Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T20:15:07.023Z Has data issue: false hasContentIssue false

7 - Energy-chain analysis of hydrogen and its competing alternative fuels for transport

Published online by Cambridge University Press:  22 January 2010

Michael Ball
Affiliation:
Shell, The Netherlands
Martin Wietschel
Affiliation:
Fraunhofer Institute for Systems and Innovation Research, Karlsruhe, Germany
Get access

Summary

The driving forces for the development of alternative fuels are, on the one hand, anxiety about security of supply with oil, on which the transport sector still depends almost entirely, and, on the other hand, a reduction of transport-related emissions of greenhouse gases and air pollutants. In this respect, hydrogen and fuel cells are in competition with a number of other energy carriers and transformation technologies. For instance, hydrogen has to compete with improved gasoline and diesel engines, but also with synthetic fuels, biofuels or natural gas. With regard to drive trains, petrol and diesel engines still dominate. Besides an improvement of the efficiencies of these conventional combustion engines, there are also vehicle concepts under development, which are based on electric drives and which rely to varying degrees on batteries as a source for motion energy. Hence, this chapter briefly discusses the major alternatives to hydrogen and fuel cells in the transport sector and their characteristics.

Overview of alternative fuel options

Two thirds of today's oil use of more than 81 million barrel per day is for transportation, of which land transport for people accounts for some 55%, land transport for freight for some 35% and air transport for people and freight for around 10%. Almost 97% of road transport is fuelled by oil. The three most important targets with respect to transportation energy use, which are also increasingly favoured by policy makers around the world, are reduction of local air pollution, greenhouse gas-emissions reduction and energy security.

Type
Chapter
Information
The Hydrogen Economy
Opportunities and Challenges
, pp. 199 - 253
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abengoa, (2006). Abengoa Biomass: BCyL Biomass Plant – The First Commercial Demonstration of Abengoa Biomass Ethanol Technology in the World. www.abengoabioenergy.com.
,Alberta Chamber of Resources (ACR) (2004). Oil Sands Technology Roadmap. www.acr-alberta.com.
Axsen, J., Burke, A. and Kurani, K. (2008). Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology Circa 2008. Report UCD-ITS-RR-08–14. Davis: Institute of Transportation Studies, University of California.Google Scholar
Bensaid, B. (2004). Alternative Motor Fuels Today and Tomorrow. Rueil-Malmaison Cedex, France: IFP.Google Scholar
,BMELV (Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz) (2005). Synthetische Biokraftstoffe. Techniken – Potenziale – Perspektiven. Schriftenreihe ‘Nachwachsende Rohstoffe’ Band 25. Münster: Landwirtschaftsverlag GmbH.
Borken, J., Patyk, A. and Reinhardt, G. A. (1999). Basisdaten für ökologische Bilanzierungen. Vieweg.CrossRef
,CERA (Cambridge Energy Research Associates) (2008a). From the Pump to the Plug – What is the Potential of Plug-in Hybrid Electric Vehicles? Cambridge MA: CERA.
,CERA (Cambridge Energy Research Associates) (2008b). Taking Up the Charge – Plug-in Hybrid Electric Vehicles in Europe. Cambridge MA: CERA.
,CEU (Council of the European Union) (2007). Presidency Conclusions – Brussels, 8–9 March 2007. European Commission. http://europa.eu/european_council/conclusions/index_en.htm.
Dena, (2006). Biomass to Liquid – BTL Realisierungsstudie: Zusammenfassung. Deutsche Energie-Agentur GmbH (dena), unter Beteiligung des Verbandes der Automobilindustrie (VDA) sowie Adam Opel GmbH, Audi AG, BMW Group, DaimlerChrysler AG, Ford-Werke GmbH, MAN Nutzfahrzeuge, AG Volkswagen AG, BASF AG, Deutsche BP AG, TOTAL Deutschland GmbH, Lurgi AG, Choren Industries GmbH.
Denholm, P. and Short, W. (2006). An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-in Hybrid Electric Vehicles. Technical Report NREL/TP-620-40293, National Renewable Energy Laboratory (NREL), Colorado.CrossRefGoogle Scholar
,Deutsche Bank (2008). Electric Cars: Plugged In. Deutsche Bank Securities Inc., FITT Research.
Dixon, R. K. (2007). Building the Hydrogen Economy: Enabling Infrastructure Development. International Energy Agency (IEA), presentation UNIDO– ICHET Workshop, Istanbul, Turkey. www.iea.org/textbase/speech/2007/Dixon_UNIDO.pdf.Google Scholar
Dreier, T. (2000). Ganzheitliche Systemanalyse und Potenziale biogener Kraftstoffe. IfE Schriftenreihe, 42, Lehrstuhl für Energiewirtschaft und Anwendungstechnik (IfE). Munich: Technische Universität München.Google Scholar
Dreier, T. and Geiger, B. (1998). Ganzheitliche Prozeßkettenanalyse für die Erzeugung und Anwendung von biogenen Kraftstoffen. Studie im Auftrag der Daimler Benz AG, Stuttgart und des Bayerischen Zentrums für Angewandte Energieforschung e.V. (ZAE), Lehrstuhl für Energiewirtschaft und Kraftwerkstechnik. Munich: TU München (IfE), Forschungsstelle für Energiewirtschaft (FfE).Google Scholar
Duvall, M. (2004). Advanced Batteries for Electric-Drive Vehicles: A Technology and Cost-effectiveness Assessment for Battery Electric Vehicles, Power Assist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. Report 1009299. Palo Alto, CA:Electric Power Research Institute (EPRI).Google Scholar
Duvall, M. and Knipping, E. (2007). Environmental Assessment of Plug-in Hybrid Electric Vehicles: Volume 1 Nationwide Greenhouse Gas Emissions. Report 1015325. Palo Alto, CA:Electric Power Research Institute (EPRI).Google Scholar
,EC (European Commission) (2003). The Promotion of the Use of Biofuels or Other Renewable Fuels for Transport. Directive 2003/30/EC of 8 May 2003. OJ L 123/42.
,EC (European Commission) (2006). An EU Strategy for Biofuels. Communication from the Commission, Commission of the European Communities, COM(2006), 34 final.
,EC (European Commission) (2007). Fact Sheet: Biofuels in the European Union: An Agricultural Perspective. European Commission, Directorate-General for Agriculture and Rural Development.
Eden, U.et al. (1996). Vergleichende Ökobilanz: Elektrofahrzeuge und konventionelle Fahrzeuge – Bilanz der Emission von Luftschadstoffen und Lärm sowie des Energieverbrauchs im Rahmen des BMBF-Vorhabens ‘Erprobung von Elektrofahrzeugen der neuesten Generation auf der Insel Rügen’. Heidelberg: Institut für Energie-und Umweltforschung (IFEU).Google Scholar
Eilers, J., Posthuma, S. A. and Sie, S. T. (1990). The Shell Middle Distillate Synthesis Process (SMDS). Catalysis Letters, 7 (1–4), 253–269.CrossRefGoogle Scholar
EPI (Earth Policy Institute) (2006). Supermarkets and Service Stations Now Competing for Grain. www.earth-policy.org/Updates/2006/Update55_data.htm.
Fargione, J., Hill, J., Tilman, D., Polasky, S. and Hawthorne, P. (2008). Land clearing and the biofuel carbon dept. Science Express, published online, 7th February, 2008.
Farrell, A. E., Plevin, R. J., Turner, B. T.et al. (2006). Ethanol can contribute to energy and environmental goals. Science, 311 (27th January 2006), 506–508.CrossRefGoogle ScholarPubMed
Wheeler, Foster (1996). Decarbonisation of Fossil Fuels. Report No. PH2/2, prepared for the Executive Committee of the IEA Greenhouse Gas R&D Programme.
,FVS (ForschungsVerbund Sonnenenergie) (2003). Workshopband 2003: Regenerative Kraftstoffe. November 13–14, ZSW, Stuttgart. www.fv-sonnenenergie.de/publikationen/publikation/download/workshop-2003-regenerative-kraftstoffe.
,GEMIS (2005). Globales Emissions-Modell Integrierter Systeme (GEMIS). Version 4.3.0.0. www.oeko-institut.org/service/gemis/index.htm.
Gerl, B. (2002). Innovative Automobilantriebe. Landsberg/Lech: Verlag Moderne Industrie.Google Scholar
,GM (General Motors) (2001). Well-to-Wheel Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems. Argonne National Laboratory.
Graham, R. (2005). Plug-in Hybrid Electric Vehicles: Changing the Energy Landscape. Palo Alto, California: Electric Power Research Institute (EPRI).Google Scholar
Gray, D. and Tomlinson, G. (2001). Coproduction: A Green Coal Technology. Mitretek Systems (MTS), MP 2001–28. Technical report for the US Department of Energy. www.angtl.com/pdfs/GREENCOAL.pdf.Google Scholar
Hamelinck, C. N. (2004). Outlook for Advanced Biofuels. Dissertation. Utrecht: Utrecht University.Google Scholar
Hooijer, A., Silvius, M., Wösten, H. and Page, S. (2006). Peat CO2: Assessment of CO2 Emissions From Drained Peatlands in South-East Asia. Delft Hydraulics Report Q3943. www.wetlands.org.Google Scholar
,IANGV (International Association for Natural Gas Vehicles) (2008). www.iangv.org.
,IEA (International Energy Agency) (2004). Biofuels for Transport: An International Perspective. Paris: OECD/IEA.
,IEA (International Energy Agency) (2006a). IEA Statistics: Energy Statistics of Non-OECD Countries 2003–2004. Paris: OECD/IEA.
,IEA (International Energy Agency) (2006b). World Energy Outlook 2006. Paris: OECD/IEA.
,IEA (International Energy Agency) (2006c). Energy Technology Perspectives 2006. Scenarios and Strategies to 2050. Paris: OECD/IEA.
,IEA (International Energy Agency) (2007). Biofuel production. IEA Energy Technology Essentials, 1 (2007). www.iea.org/Textbase/techno/essentials.htm.
,Iogen (2005). Cellulose Ethanol Demonstration Facility. www.iogen.ca/company/facilities/index.html.
Joint Research Centre, EUCAR, CONCAWE (JEC) (2007). Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context: Well-to-Wheels Report. Version 2c, March 2007. http://ies.jrc.ec.europa.eu/wtw.html.
Kalhammer, F. R., Kopf, B. M., Swan, D. H., Roan, V. P. and Walsh, M. P. (2007). Status and Prospects for Zero Emissions Vehicle Technology. Report of the ARB Independent Expert Panel 2007. California: State of California Air Resources Board Sacramento. www.arb.ca.gov/msprog/zevprog/zevreview/zev_panel_report.pdf.Google Scholar
Kaltschmitt, M. and Reinhardt, G. A. (1997). Nachwachsende Energieträger: Grundlagen, Verfahren, ökologische Bilanzierung. Vieweg.Google Scholar
Kaltschmitt, M. and Hartmann, H. (eds.) (2001). Energie aus Biomasse – Grundlagen, Techniken und Verfahren. Berlin: Springer.CrossRefGoogle Scholar
Kammen, M. K. (2006). The rise of renewable energy. Scientific American, 295 (3).Google ScholarPubMed
Kempton, W. (2007). Vehicle to grid power. IEEE Conference Plug-in Hybrids: Accelerating Progress, Washington, DC. www.ieeeusa.org/policy/phev/presentations/Tutorial%20Kempton.pdf.
Kempton, W. and Tomic, J. (2005a). Vehicle-to-grid power fundamentals: calculating capacity and net revenue. Journal of Power Sources, 144 (1), 268–279.CrossRefGoogle Scholar
Kempton, W. and Tomic, J. (2005b). Vehicle-to-grid power implementation: from stabilizing the grid to supporting large-scale renewable energy. Journal of Power Sources, 144 (1), 280–294.CrossRefGoogle Scholar
Kraus, K., Niklas, G. and Tappe, M. (2000). Aktuelle Bewertung des Einsatzes von Rapsöl/RME im Vergleich zu Dieselkraftstoff. Texte 79/99. Berlin: Umweltbundesamt (UBA) (Federal Environment Agency).Google Scholar
Krüger, R. (2002). Systemanalytischer Vergleich alternativer Kraftstoff - und Antriebskonzepte in der Bundesrepublik Deutschland. Dissertation. VDI Fortschritt-Berichte 12, No. 499, Düsseldorf: VDI Verlag.Google Scholar
Larsen, H. H. (1998). The 2400 MTPD Methanol Plant at Tjeldbergodden. Haldor Topsoe A/S. 1998 World Methanol Conference. Frankfurt, Germany.Google Scholar
Liebner, W., Koempel, H. and Wagner, M. (2004). Gas-To-Chemicals-Technologien von Lurgi: von Ergas/Synthesegas zu hochwertigen Produkten. 55. Berg-und Hüttenmännischer Tag, Freiberg: Lurgi AG.Google Scholar
Martinot, E.et al. (2006). Renewables, Global Status Report, 2006 Update. Renewable Energy Policy Network for the 21st Century (REN21). Worldwatch Institute and Tsinghua University. www.ren21.net.Google Scholar
,MIT (2007). www.technologyreview.com/Energy/18173.
Möller, K. (2003). Systemwirkungen der ‘Biogaswirtschaft’ im ökologischen Landbau: Pflanzliche Aspekte. Auswirkungen auf den N-Haushalt und auf die Spurengasemissionen. Biogas Journal, 1 (May 2003), 20–29.Google Scholar
NGV (Natural Gas Vehicles Group) (2008). Gas Vehicles Report, June 2008. www.ngvgroup.com.
,Project Better Place (2008). www.betterplace.com.
Punter, G., Rickeard, D., Larivé, J-F. et al. (2004). Well-to-Wheel Evaluation for Production of Ethanol from Wheat. Report by the LowCVP Fuels Working Group, WTW Sub-Group; FWG-P-04-024.
Quack, H. (2001). Die Schlüsselrolle der Kryogentechnik in der Wasserstoff-Energiewirtschaft. Wissenschaftliche Zeitschrift der Technischen Universität Dresden, 50 (5/6).
,REN21 (2006). Renewable Global Status Report 2006 Update. Paris: REN21 Secretariat and Washington, DC: Worldwatch Institute.
,Sasol (2007) Sasol Facts: Introducing Sasol. Sasol. http://sasol.investoreports.com/sasol_sf_2007/html/sasol_sf_2007_1.php.
Schaub, G., Unruh, D. and Rohde, M. (2003). Kraftstoff-Bereitstellung über die Biomassevergasung – Herausforderungen und Perspektiven. Proceedings Internationale Tagung ‘Biomasse-Vergasung’. Leipzig.Google Scholar
Schaub, G., Unruh, D. and Rohde, M. (2004). Synthetische Kraftstoffe aus Biomasse über die Fischer-Tropsch-Synthese – Grundlagen und Perspektiven. Erdöl, Erdgas, Kohle, 10 (120).Google Scholar
Schulz, W. (2004). Untersuchung zur Aufbereitung von Biogas zur Erweiterung der Nutzungsmöglichkeiten, Aktualisierung einer im Juni 2003 vorgelegten gleichnamigen von Wolfgang Schulz, Maren Hille unter Mitarbeit von Wolfgang Tentscher durchgeführten Untersuchung. On behalf of Bremer Energie-Konsens GmbH. Bremen: Bremer Energieinstitut.Google Scholar
Searchinger, T., Heimlich, R., Houghton, R. A.et al. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science Express, 319 (4th January), 1238–1240.
Shell, (1995). Shell MDS Malaysia. Corporate Affairs Shell Malaysia Ltd.Google Scholar
Söderbergh, B., Robelius, F. and Aleklett, K. (2006). A Crash Program Scenario for the Canadian Oil Sands Industry. Uppsala, Sweden: Uppsala University.Google Scholar
Specht, M., Bandi, A. and Pehnt, M. (2001). Regenerative Kraftstoffe – Bereitstellung und Perspektiven. Berlin: FVS Themen 2001, Forschungsverbund Sonnenenergie. www.fv-sonnenenergie.de.Google Scholar
,SRU (Sachverständigenrat für Umweltfragen) (2007). Klimaschutz durch Biomasse. Berlin: Erich Schmidt Verlag.
Tahil, W. (2006). The Trouble with Lithium. Implications of Future PHEV Production for Lithium Demand. Meridian International Research. www.meridian-int-res.com/Projects/Lithium.htm.Google Scholar
,Tesla Motors (2008). www.teslamotors.com.
Tomic, J. and Kempton, W. (2007). Using fleets of electric-drive vehicles for grid support. Journal of Power Sources, 168 (2), 459–468.CrossRefGoogle Scholar
Thuijl, E., Ree, R. and Lange, T. J. (2003a). Biofuel Production Chains. Background Document for Modelling the EU Biofuel Market Using the BIOTRANS Model. ECN Report C–03–088.
Thuijl, E., Roos, C. J. and Beurskens, L. (2003b). An overview of Biofuel Technologies, Markets and Policies in Europe. ECN Report C–03–008.
,Worldwatch Institute (2007). Biofuels for Transport: Global Potential and Implications for Sustainable Agriculture and Energy in the 21st Century. Worldwatch Institute.
Woynillowicz, D., Severson-Baker, C. and Raynolds, M. (2005). Oil sands Fever – The Environmental Implications of Canada's Oil Sands Rush. The Pembina Institute. www.pembina.org/pubs.Google Scholar
,IEA (International Energy Association) (1998). Automotive Fuels for the Future. The Search for Alternatives. Paris: OECD/IEA.
IEA (International Energy Association) (2008). Energy Technology Perspectives 2008. Scenarios and Strategies to 2050. Paris: OECD/IEA.CrossRef
,Joint Research Centre, EUCAR, CONCAWE (JEC) (2007). Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context. Well-to-Wheels Report, Version 2c. http://ies.jrc.ec.europa.eu/wtw.html.
Kamm, B., Gruber, P. R. and Kamm, M. (eds.) (2006). Biorefineries – Industrial Processes and Products: Status Quo and Future Directions. Two Volumes. WILEY-VCH.
Marland, G., Obersteiner, M., Schlamadinger, B., Righelato, R. and Spracklen, D. V. (2007). The carbon benefits of fuels and forests. Science, 318 (16th November), 1066–1068.CrossRefGoogle ScholarPubMed
Righelato, R. and Spracklen, D. V. (2007). Carbon mitigation by biofuels or by saving and restoring forests?Science, 317 (17th August), 902.CrossRefGoogle ScholarPubMed
Robertson, G. P., Dale, V. H., Doering, O. C.et al. (2008). Sustainable biofuels redux. Science, 319 (3rd October), 49–50.CrossRefGoogle Scholar
Scharlemann, J. P. W. and Laurance, W. F. (2008). How green are biofuels?Science, 319 (4th January), 43–44.CrossRefGoogle ScholarPubMed
Searchinger, T., Heimlich, R., Houghton, R. A.et al. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319 (4th January), 1238–1240.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×