source Separation: ICA'99.
[Ziehe et al, 2000] Ziehe, A., Müller, K.-R., Nolte, G., Mackert, B.-M., & Curio, G. (2000). Artifact reduction in magnetoneurography based on time-delayed second-order correlations. EEE Trans, on Biomedical Eng, 47(1), 75–87.