Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T20:19:53.666Z Has data issue: false hasContentIssue false

10 - Hydrogen production

Published online by Cambridge University Press:  22 January 2010

Michael Ball
Affiliation:
Shell, The Netherlands
Martin Wietschel
Affiliation:
Fraunhofer Institute for Systems and Innovation Research, Karlsruhe, Germany
Get access

Summary

This chapter provides an overview of the various hydrogen production methods. In this respect, the chapter aims especially at outlining the technical fundamentals of the most important commercial processes of hydrogen production and quantifying their technical and economic parameters, which are used in the context of modelling the build-up of a hydrogen infrastructure in Chapter 14. Novel hydrogen-production technologies that still require basic research are also briefly addressed. The chapter finishes with an assessment of the availability of industrial surplus hydrogen as a potential hydrogen source for the transition phase towards its widespread use as vehicle fuel.

Overview of production processes

Since hydrogen only occurs naturally in a bonded form, it first has to be released from its various compounds by using energy. Hydrogen can be produced from all primary energy sources. Figure 10.1 shows an overview of the various relevant hydrogen-production processes and the respective primary energy sources used, differentiated into renewable and non-renewable sources.

Hydrogen can be produced directly from primary as well as from secondary energy sources. Today's commercially applied methods based on fossil raw materials include natural gas reforming and the partial oxidation of feeds with lower quality, such as petroleum coke or other refinery residues. The gasification of coal to produce hydrogen has undergone further development in the last decade and is now also a commercially available process. Apart from this, there are other methods still at the research and development stage, particularly those based on biomass, but also biological hydrogen production.

Type
Chapter
Information
The Hydrogen Economy
Opportunities and Challenges
, pp. 277 - 308
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayer, (2005). Bayer to Invest in Hydrogen Network. www.bayertechnology.com.
,BMELV (Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz) (2005). Synthetische Biokraftstoffe. Techniken – Potenziale – Perspektiven. Schriftenreihe ‘Nachwachsende Rohstoffe’ Band 25, Münster: Landwirtschaftsverlag GmbH.
,BMWA (Bundesministerium für Wirtschaft und Arbeit) (2003). Forschungs- und Entwicklungskonzept für emissionsarme fossil befeuerte Kraftwerke. Berlin: Bericht der COORETEC-Arbeitsgruppen. BMWA.
,BMWA (Bundesministerium für Wirtschaft und Arbeit) (2005). Strategiepapier zum Forschungsbedarf in der Wasserstoff-Energietechnologie. Berlin: BMWA.
Boukis, N., Diem, V., Galla, U.et al. (2005). Wasserstofferzeugung aus Biomasse. Forschungszentrum Karlsruhe. Nachrichten: Energieträger Wasserstoff, 37 (3/2005).Google Scholar
Chauvel, A., Leprince, P., Barthel, Y., Raimbault, C. and Arlie, J. P. (1976). Manuel d' Evaluation Economique des Procédés. Avant-projets en Raffinage et Pétrochimie. Institut Français du Pétrole (IFP), Collection pratique du pétrole, Editions Technip.Google Scholar
Chiesa, P., Consonni, S., Kreutz, T. and Williams, R. (2005). Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology: part A: performance and emissions. International Journal of Hydrogen Energy, 30 (7), 747–767.CrossRefGoogle Scholar
Cromarty, B. J. and Hooper, C. W. (1997). Increasing the throughput of an existing hydrogen plant. International Journal of Hydrogen Energy, 22 (1), 17–22.CrossRefGoogle Scholar
,D.M.2 (2001). Wirtschaftlichkeitsbetrachtung zur Erzeugung von Strom und Wasserstoff in Anlagen zur gestuften Reformierung mit 10 MW thermischer Inputleistung. (June 30, 2001).
,DWV (Deutscher Wasserstoff-und Brennstoffzellen-Verband German Hydrogen and Fuel Cell Association) (2005). H2-Roadmap. Berlin: DWV. www.dwv-info.de.
,IEA (International Energy Agency) (2005). Prospects for Hydrogen and Fuel Cells. IEA Energy Technology Analysis Series. Paris: OECD/IEA.
,IEA (International Energy Agency) (2007). Hydrogen Production & Distribution. IEA Energy Technology Essentials. Paris: OECD/IEA.
,IE/IPTS (Institute for Energy and Institute for Prospective Technological Studies) (2005). Hypogen Pre-feasibility Study. Report EUR 21512 EN. European Commission, Directorate-General, Joint Research Centre.
,Intergovernmental Panel on Climate Change (2005). IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, ed. Metz, B., Davidson, , Coninck, O., , H. C., Loos, M. and Meyer, L. A. Cambridge: Cambridge University Press.
Katofsky, R. E. (1993). The production of Fluid Fuels from Biomass. PU/CEES Report No. 279. Princeton: Centre for Energy and Environmental Studies, Princeton University.Google Scholar
Kreutz, T., Williams, R., Consonni, S. and Chiesa, P. (2005). Co-production of hydrogen, electricity and CO2 from coal with commercially ready technology: part B: economic analysis. International Journal of Hydrogen Energy, 30 (7), 769–784.CrossRefGoogle Scholar
,LBST (Ludwig-Bölkow-Systemtechnik GmbH) (1998). Identification of Hydrogen By-product Sources in the European Union, ed. Zittel, W. and Niebauer, P. (LBST), study funded by the European Commission under Contract No. 5076–92 11 EO ISP D Amendment No. 1.
Linde, (2003). Linde Technology Report 2/2003. Wiesbaden, Germany: Linde AG.Google Scholar
Ni, M., Leung, D. Y. C., Leung, M. K. H. and Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87 (5), 461–472.CrossRefGoogle Scholar
Nitsch, J. (2002). Potenziale der Wasserstoffwirtschaft. Gutachten für den Wissenschaftlichen Beirat der Bundesregierung Globale Umweltveränderungen (WBGU). Stuttgart: DLR – Institut für Technische Thermodynamik.Google Scholar
,NRC (National Research Council) (2004). The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. Washington, DC: The National Academies Press.
,NRW (Energy Agency State of Nordrhein-Westfalen) (2006). Hydrogen – Sustainable Energy for Transport and Energy Utility Markets. Düsseldorf: Energy Agency NRW.
Ogden, J. M. (1999). Prospects for building a hydrogen energy infrastructure. Annual Review of Energy and the Environment, 24, 227–279.CrossRefGoogle Scholar
Pehnt, M. (2001). Ganzheitliche Bilanzierung von Brennstoffzellen in der Energie- und Verkehrstechnik. Dissertation. VDI-Verlag Fortschrittsberichte Reihe 6, No. 476.Google Scholar
Ramachandran, R. and Menon, R. K. (1998). An overview of industrial uses of hydrogen. International Journal of Hydrogen Energy, 23 (7), 593–598.CrossRefGoogle Scholar
,Roads2HyCom (2007). European Hydrogen Infrastructure Atlas and Industrial Excess Hydrogen Analysis, ed. Steinberger-Wilckens, R. and Trümper, S. C. Roads2HyCom. www.roads2hy.com.
Spath, P., Aden, A., Eggeman, T.et al. (2005). Biomass to Hydrogen Production – Detailed Design and Economics Utilizing the Battelle Columbus Laboratory Indirectly-heated Gasifier. Battelle: National Renewable Energy Laboratory (NREL). www.nrel.gov/docs/fy05osti/37408.pdf.CrossRefGoogle Scholar
Treviño, M. C. (2002). Integrated Gasification Combined Cycle Technology: IGCC. Its Actual Application in Spain. ELCOGAS, PuertollanoClub Español de la Energía.Google Scholar
Ullmann, (2003). Hydrogen. In Ullmann's Encyclopedia of Industrial Chemistry, 6th edn. vol. 17 Weinheim: WILEY–VCH, pp. 85–240.Google Scholar
Valentin, B. (2001).Wirtschaftlichkeitsbetrachtung einer Wasserstoffinfrastruktur für Kraftfahrzeuge. Diploma thesis. Münster, Germany:University of Applied Sciences Münster and Linde Gas AG.Google Scholar
VCI (Verband der Chemischen Industrie (German Chemical Industry Association)) (2005). Positionen zur Chemie mit Chlor. www.vci.de/default2~rub~0~tma~0~cmd~shd~docnr~64356~nd~~ond~pb.htm.
Verfondern, K. (2005). Nukleare Wasserstoffproduktion. Forschungszentrum Karlsruhe. Nachrichten: Energieträger Wasserstoff, No. 37 (3/2005).Google Scholar
Wagner, U., Angloher, J. and Dreier, T. (2000). Techniken und Systeme zur Wasserstoffbereitstellung. Perspektiven einer Wasserstoff-Energiewirtschaft (Teil 1). Munich: Wiba (Koordinationsstelle der Wasserstoff-Initiative Bayern) and Lehrstuhl für Energiewirtschaft und Anwendungstechnik of the Technical University München.Google Scholar
Williams, R., Parker, N., Yang, C., Ogden, J. and Jenkins, B. (2007). Hydrogen Production via Biomass Gasification. Advanced Energy Pathways (AEP) Project, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies, Public Interest Energy Research (PIER) Program, California Energy Commission, UC Davis, Institute of Transportation Studies (ITS-Davis).Google Scholar
Yamashita, K. and Barreto, L. (2003). Integrated Energy Systems for the 21st Century: Coal Gasification for Co-producing Hydrogen, Electricity and Liquid Fuels. Interim Report IR-03-039. Laxenburg, Austria: International Institute for Applied Systems Analysis (IIASA).Google Scholar
Zittel, W., Wurster, R. and Weindorf, W. (1996). Wasserstoff in der Energiewirtschaft. Ludwig-Bölkow-Systemtechnik (LBST). www.hyweb.de.
Cormos, C. C., Starr, F., Tzimas, E. and Peteves, S. (2008). Innovative concepts for hydrogen production processes based on coal gasification with CO2 capture. International Journal of Hydrogen Energy, 33 (4), 1286–1294.CrossRefGoogle Scholar
Dynamis. www.dynamis-hypogen.com.
Ewan, B. C. R. and Allen, R. W. K. (2005). A figure of merit assessment of the routes to hydrogen. International Journal of Hydrogen Energy, 30 (8), 809–819.CrossRefGoogle Scholar
,IEA (International Energy Association) and Hydrogen Implementing Agreement (HIA) (2006). Hydrogen Production and Storage. R&D Priorities and Gaps. Paris: OECD/IEA.
,IEA (International Energy Association) (2006). Energy Technology Perspectives 2006. Scenarios and Strategies to 2050. Paris: OECD/IEA.
,NRC (National Research Council), Committee on Alternatives and Strategies for Future Hydrogen Production and Use (2004). The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. Washington, DC: The National Academies Press.
Sørensen, B. (2005). Hydrogen and Fuel Cells. Emerging Technologies and Applications. Elsevier Academic Press.Google Scholar
Starr, F., Tzimas, E. and Peteves, S. (2006). Near-Term IGCC and Steam Reforming Processes for the Hydrogen Economy: the Development Issues. Report EUR 22340 EN, European Commission (DG JRC), Institute for Energy, Petten (The Netherlands).Google Scholar
Starr, F., Tzimas, E. and Peteves, S. (2007). Critical factors in the design, operation and economics of coal gasification plants: the case of the flexible co-production of hydrogen and electricity. International Journal of Hydrogen Energy, 32 (10–11), 1477–1485.Google Scholar
Tetzlaff, K.-H. (2005). Bio-Wasserstoff. Norderstedt: Books on Demand.Google Scholar
Ullmann, (2003). Hydrogen. In Ullmann's Encyclopedia of Industrial Chemistry, 6th edn. vol. 17. Weinheim: WILEY-VCH, pp. 85–240.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×