Book contents
- Frontmatter
- Contents
- List of main contributors
- Preface
- Acknowledgements
- List of abbreviations
- 1 Scope of the book
- 2 Why hydrogen?
- 3 Non-renewable energy resources: fossil fuels – supply and future availability
- 4 Non-renewable energy resources: nuclear fuels
- 5 Assessment of the potentials for renewable energy sources
- 6 Carbon capture and storage
- 7 Energy-chain analysis of hydrogen and its competing alternative fuels for transport
- 8 Hydrogen today
- 9 Fundamental properties of hydrogen
- 10 Hydrogen production
- 11 Hydrogen storage
- 12 Hydrogen distribution
- 13 Key role of fuel cells
- 14 Hydrogen-infrastructure build-up in Europe
- 15 Building a hydrogen infrastructure in the USA
- 16 Hydrogen and the electricity sector
- 17 Hydrogen corridors
- 18 Macroeconomic impacts of hydrogen
- 19 Sustainable transport visions: the role of hydrogen and fuel-cell vehicle technologies
- 20 Energy-efficient solutions needed – paving the way for hydrogen
- 21 The future of hydrogen – opportunities and challenges
- Further reading
- Index
- References
11 - Hydrogen storage
Published online by Cambridge University Press: 22 January 2010
- Frontmatter
- Contents
- List of main contributors
- Preface
- Acknowledgements
- List of abbreviations
- 1 Scope of the book
- 2 Why hydrogen?
- 3 Non-renewable energy resources: fossil fuels – supply and future availability
- 4 Non-renewable energy resources: nuclear fuels
- 5 Assessment of the potentials for renewable energy sources
- 6 Carbon capture and storage
- 7 Energy-chain analysis of hydrogen and its competing alternative fuels for transport
- 8 Hydrogen today
- 9 Fundamental properties of hydrogen
- 10 Hydrogen production
- 11 Hydrogen storage
- 12 Hydrogen distribution
- 13 Key role of fuel cells
- 14 Hydrogen-infrastructure build-up in Europe
- 15 Building a hydrogen infrastructure in the USA
- 16 Hydrogen and the electricity sector
- 17 Hydrogen corridors
- 18 Macroeconomic impacts of hydrogen
- 19 Sustainable transport visions: the role of hydrogen and fuel-cell vehicle technologies
- 20 Energy-efficient solutions needed – paving the way for hydrogen
- 21 The future of hydrogen – opportunities and challenges
- Further reading
- Index
- References
Summary
The need for new and sustainable energy technologies is particularly urgent in the transport sector, where energy demands keep growing and give rise to significant global and local pollution. Hydrogen is expected to play a key role in this development (Satyapal et al.,2006). Hydrogen storage is regarded as one of the most critical issues that has to be solved before a technically and economically viable hydrogen economy can be established. In fact, without effective storage systems, a hydrogen economy will be difficult to achieve. One of the most challenging applications in this field is hydrogen storage for mobile applications. This chapter addresses the current state of the various on-board hydrogen-storage systems.
Requirements for hydrogen storage
In hydrogen-fuelled passenger cars, 4–5 kg (130–160 kWh) H2 must be stored in a small, preferably lightweight, tank in order to achieve a driving range of 500 km (i.e., 80–125 km/kg H2). However, whereas the gravimetric energy density of hydrogen is extremely high, the volumetric storage density of the lightweight gas is low. At ambient temperature and pressure, 5 kg H2 would fill a ball 5 m in diameter, which is roughly comparable to the volume of an inflated hot-air balloon. Consequently, the most important technical and economic challenges to be overcome in a practical hydrogen-storage system are the storage density related to the system (including tank, heat management, and valves), the costs of the system, its safety, a short refuelling time, and the ability to deliver enough hydrogen during the driving cycle.
- Type
- Chapter
- Information
- The Hydrogen EconomyOpportunities and Challenges, pp. 309 - 321Publisher: Cambridge University PressPrint publication year: 2009
References
- 1
- Cited by