Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T08:32:26.043Z Has data issue: false hasContentIssue false

11 - Groundwater modelling in hard-rock terrain in semi-arid areas: experience from India

Published online by Cambridge University Press:  15 December 2009

S. Ahmed
Affiliation:
National Geophysical Research Institute, Indo-French Centre for Groundwater Research, Hyderabad, India
J.-C. Maréchal
Affiliation:
Bureau de Recherches Géologiques et Miniéres, Montpellier, France
E. Ledoux
Affiliation:
Ecole Nationale Supérieure des Mines de Paris, UMR CNRS Sisyphe, Fontainebleau, France
G. de Marsily
Affiliation:
Université Pierre et Marie Curie-Paris VI, UMR CNRS Sisyphe, Paris, France
Howard Wheater
Affiliation:
Imperial College of Science, Technology and Medicine, London
Soroosh Sorooshian
Affiliation:
University of California, Irvine
K. D. Sharma
Affiliation:
National Institute of Hydrology, India
Get access

Summary

INTRODUCTION

Across the world, the concern for water resources is growing as a result of population growth, climate change, and alarming signs that in some areas of the world, groundwater resources are being depleted at an unsustainable rate. This has prompted a re-examination of the world's water resources and the relationship between water and the environment. According to a United Nations survey, scarcity of fresh water is, in some areas, considered to be the world's most pressing concern (UN, 1987; El-Shibini and El-Kady, 2002). In many countries, to meet the increased demand for water, groundwater resources must be tapped. However, to ensure sustainability, much greater emphasis must be put on groundwater management than on exploration for new groundwater resources, as most productive aquifers have already been identified. Groundwater is particularly important in arid and semi-arid regions that lack perennial sources of surface water due to low rainfall and high evapotranspiration. This article focuses on groundwater management in hard-rock areas in semi-arid climates, where aquifers exist in the upper weathered-fissured section of the system; these aquifers receive little recharge, and have different and more complex characteristics than in classical sedimentary media. Specialized techniques are thus required to characterize and manage them.

Groundwater modelling has produced answers to many difficult questions that arise in the course of hydrogeological investigations. At present, it has become an indispensable tool in understanding and effectively managing aquifer systems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboufirassi, M. and Marino, M. A. (1983). Kriging of water levels in Souss aquifer, Morocco, J. Math. Geol., 15 (4), 537–51.Google Scholar
Aboufirassi, M. and Marino, M. A. (1984). Cokriging of aquifer transmissivities from field measurements of transmissivity and specific capacity, J. Math. Geol., 16 (1), 19–35.Google Scholar
Aghassi, A. V. (1990). Groundwater evaluation in fractured zones with special emphasis on solubility of carbonated rocks. In Proc. of IAH Congress,Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 480–5.Google Scholar
Ahmed, S. (1987). Estimation des transmissivités des aquifères par methodes géostatistiques multivariables et résolution du problème inverse. Doctoral thesis, Ecole Nationale Supérieure des Mines, Paris, France.Google Scholar
Ahmed, S. (1995). An interactive software for computing and modeling a variogram. In Proc. of a Conference on Water Resources Management (WRM'95), August 28–30. Iran: Isfahan University of Technology, 797–808.
Ahmed, S. (2004). Contribution of geostatistics to the aquifer modeling for groundwater management, Proc. of International Conference on Advanced Modeling Techniques for Sustainable Management of Water Resources, Jan 28–30, 2004,Warangal, India.Hyderabad: Allied Publishers Pvt. Limited, 264–272.Google Scholar
Ahmed, S. and Gupta, C. P. (1989). Stochastic spatial prediction of hydrogeologic parameters: role of cross-validation in kriging. International Workshop on Appropriate Methodologies for Development and Management of Groundwater Resources in Developing Countries” Hyderabad, India, February 28–March 4, 1989, Vol. III. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd., IGW, 77–90.
Ahmed, S. and Marsily, G. (1987). Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resour. Res., 23 (9), 1717–37.Google Scholar
Ahmed, S., and Marsily, G. de (1988). Some application of multivariate kriging in groundwater hydrology. Science de la Terre, Série Informatique, 28, 1–25.Google Scholar
Ahmed, S., and Marsily, G. (1989). Cokriged estimates of transmissivity using jointly water levels data. In Geostatistics, ed. Armstrong. Dordrecht, M.: Kluwer Academic Publishers, 615–28.Google Scholar
Ahmed, S., Marsily, G., and Talbot, A. (1988). Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Groundwater, 26 (1), 78–86.Google Scholar
Ahmed, S., Marsily, G. de, and Gupta, C. P. (1990). Coherent structural models in cokriging aquifer parameters: estimation of transmissivity and water levels. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 123–31.Google Scholar
Ahmed, S. and Murali, G. (1992). Regionalization of fluoride content in an aquifer. J. Environ. Hydrol., 1 (1), 35–9.Google Scholar
Ahmed, S. and Marsily, G. de (1993). Cokriged estimation of aquifer transmissivity as an indirect solution of the inverse problem: a practical approach. Water Resour. Res., 29 (2), 521–30.Google Scholar
Ahmed, S., Kumar, D., and Maréchal, J. C. (2002). Geostatistical analyses of water level in a fractured aquifer and optimisation of monitoring network. Proc. of the International Groundwater Symposium, LBNL, March 25–28, 2002, USA, ed. A. N. Findikakis. Spain: IAHR publication, 379–82.Google Scholar
Ahmed, S., Engerrand, C., Sreedevi, P. D.ed al. (2003). Geostatistics, aquifer modelling and artificial recharge, Scientific Report, Vol. 3, Indo-French Collaborative Project (2013–1), Technical Report No. NGRI-2003-GW-41, Hyderabad, India.Google Scholar
Amadi, U. M. P. and Fontes, J. Ch. (1990). Inland hydrologic sub-basins and their control on the groundwater system from the Benue Trough-Chad basin. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 550–6.Google Scholar
Anderson, M. P. and Woessner, W. (1991). Applied Groundwater Modeling: Simulation of Flow and Advective Transport. London, New York: Academic Press.Google Scholar
Andhra Pradesh Groundwater Department (APGWD) (1977). Studies on hydrologic parameters of groundwater recharge in water balance computations, Andhra Pradesh. Research series no.6, Hyderabad: Government of Andhra Pradesh Ground Water Department.
Bardossy, A., Bogardi, I., and Kelly, W. E. (1986). Geostatistical analysis of geoelectric estimates for specific capacity. J. Hydrol., 84, 81–95.Google Scholar
Barker, J. (1988). A generalized radial flow model for hydrologic tests in a fractured rock. Water Resour. Res., 24 (10), 1796–804.Google Scholar
Basabe, P. and Bieler, G. (1990). Différenciation des écoulements du Malm inférieur et du Dogger supérieur dans le Jura vaudois, In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A., IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 383–91.Google Scholar
Bates, L. E., Otto, C. J., Bartle, G., and Johnston, C. (2000). Development of a hydrogeological database and groundwater vulnerability assessment using GIS and integrated modelling, Garden Island, WA. Progress Report: Vulnerability Assessment. CSIRO Land and Water, Final Report 2000.
Bear, J. (1979). Hydraulics of Groundwater. New York: McGraw-Hill.Google Scholar
Belden, M. and Osborn, I. (2002). Hydrogeologic investigation of the Ogallala aquifer in Roger Mills and Beckham counties, Western Oklahoma. Tech. Report No. GW-2002–2, Oklahoma Water Resources Board, USA.
Besbes, M. (2003). Système Aquifère du Sahara Septentrional, Gestion commune d'un bassin transfrontière. La Houille Blanche, 5, 128–33.Google Scholar
Besbes, M., Delhomme, J. P., and Marsily, G. de (1978). Estimating recharge from ephemeral streams in arid regions: a case study at Kairouan (Tunisia). Water Resour. Res., 14 (2), 281–90.Google Scholar
Brebbia, C. A. (1978). The Boundary Element Method for Engineers. London: Pentech Press.Google Scholar
Bredenkamp, D. B. (1990). Simulation of the flow of Dolomitic springs and of groundwater levels by means of annual recharge estimates. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 150–57.Google Scholar
Bruel, D., Engerrand, C., Ledoux, E., et al. (2002). The evaluation of aquifer parameters in Maheshwaram Mandal, RR dist., AP., India. Ecole des Mines de Paris, CIG, technical report LHM/RD/02/28, July 2002, updated November 2002.Google Scholar
Cacas, M. C., Ledoux, E., Marsily, G., et al. (1990a). Flow and transport in fractured rocks: an in situ experiment in the Fanay-Augeres mine and its interpretation with a discrete fracture network model. In Proc. IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 13–38.Google Scholar
Cacas, M. C., Ledoux, E., Marsily, G., et al. (1990b). Modelling fracture flow with a discrete fracture network: calibration and validation. 1: The flow model. Water Resour. Res., 26 (1), 479–89.Google Scholar
Carrera, J. and Neuman, S. P. (1986a). Estimation of aquifer parameter under transient and steady state conditions. 1: Maximum likelihood method incorporating prior information. Water Resour. Res., 22 (2), 199–210.Google Scholar
Carrera, J. and Neuman, S. P. (1986b). Estimation of aquifer parameter under transient and steady state conditions. 2: Uniqueness, stability, and solution algorithms. Water Resour. Res., 22 (2), 211–27.Google Scholar
Carrera, J. and Neuman, S. P. (1986c). Estimation of aquifer parameter under transient and steady state conditions 3: Application to synthetic and field data. Water Resour. Res., 22 (2), 228–42.Google Scholar
Carrera, J. (1990). A modeling approach incorporating quantitative uncertainty estimates. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 67–78.Google Scholar
Chen, B. and Chen, J. (1990). The application of groundwater chemical constituent cluster analysis method for groundwater resources elevation in Maxian County. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 460–7.Google Scholar
Chiles, J. P. and Marsily, G. (1993). Flow in fractured rocks. In Flow and Transport in Fractured Rocks, ed. Bear, J., Marsily, G., and Tsang, C. F., Orlando, FL: Academic Press.Google Scholar
Chiles, J. P. and Delfiner, P. (1999). Geostatistics: Modeling Spatial Uncertainty. New York: Wiley.CrossRefGoogle Scholar
Chilton, P. J. and Foster, S. S. D. (1995). Hydrogeological characteristics and water-supply potential of basement aquifers in tropical Africa. Hydrogeo. J., 3 (1), 36–49.Google Scholar
Civita, M., Olivaro, G., Vigna, B., and Pavia, R. (1990). Hydrodynamic and chemical features of a high altitude karstic system in the maritime Alps (Italy). In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 444–51.
Cooley, R. L. (1977). A method of estimating parameters and assessing reliability for models of steady state groundwater flow. 1: Theory and numerical property. Water Resour. Res., 13 (2), 318–24.Google Scholar
Cooley, R. L. (1979). A method of estimating parameters and assessing reliability for models of steady state groundwater flow. 2: Application of statistical analysis. Water Resour. Res., 15 (3), 603–17.Google Scholar
Cooley, R. L. (1982). Incorporation of prior information into non-linear regression groundwater flow models. 1: Theory. Water Resour. Res., 18 (4), 965–76.Google Scholar
Coudrain, A., Talbi, A., Ledoux, E.et al. (2001). Subsurface transfer of chloride after a lake retreat in the central Andes. Groundwater, 39 (5), 1–9.Google ScholarPubMed
CRIDA (1990). Soil Map of Hayathnagar Farm and Appendix. Ranga Reddy District, Andhra Pradesh, India: Center for Research In Dry-land Agriculture.
CRIDA, (1991–92; 1993–94; 1994–95; 1997–98; 1998–99; 1999–2000). Annual Report. Center for Research in Dry-land Agriculture, Ranga Reddy District, Andhra Pradesh, India.
Custodio, E. (2002). Aquifer overexploitation: what does it mean?Hydrogeol. J., 10 (2), 254–77.Google Scholar
Darricau-Beucher, H. (1981). Approche géostatistique du passage des données de terrain aux paramètres des modèles en hydrogéologie. Doctoral thesis, Ecole Nationale Supérieure des Mines, Paris, France.Google Scholar
Das, Gupta A., Paudyal, G. N., and Aryal, S. K. (1990). Optimization of pumping and recharge pattern for a depleted aquifer. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 982–90.
Delfiner, P. and Delhomme, J. P. (1973). Optimum interpolation by kriging. In Display and Analysis of Spatial Data, ed. Davis, J. C. and McCullough, M. J.. London: Wiley, 96–114.Google Scholar
Delhomme, J. P. (1974). La cartographie d'une grandeur physique à partir des données de différentes qualités. In Proc. of IAH Congress, Montpelier, France, Vol. X, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 185–194.Google Scholar
Delhomme, J. P. (1976). Application de la théorie des variables régionalisées dans les sciences de l'eau, Doctoral Thesis, Ecole des Mines de Paris, Fontainebleau, France.Google Scholar
Delhomme, J. P. (1978). Kriging in the hydrosciences. Adv. Water Resour., 1 (5), 252–66.Google Scholar
Delhomme, J. P. (1979). Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour. Res., 15 (2), 269–80.Google Scholar
Deutsch, C. V. and Journel, A. G. (1992). GSLIB, Geostatistical Software Library and User's Guide. New York: Oxford University Press.Google Scholar
Dong, A., Ahmed, S., and Marsily, G de (1990). Development of geostatistical methods dealing with boundary condition problems encountered in fluid mechanics. In Proceedings, 2nd European Conference on the Mathematics of Oil Recovery, Arles, France, September 11–14, ed. Guerillot and Guillon. Paris: Technip, 21–30.CrossRef
Edmunds, W. M. (1999). Unsaturated zone chemical and isotopic tracers to estimate groundwater recharge, recharge history and past environments in North Africa. Abstr. Progr., Geolog. Soc. Am., 31 (7), 87.Google Scholar
Elo, S. (1992). Geophysical indications of deep fractures in the Narankavaara-Syote and Kandalaksha-Puolanka zones. Geolog. Surv. Finland, 13, 43–50.Google Scholar
El-Shibini, F. and El-Kady, M. (2002). Coping with water scarcity: the future challenges. In Water Resources Development and Management, Vol. 4, ed. Al-Rashed, Singh and Sherif, . The Netherlands: Swets & Zeitilinger B.V., 43–54.Google Scholar
Engerrand, C. (2002). Hydrogeology of the weathered-fissured hard-rock aquifers located in Monsoon areas: hydrogeological study of two watersheds in Andhra Pradesh (India). Doctoral Thesis, Université Pierre et Marie Curie, Paris, France.Google Scholar
Fert, M., Mordzonek, G., and Wêglarz, D. (2005). The management and data distribution system of the hydrogeological map of Poland 1: 50000. Przegl Geologiczny, 53 (10/2), 940–1.Google Scholar
Freeze, R. A. (1971). Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resour. Res. 7 (2), 347–66.Google Scholar
Galli, A. and Meunier, G. (1987). Study of a gas reservoir using the external drift method. In Geostatistical Case Studies, ed. Matheron, G. and Armstrong, M.. Dordrecht: D. Reidel Publ. Co., 105–20.CrossRefGoogle Scholar
Gambolati, G. and Volpi, G. (1979). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resour. Res., 15 (3), 625–9.Google Scholar
Gaye, C. B. and Edmunds, W. M. (1996). Groundwater recharge estimation using chloride, stable isotopes and tritium profiles in the sands of northwestern Senegal, Environ. Geol., 27 (3), 246–51.Google Scholar
Geier, J. E. and Axelsson, C. L. (1991). Discrete fracture modeling of Finnsjön rock mass. Phase I: Feasibility study. Swedish Nuclear Fuel and Waste Management Co., Technical Report No. SKB 91–13, Stockholm, Sweden.Google Scholar
Gogu, R., Carabin, G., Hallet, V., Peters, V., and Dassargues, A. (2001). GIS based hydrogeological databases and groundwater modelling. Hydrogeol. J., 9 (4), 555–69.Google Scholar
Gupta, C. P., Thangarajan, M., and Gurunadha, Rao V. V. S. (1979). Electric analog model study of aquifer in Krishni-Hindon interstream region, Uttar Pradesh, India. Groundwater, 17 (3), 284–90.Google Scholar
Gupta, C. P., Ahmed, S., and Gurunadha, Rao V. V. S. (1985). Conjunctive utilization of surface and ground water to arrest the water-level decline in an alluvial aquifer. J. Hydrol., 76 (3/4), 351–61.Google Scholar
Handa, B. K. (1975). Geochemistry and genesis of fluoride contains groundwater in India. Groundwater, 13, 275–81.Google Scholar
Havlík, M. and Krásný, J. (1998). Transmissivity distribution in southern part of the Bohemian Massif: regional trends and local anomalies, hardrock hydrogeology of the Bohemian Massif. Proc. 3rd Internat. Workshop 1998, Windischeschenbach., Münchner Geol. Hefte, B8: 11–18.
Hoeksema, R. J. and Kitanidis, P. K. (1984). An application of the geostastical approach to the inverse problem in two-dimensional ground water modeling. Water Resour, Res., 20 (7), 1003–20.Google Scholar
Houston, J. F. T. and Lewis, R. T. (1988). The Victoria Province drought relief project. II: Borehole yield relationships. Groundwater, 26 (4), 418–26.Google Scholar
Huyakorn, P. S., Lester, B. H., and Faust, C. R. (1983). Finite element techniques for modeling groundwater flow in fractured aquifers. Water Resour. Res., 19 (4), 1019–31.Google Scholar
Isaaks, M. and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics. New York: Oxford University Press.Google Scholar
Jackson, C. P. and Porter, J. D. (1990). Uncertainty in groundwater flow and transport calculations for repository. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 87–96.
Jaquet, O., Thompson, B., Vomvoris, S., and Hufschmied, P. (1990). Geostatistical methods applied to inverse modelling in the macro-permeability experiment at the Grimsel test site, Switzerland. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 142–9.
Journel, A. G., and Huijbregts, Ch. J. (1978). Mining Geostatistics. London: Academic Press.Google Scholar
Kitanidis, P. K. (1997). Introduction to Geostatistics: Application to Hydrogeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kovalevsky, V. S. (1990). Irregularity of groundwater recharge and its consideration in planning rational groundwater development. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 2, 941–9.
Krasny, J , (1990). Regionalization of transmissivity data: hard rocks of the Bohemian Massif (Czechoslovakia). In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 98–105.
Krásný, J. (1999). Hard-rock hydrogeology in the Czech Republic. Hydrogéologie, 2, 25–38.Google Scholar
Krisnamurthy, N. S., Kumar, D., Sankaran, S., et al. (2000). Magnetic investigations across some lineaments in Maheshwaram watershed, Andhra Pradesh, India. Technical Report National, Geophysical Research Institute of India, NGRI-2000-GW-288, September 2000.Google Scholar
Kromm, D. E. and White, S. E. (1992). Groundwater Exploitation in the High Plains. Lawrence, Kansas: University of Kansas Press.Google Scholar
Kupfersberger, H. and Bloschl, G. (1995). Estimating aquifer transmissivities – on value of auxiliary data. J. Hydrol., 165, 85–99.Google Scholar
Lebert, F. (2001). Mesure de topographie par DGPS sur le bassin de Maheshwaram, (Andhra Pradesh, Inde). Report BRGM/RP-50728-FR; February 2001.
Le, Borgne T., Bour, O., Paillet, F. L., and Caudal, J. P. (2006). Assessment of preferential flow path connectivity and hydraulic properties at single-borehole and cross-borehole scales in a fractured aquifer. J. Hydrol., 328, 347–59.Google Scholar
Legchenko, A. and Baltassat, J. M. (1999). Application of the “Numis” proton magnetic resonance equipment for groundwater exploration in a fractured granite environment 30km south of Hyderabad, Inida. BRGM-Internal report – December 1999 – R40925.Google Scholar
Lerner, D. N., Issar, A., and Simmers, I.. (1990). A guide to understanding and estimating natural recharge. Int. Contribution to Hydrogeology, IAH. Publ., 8. The Netherlands: Verlag Heinz Heisse.Google Scholar
Lyon, S. W., Seibert, J., Lembo, A. J., Walter, M. T., and Steenhuis, T. S. (2005). Geostatistical investigation into the temporal evaluation of spatial structure in a shallow water table. Hydrol. Earth Sys. Sci. Discuss., 2, 1683–716.Google Scholar
Mann, F. M. and Myers, D. A. (1998). Computer Code Selection Criteria For Flow and Transport Code(s) to be Used in Undisturbed Vadose Zone Calculations for TWRS Environmental Analyses. (HNF-1839, Rev. B). Richland, Washington: Lockheed-Martin Hanford Company.Google Scholar
Maréchal, J. C., Dewandel, B., Subrahmanyam, K., and Torri, R. (2003a). Review of specific methods for the evaluation of hydraulic properties in fractured hard-rock aquifers. Curr. Sci. India, 85 (4), 511–16.Google Scholar
Maréchal, J. C., Wyns, R., Lachassagne, P., Subrahmanyam, K., and Touchard, F. (2003b). Anisotropie verticale de la perméabilité de l'horizon fissuré des aquifères de socle: concordance avec la structure géologique des profils d'altération, C. R. Geosci., 335, 451–60.Google Scholar
Maréchal, J. C., Dewandel, B., and Subrahmanyam, K. (2004). Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard-rock aquifer, Water Resour. Res., 40, W11508.Google Scholar
Maréchal, J. C., Dewandel, B., Ahmed, S., Galeazzi, L., and Zaidi, F. K. (2006). Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture, J. Hydrol., 329, 281–93.CrossRefGoogle Scholar
Marsily, G. (1986). Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Orlando, FL: Academic Press.Google Scholar
Marsily, G. de., Lavedan, G., Boucher, M., and Fasanino, G. (1984). Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In Geostatistics for Natural Resources Characterization, Part 2, ed. G. Verly et al., Proc. NATO-ASI, Ser. C., 182. Hingham, MA: D. Reidel, 831–49.CrossRef
Marsily, G., and Ahmed, S. (1987). Application of kriging techniques in groundwater hydrology, J. Geol. Soc. India, 29 (1), 47–69.Google Scholar
Marsily, G., Delhomme, J. P., Coudrain-Ribstein, A., and Lavenue, M. A. (2000). Four decades of inverse problems in hydrogeology. In Theory, Modeling, and Field Investigation in Hydrogeology: A Special Volume in Honor of Shlomo P. Neuman's 60th Birthday, ed. Zhang, D. and Winter, C. L., Boulder, CO: Geological Society of America, Special Paper 348, 1–17.Google Scholar
Marsily, G. de (2003). Importance of temporary ponds in arid climates for the recharge of groundwater. Académie des Sciences, CR Géosciences 335, 933–4.Google Scholar
Matheron, G. (1965). Les Variables Régionalisées et Leur Estimation. Paris: Masson.Google Scholar
Matheron, G. (1971). The theory of regionalized variables and its application. Paris School of Mines, Cah. Cent. Morphologie Math., 5, Fontainebleau, France.Google Scholar
Mercer, J. W. and Faust, Ch. R. (1981). Groundwater Modeling. Columbus, Ohio: National Water Well Assoc.Google Scholar
Michalak, M. and Kitanidis, P. K. (2002). Application of geostatistical inverse modeling to contaminant source identification at Dover AFB, Delaware. Proc. of the International Groundwater Symposium, LBNL, March 25–28, 2002 USA, ed. Findikakis, A. N.. Spain: IAHR Publication, 137–9.Google Scholar
Milanovic, P. (1990). The optimal management of groundwater for meeting seasonally fluctuating demands. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 2. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 933–40.
Mizell, S. A. (1980). Stochastic analysis of spatial variability in two-dimensional groundwater flow with implications for observation-well-network design. Doctoral thesis, New Mexico Institute of Mining and Technology, Socorro, New Mexico.Google Scholar
Mogheir, Y. and Singh, V. P. (2002). Specification of information needs for groundwater resources management and planning in developing country: Gaza Strip case study. Groundwater Hydrology, ed. Sherif, Singh and Al-Rashed, Vol. 2, the Netherlands: Swets & Zeitilinger B.V., 3–20.
Monteith, J. L., Huda, A. K. S., and Midya, D., (1989). Modelling Sorghum and Pearl Millet – Rescap: A resource capture model for Sorghum and Pearl Millet. In Modeling the Growth and Development of Sorghum and Millet, Research Bulletin no. 12. Pantacheru, India: International Crops Research Institute for the Semi-Arid Tropics, 30–4.Google Scholar
Neuman, S. P. (1984). Role of geostatistics in subsurface hydrology. In Geostatistics for Natural Resources Characterization, Proc. NATO-ASI, ed. Verly, G., David, M., Journel, A. G., and Maréchal, A., Dordrecht, the Netherlands: D. Reidel Publ. Co., 787–816.Google Scholar
Oroz, L. (2001). Modelo Conceptual Hidrogeológico e Hidrogeoquímico de la Costa de Hermosillo. Doctoral Thesis, UNISON.Google Scholar
Parriaux, A. and Bensimon, M. (1990). Some rules for the design and the management of observation networks for groundwater resources. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. 719–27.Google Scholar
Patriarche, D., Castro, M. C., and Goovaerts, P. (2005). Estimating regional hydraulic conductivity fields – a comparative study of geostatistical methods. J. Math. Geol., 37 (6), 587–613.Google Scholar
Pinder, G. F. and Gray, W. G. (1977). Finite Element Simulation in Surface and Subsurface Hydrology. London: Academic Press.Google Scholar
Pistre, S. (1993). Rôle de la fracturation dans les circulations souterraines du massif granitique de Millas (Pyr. Or., France). C. R. Acad. Sci., Paris, 317, série II (11), 1417–24.Google Scholar
Prickett, T. A. (1975). Modeling techniques for groundwater evaluation. Adv. Hydrosci., 10, 1–143.Google Scholar
Pye, K. (1986). Mineralogical and textural controls on the weathering of granitoids rocks, Catena, 13, 47–57.Google Scholar
Qian, X. X. and Cai, S. H. (1990). Groundwater modeling in massif of complex geological structure. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 39–45.Google Scholar
Rabemanana, V., Violette, S., Marsily, G., et al. (2005). Origin of the high variability of the water mineral content in the bedrock aquifers of southern Madagascar. J. Hydrol., 310 (1–4), 143–56.Google Scholar
Radhakrishna, B. P. (1970). Problems confronting the occurrence of groundwater in hard rocks. In Proc. of Seminar on Groundwater Potential in Hard Rocks of India, Bangalore: Geological Society of India, 27–44.Google Scholar
Radhakrishna, B. P. (2004). Groundwater in hard rock aquifers of South India: some facts which every one should know. Bangalore: Geological Society of India Public.Google Scholar
Rangarajan, R. and Prasada, Rao N. T. V. (2001). Natural recharge measurements in Maheshwaram granitic watershed, Ranga Reddy district, Andhra Pradesh, India – 1999 Monsoon. Technical Report No. NGRI-20001-GW-298, National Geophysical Research Institute, Hyderabad, India.Google Scholar
Rangarajan, R. D., Muralidharan, G. K., Hodlur, S. D., Deshmukh, N. T. V., Prasad, Rao U., Satyanarayana, G. B. K., Sankar, S. and Athavale, R. N. (2002). Natural recharge rates in granites, basalt, sedimentary and alluvium formations of Andhra Pradesh using injected tritium tracer. Technical Report No. NGRI-20001-GW-298, National Geophysical Research Institute, Hyderabad, India, 14 p.Google Scholar
Remson, I., Hornberger, G. M., and Molz, F. J. (1971). Numerical Methods in Subsurface Hydrology with an Introduction to the Finite Element Method. New York: Wiley (Intersciences).Google Scholar
Republic of Botswana (1997). Mathematical model of the Shashe River valley wellfield and aquifer system (Appendix H). Prepared by Eastend Investments, Gaborne, Botswana, 22 p.
Resele, G. and Job, D. (1990). Calibration validation and uncertainty analysis of a numerical groundwater model. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. Lausanne, Switzerland: Ecole Polytechnique Federale de Lausanne, 79–86.Google Scholar
Roth, C. (1995). Contribution de la géostatistique à la résolution du problème inverse en hydrogéologie. Doctoral thesis, Ecole Nationale Supérieure des Mines, Paris, France.Google Scholar
Roth, C., Chiles, J. P., and Fouquet, C. (1996). Adapting geostatistical transmissivity simulations to finite difference flow simulators. Water Resour. Res., 32 (10), 3237–42.Google Scholar
Samper, F. J. and Carrera, J. (1990). Geoestadística – Aplicaciones la Hidrologia Subterránea. Barcelona: Barcelona University.Google Scholar
Sauty, J. P. (1977). Contribution à l'identification des paramètres de dispersion dans les aquifères par interprétation des expériences de traçage. Doctoral Thesis, Univ. Grenoble, France.Google Scholar
Sauty, J. P. (1978). Identification des paramètres du transport hydrodispersif dans les aquifères par interprétation de traçages en écoulement cylindrique convergent ou divergent. J. Hydrol. 39, 69–103.Google Scholar
Simpson, E. S. and Duckstein, L. (1975). Finite state mixing cells models. Proc. US-Yugoslavian Symp. Karst Hydrology Water Resour., Dubrovnik, (1975). 489–508.Google Scholar
Strang, G., and Fix, G. T. (1973). An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliff, New Jersey.Google Scholar
Stuckless, J. S. and Dudley, W. W. (2002). The geohydrologic setting of Yucca Mountain, Nevada. Appl. Geochem., 17 (6), 659–82.Google Scholar
Subrahmanyam, K., Ahmed, S., and Dhar, R. L. (2000). Geological and hydrogeological investigations in the Maheshwaram watershed, A.P., India. Technical Report No. NGRI 2000-GW-292, Hyderabad, India.Google Scholar
Summers, W. K. (1972). Specific capacities of wells in crystalline rocks, Ground Water, 10, 37–47.Google Scholar
Talbot, A. (1979). The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23, 97–120.Google Scholar
Talbot, C. J. and Sirat, M. (2001). Stress control of hydraulic conductivity in fracture-saturated Swedish bedrock. Eng. Geol., 61 (2–3), 145–53.Google Scholar
Taylor, R. and Howard, K. (2000). A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: evidence from Uganda. Hydrogeol. J., 8 (3), 279–94.Google Scholar
Teles, V., Perrier, E., Delay, F., and Marsily, G. (2002). Generation of alluvial aquifers with a new genetic/stochastic sedimentation model: Comparison with geostatistical approaches by means of groundwater flow simulations. Proc. of the International Groundwater Symposium, LBNL, March 25–28, (2002), USA, ed. A. N. Findikakis. Spain: IAHR publication, 29–35.Google Scholar
Thangarajan, M. (1999a). Modeling multi-layer aquifer system to evolve pre-development management scheemes. Environ. Geol., 38 (4), 285–95.Google Scholar
Thangarajan, M. (1999b). Numerical simulation of groundwater flow regime in a weathered hard rock aquifer. J. Geolog. Soc. India, 53 (5), 561–70.Google Scholar
Thangarajan, M. (2000). Approaches for modeling the hard rock aquifer system. J. Geolog. Soc. India, 56, 123–38.Google Scholar
Thangarajan, M. and Ahmed, S. (1989). Kriged estimates of water levels from the sparse measurements in a hard rock aquifer. In Proc. of Internat. Groundwater Workshop (IGW-89), Hyderabad, India, Feb 28 to March 4, ed. C. P. Gupta, et al., Vol. I. New Delhi: Oxford and IBH Pub. Co., 287–302.Google Scholar
Thangarajan, M., Masie, M., Rana, T., et al. (2000). Simulation of arid multi-layer aquifer system to evolve optimal management schemes: a case study in Shashe River Valley, Okavango Delta, Botswana. J. Geolog. Soc. India, 55, 623–48.Google Scholar
Thiéry, D. (1988). Analysis of long-duration piezometric records from Burkina Faso used to determine aquifer recharge. In Estimation of Natural Groundwater Recharge, ed. Simmers, . The Netherlands: Springer 477–89.Google Scholar
Thiéry, D. (1993a). Logiciel Marthe: Modélisation d'Aquifères par un maillage Rectangulaire en régime Transitoire pour le calcul Hydrodynamique des Ecoulements Version 4.3. Rapport BRGM 4S/EAU n. R32210.
Thiéry, D. (1993b). Modélisation des aquifères complexes – Prise en compte de la zone non saturée et de la salinité. Calcul des intervalles de confiance. Hydrogéologie, 4, 325–36.Google Scholar
Thiéry, D. and Boisson, M. (1991). Logiciel GARDENIA modèle Global A Réservoirs pour la simulation des DE bits et des NIveaux Aquifères. Guide d'utilisation (version 3.2). BRGM, R32209.
Thiéry, D., Dilucas, C., and Diagana, B. (1993). Modelling the aquifer recovery after a long duration drought in Burkina Faso. In Proceedings of the IAHS/IAMAR International Symposium on Extreme Hydrological Events: Precipitation, Floods and Drought, Yokohama, Japan, July 1993. IAHS Publ. 213. Wallingford, UK: IAHS Press, 43–50.Google Scholar
Thiéry, D. and Amraoui, N. (2001). Hydrological modelling of the Saône basin. Sensitivity to the soil model. Phys. Chem. Earth J., Part B, 26, 467–2.Google Scholar
Thomas, R. G. (1973). Groundwater models. Irrigation and Drainage. Spec. Pap. Food and Agricultural Organ. No.21, U. N., Rome, Italy.Google Scholar
Townley, L. R. and Wilson, J. L. (1985). Computationally efficient algorithms for parameter estimation and uncertainty propagation in numerical models of groundwater flow. Water Resour. Res., 21 (12), 1851–60.Google Scholar
Trescott, P. C., Pinder, G. F., and Carson, S. P. (1976). Finite difference model for aquifer simulation in two dimensions with results of numerical experiments. In Technique of Water Resources Investigations of the USGS. Reston, VA: USGS, Chapter C1.Google Scholar
United Nations (UN) (1987). Non-Conventional Water Resources Use in Developing Countries. UN Pub. No. E.87.11.A.20.
United Nations Environmental Programme (UNEP) (1992). World Atlas of Desertification. Sevenoaks, UK: Edward Arnold.
Varga, R. S. (1962). Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
Wackernagel, H. (1995). Multivariate Geostatistics: An Introduction With Applications. New York: Springer.CrossRefGoogle Scholar
Wang, H. F. and Anderson, M. P. (1982). Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods. San Francisco, CA: Freeman.Google Scholar
Wen, J.-C. (2001). A study of mean areal precipitation and spatial structure of rainfall distribution in the Tsen-Wen river basin. J. Chinese Inst. Eng., 24 (5), 649–58.Google Scholar
Witherspoon, P. A., Long, J. C. S., and Majer, L. R. (1987). A new seismic-hydraulic approach modeling flow in fractured rocks. In Proc. NWWA/IGWMC Conference on solving groundwater problems with models, Denver, CO, February, 10–12, Dublin, Ohio: National Water Well Assn.Google Scholar
World Bank (1999). Groundwater in rural development: facing the challenges of supply and resource sustainability. World Bank Technical Paper No. 463. Washington, DC.
Wyns, R., Baltassat, J. M., Lachassagne, P., Legchenko, A., Vairon, J., and Mathieu, F. (2004). Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull. Société Géologique de France, 175 (1), 21–34.Google Scholar
Younes, F. and Razack, M. (2003). Hydrodynamic characterization of a Sahelian coastal aquifer using the ocean tide effect (Dridrate Aquifer, Morocco). Hydrolog. Sci. J., 48 (3), 441–54.Google Scholar
Zhu, X. Y., Zhu, G. R., Liu, Y. H., and Xie, X. Y. (1990). Modeling of karst-fracture groundwater resource in Xindian area, China. In Proc. of IAH Congress, Water Resources in Mountainous Regions, ed. Parriaux, A.. IAH Memoirs, Vol. XXII, Part 1. 45–56.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×