Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- List of Participants
- An introduction to idempotency
- Tropical semirings
- Some automata-theoretic aspects of min-max-plus semirings
- The finite power property for rational sets of a free group
- The topological approach to the limitedness problem on distance automata
- Types and dynamics in partially additive categories
- Task resource models and (max, +) automata
- Algebraic system analysis of timed Petri nets
- Ergodic theorems for stochastic operators and discrete event networks.
- Computational issues in recursive stochastic systems
- Periodic points of nonexpansive maps
- A system-theoretic approach for discrete-event control of manufacturing systems
- Idempotent structures in the supervisory control of discrete event systems
- Maxpolynomials and discrete-event dynamic systems
- The Stochastic HJB equation and WKB method
- The Lagrange problem from the point of view of idempotent analysis
- A new differential equation for the dynamics of the Pareto sets
- Duality between probability and optimization
- Maslov optimization theory: topological aspect
- Random particle methods in (max, +) optimization problems
- The geometry of finite dimensional pseudomodules
- A general linear max-plus solution technique
- Axiomatics of thermodynamics and idempotent analysis
- The correspondence principle for idempotent calculus and some computer applications
The geometry of finite dimensional pseudomodules
Published online by Cambridge University Press: 05 May 2010
- Frontmatter
- Contents
- Foreword
- Preface
- List of Participants
- An introduction to idempotency
- Tropical semirings
- Some automata-theoretic aspects of min-max-plus semirings
- The finite power property for rational sets of a free group
- The topological approach to the limitedness problem on distance automata
- Types and dynamics in partially additive categories
- Task resource models and (max, +) automata
- Algebraic system analysis of timed Petri nets
- Ergodic theorems for stochastic operators and discrete event networks.
- Computational issues in recursive stochastic systems
- Periodic points of nonexpansive maps
- A system-theoretic approach for discrete-event control of manufacturing systems
- Idempotent structures in the supervisory control of discrete event systems
- Maxpolynomials and discrete-event dynamic systems
- The Stochastic HJB equation and WKB method
- The Lagrange problem from the point of view of idempotent analysis
- A new differential equation for the dynamics of the Pareto sets
- Duality between probability and optimization
- Maslov optimization theory: topological aspect
- Random particle methods in (max, +) optimization problems
- The geometry of finite dimensional pseudomodules
- A general linear max-plus solution technique
- Axiomatics of thermodynamics and idempotent analysis
- The correspondence principle for idempotent calculus and some computer applications
Summary
AbstractA semimodule M over an idempotent semiring P is also idempotent. When P is linearly ordered and conditionally complete, we call it a pseudoring, and we say that M is a pseudomodule over P. The classification problem of the isomorphism classes of pseudomodules is a combinatorial problem which, in part, is related to the classification of isomorphism classes of semilattices. We define the structural semilattice of a pseudomodule, which is then used to introduce the concept of torsion. Then we show that every finitely generated pseudomodule may be canonically decomposed into the “sum” of a torsion free sub-pseudomodule, and another one which contains all the elements responsible for the torsion of M. This decomposition is similar to the classical decomposition of a module over an integral domain into a free part and a torsion part. It allows a great simplification of the classification problem, since each part can be studied separately. For subpseudomodules of the free pseudomodule over m generators, we conjecture that the torsion free part, also called semiboolean, is completely characterized by a weighted oriented graph whose set of vertices is the structural semilattice of M. Partial results on the classification of the isomorphism class of a torsion sub-pseudomodule of Pm with m generators will also be presented.
Pseudorings and Pseudomodules
A pseudoring (P, +, ·) is an idempotent, commutative, completely ordered, and conditionally complete semiring with minimal element 0, such that (P\ {0}, ·) is an integrally closed commutative group. For simplicity, the reader may think of P as R∪ {–∞} (or R∪ {∞}) with + the max (resp. the min) operator, and o the usual addition.
- Type
- Chapter
- Information
- Idempotency , pp. 392 - 405Publisher: Cambridge University PressPrint publication year: 1998