Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Part 1 Fundamentals
- Part 2 Hydrodynamics of Complex Flows
- 9 Influence of initial conditions
- 10 Flow properties
- 11 Rotation and time-dependent acceleration
- 12 Direction, strength, and shape of incident shock waves
- 13 Reshock andmulti-shocks
- 14 Combined instabilities
- 15 Geometrical configurations
- 16 Convergent/divergent geometry
- 17 Magnetohydrodynamic fluid instabilities
- Part 3 From the Microscopic to Cosmic Scales
- References
- Index
15 - Geometrical configurations
from Part 2 - Hydrodynamics of Complex Flows
- Frontmatter
- Dedication
- Contents
- Preface
- Acknowledgments
- Part 1 Fundamentals
- Part 2 Hydrodynamics of Complex Flows
- 9 Influence of initial conditions
- 10 Flow properties
- 11 Rotation and time-dependent acceleration
- 12 Direction, strength, and shape of incident shock waves
- 13 Reshock andmulti-shocks
- 14 Combined instabilities
- 15 Geometrical configurations
- 16 Convergent/divergent geometry
- 17 Magnetohydrodynamic fluid instabilities
- Part 3 From the Microscopic to Cosmic Scales
- References
- Index
Summary
A more complex initial setup could be constructed for experimental or numerical studies. Many distinct initial interfacial perturbations may be set up: the standard and inverted chevron shapes, enlarged double-bump, V, W, and sawtooth. The so-called "inclined shock tube" method of perturbing the fluid interface is created by inclining the shock tube with respect to the gravitational field. Tilted tank experiments consist of a tank filled with light fluid above heavy, which is then tilted onto one side of the apparatus. These experiments provide two-dimensional data for mix model development.
- Type
- Chapter
- Information
- Hydrodynamic Instabilities and TurbulenceRayleigh–Taylor, Richtmyer–Meshkov, and Kelvin–Helmholtz Mixing, pp. 286 - 305Publisher: Cambridge University PressPrint publication year: 2024