Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T02:35:51.454Z Has data issue: false hasContentIssue false

4 - The Role of Bacteriophages in the Generation and Spread of Bacterial Pathogens

from PART II - Mobile Genetic Elements in Bacterial Evolution

Published online by Cambridge University Press:  16 September 2009

Michael Hensel
Affiliation:
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Herbert Schmidt
Affiliation:
Universität Hohenheim, Stuttgart
Get access

Summary

INTRODUCTION

It appears that one of the first things that occurred to Felix d'Herelle when he discovered bacteriophages in 1917 was that these mysterious objects might provide a means of killing bacteria that are pathogenic to humans (Summers, 1999). The still ongoing story of phage therapy, as this approach was called, has been told elsewhere and will not be retold here, but it serves to point out that scientists have been interested in the effects of phages on their hosts since their discovery. d'Herelle believed, and eventually established, that phages are viruses that infect bacteria. However, it was not until the experimental investigations of phages at the dawn of molecular biology in the 1940s and 1950s that it became clear that phages - and for that matter their bacterial hosts - are genetic organisms (Luria and Delbrück, 1943; Hershey and Rotman, 1949; Hershey and Chase, 1952; Stent, 1963), just like fruit flies, corn, and humans, and so could be expected to mutate and evolve.

Although some work was done on the evolution of phages in the 1960s, 1970s, and 1980s, a more detailed understanding of the genetic mechanisms of phage evolution had to wait until the advent of high-throughput DNA sequencing in the 1990s. This is because the genetic history of a phage, while it is to a significant extent encoded in the phage's genome sequence, is largely invisible to our analysis until we can compare that sequence to the genome sequences of other phages.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, G. E., and Verma, N. K. (2000). Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol, 8, 17–23.CrossRefGoogle ScholarPubMed
Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389–402.CrossRefGoogle ScholarPubMed
Angly, F. E., Felts, B., Breitbart, M., et al. (2006). The marine viromes of four oceanic regions. PLoS Biol, 4, e368.CrossRefGoogle ScholarPubMed
Aziz, R. K., Edwards, R. A., Taylor, W. W., et al. (2005). Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J Bacteriol, 187, 3311–8.CrossRefGoogle ScholarPubMed
Baker, M. L., Jiang, W., Rixon, F. J., and Chiu, W. (2005). Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol, 79, 14967–70.CrossRefGoogle ScholarPubMed
Banks, D. J., Beres, S. B., and Musser, J. M. (2002). The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol, 10, 515–21.CrossRefGoogle ScholarPubMed
Battistoni, A. (2003). Role of prokaryotic Cu, Zn superoxide dismutase in pathogenesis. Biochem Soc Trans, 31, 1326–9.CrossRefGoogle ScholarPubMed
Beres, S. B., Sylva, G. L., Sturdevant, D. E., et al. (2004). Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc Natl Acad Sci USA, 101, 11833–8.CrossRefGoogle ScholarPubMed
Beres, S. B., Richter, E. W., Nagiec, M. J., et al. (2006). Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A Streptococcus. Proc Natl Acad Sci USA, 103, 7059–64.CrossRefGoogle ScholarPubMed
Bergh, O., Borsheim, K. Y., Bratbak, G., and Heldal, M. (1989). High abundance of viruses found in aquatic environments. Nature, 340, 467–8.CrossRefGoogle ScholarPubMed
Bille, E., Zahar, J. R., Perrin, A., et al. (2005). A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med, 201, 1905–13.CrossRefGoogle ScholarPubMed
Bose, M., and Barber, R. D. (2006). Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol, 6, 223–7.Google ScholarPubMed
Botstein, D. (1980). A theory of modular evolution in bacteriophages. Ann N Y Acad Sci, 354, 484–91.CrossRefGoogle ScholarPubMed
Boyd, E. F., and Brüssow, H. (2002). Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol, 10, 521–9.CrossRefGoogle ScholarPubMed
Boyle, E. C., Brown, N. F., and Finlay, B. B. (2006). Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol, 8, 1946–57.CrossRefGoogle ScholarPubMed
Breitbart, M., Felts, B., Kelley, S., et al. (2004a). Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci, 271, 565–74.CrossRefGoogle ScholarPubMed
Breitbart, M., Miyake, J. H., and Rohwer, F. (2004b). Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol Lett, 236, 249–56.CrossRefGoogle ScholarPubMed
Brumby, A. M., Lamont, I., Dodd, I. B., and Egan, J. B. (1996). Defining the SOS operon of coliphage 186. Virology, 219, 105–14.CrossRefGoogle ScholarPubMed
Brüssow, H., Canchaya, C., and Hardt, W. D. (2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev, 68, 560–602.CrossRefGoogle ScholarPubMed
Calderwood, S. B., and Mekalanos, J. J. (1987). Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol, 169, 4759–64.CrossRefGoogle ScholarPubMed
Campbell, A. M. (2002). Preferential orientation of natural lambdoid prophages and bacterial chromosome organization. Theor Popul Biol, 61, 503–7.CrossRefGoogle ScholarPubMed
Canchaya, C., Fournous, G., Chibani-Chennoufi, S., Dillmann, M. L., and Brüssow, H. (2003a). Phage as agents of lateral gene transfer. Curr Opin Microbiol, 6, 417–24.CrossRefGoogle ScholarPubMed
Canchaya, C., Proux, C., Fournous, G., Bruttin, A., and Brüssow, H. (2003b). Prophage genomics. Microbiol Mol Biol Rev, 67, 238–76.CrossRefGoogle ScholarPubMed
Canchaya, C., Fournous, G., and Brüssow, H. (2004). The impact of prophages on bacterial chromosomes. Mol Microbiol, 53, 9–18.CrossRefGoogle ScholarPubMed
Casjens, S. (2003). Prophages in bacterial genomics: What have we learned so far?Mol Microbiol, 249, 277–300.CrossRefGoogle Scholar
Casjens, S. R. (2005). Comparative genomics and evolution of the tailed-bacteriophages. Curr Opin Microbiol, 8, 451–8.CrossRefGoogle ScholarPubMed
Casjens, S., and Hendrix, R. (2005). Bacteriophages and the bacterial genome. In Higgins, N. P. (Ed.). The bacterial chromosome. Washington, DC: ASM Press.Google Scholar
Casjens, S., Hatfull, G., and Hendrix, R. (1992). Evolution of dsDNA tailed-bacteriophage genomes. Sem Virol, 3, 383–97.Google Scholar
Casjens, S., Gilcrease, E. B., Huang, W. M., et al. (2004a). The pKO2 linear plasmid prophage of Klebsiella oxytoca. J Bacteriol, 186, 1818–32.CrossRefGoogle ScholarPubMed
Casjens, S., Winn-Stapley, D., Gilcrease, E., et al. (2004b). The chromosome of Shigella flexneri bacteriophage Sf6: complete nucleotide sequence, genetic mosaicism, and DNA packaging. J Mol Biol, 339, 379–94.CrossRefGoogle ScholarPubMed
Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., et al. (2005). The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J Bacteriol, 187, 1091–104.CrossRefGoogle ScholarPubMed
Chen, Y., Golding, I., Sawai, S., Guo, L., and Cox, E. C. (2005). Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol, 3, e229.CrossRefGoogle ScholarPubMed
Coombes, B. K., Wickham, M. E., Brown, N. F., et al. (2005). Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar Typhimurium with autonomous expression from its associated phage. J Mol Biol, 348, 817–30.CrossRefGoogle ScholarPubMed
Creuzburg, K., Köhler, B., Hempel, H., et al. (2005). Genetic structure and chromosomal integration site of the cryptic prophage CP-1639 encoding Shiga toxin 1. Microbiology, 151, 941–50.CrossRefGoogle ScholarPubMed
Dahan, S., Wiles, S., Ragione, R. M., et al. (2005). EspJ is a prophage-carried type III effector protein of attaching and effacing pathogens that modulates infection dynamics. Infect Immun, 73, 679–86.CrossRefGoogle ScholarPubMed
Danovaro, R., and Serresi, M. (2000). Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl Environ Microbiol, 66, 1857–61.CrossRefGoogle ScholarPubMed
Haan, L., and Hirst, T. R. (2004). Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. Mol Membr Biol, 21, 77–92.CrossRefGoogle ScholarPubMed
Deleu, S., Choi, K., Reece, J. M., and Shears, S. B. (2006). Pathogenicity of Salmonella: SopE-mediated membrane ruffling is independent of inositol phosphate signals. FEBS Lett, 580, 1709–15.CrossRefGoogle ScholarPubMed
Deng, W., Burland, V., Plunkett, G. 3rd, et al. (2002). Genome sequence of Yersinia pestis KIM. J Bacteriol, 184, 4601–11.CrossRefGoogle ScholarPubMed
Derbise, A., Chenal-Francisque, V., Pouillot, F., et al. (2007). A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol, 63, 1145–57.CrossRefGoogle ScholarPubMed
Ebel-Tsipis, J., Botstein, D., and Fox, M. S. (1972). Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol, 71, 433–48.CrossRefGoogle ScholarPubMed
Edlin, G., Lin, L., and Kudrna, R. (1975). Lambda lysogens of E. coli reproduce more rapidly than non-lysogens. Nature, 255, 735–7.CrossRefGoogle ScholarPubMed
Edwards, R. A., and Rohwer, F. (2005). Viral metagenomics. Nat Rev Microbiol, 3, 504–10.CrossRefGoogle ScholarPubMed
Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. (Eds.) (2005). Virus taxonomy: eighth report of the International Committee on Taxonomy of Viruses. Amsterdam, The Netherlands, Elsevier Academic Press.
Figueroa-Bossi, N., and Bossi, L. (1999). Inducible prophages contribute to Salmonella virulence in mice. Mol Microbiol, 33, 167–76.CrossRefGoogle ScholarPubMed
Fokine, A., Leiman, P. G., Shneider, M. M., et al. (2005). Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. Proc Natl Acad Sci USA, 102, 7163–8.CrossRefGoogle ScholarPubMed
Forterre, P. (2006). Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci USA, 103, 3669–74.CrossRefGoogle ScholarPubMed
Fouts, D. E. (2006). Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res, 34, 5839–51.CrossRefGoogle ScholarPubMed
Freeman, V. (1951). Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol, 61, 675–88.Google ScholarPubMed
Fukazawa, Y., and Hartman, P. (1964). A P22 bacteriophage mutant defective in antigenic conversion. Virology, 23, 279–83.Google Scholar
Galan, J. E., and Wolf-Watz, H. (2006). Protein delivery into eukaryotic cells by type III secretion machines. Nature, 444, 567–73.CrossRefGoogle ScholarPubMed
Garza, D. R., and Suttle, C. A. (1998). The effect of Cyanophages on the mortality of Synechococcus spp., and selection for UV resistant viral communities. Microb Ecol, 36, 281–92.CrossRefGoogle ScholarPubMed
Georgopoulos, C. P., Hendrix, R. W., Casjens, S. R., and Kaiser, A. D. (1973). Host participation in bacteriophage lambda head assembly. J Mol Biol, 76, 45–60.CrossRefGoogle ScholarPubMed
Gilcrease, E. B., Winn-Stapley, D. A., Hewitt, F. C., Joss, L., and Casjens, S. R. (2005). Nucleotide sequence of the head assembly gene cluster of bacteriophage L and decoration protein characterization. J Bacteriol, 187, 2050–7.CrossRefGoogle ScholarPubMed
Golubeva, Y. A., and Slauch, J. M. (2006). Salmonella enterica serovar Typhimurium periplasmic superoxide dismutase SodCI is a member of the PhoPQ regulon and is induced in macrophages. J Bacteriol, 188, 7853–61.CrossRefGoogle ScholarPubMed
Gonzalez, M. D., Lichtensteiger, C. A., Caughlan, R., and Vimr, E. R. (2002). Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar Orientalis. J Bacteriol, 184, 6050–5.CrossRefGoogle ScholarPubMed
Greco, K. M., McDonough, M. A., and Butterton, J. R. (2004). Variation in the Shiga toxin region of 20th-century epidemic and endemic Shigella dysenteriae 1 strains. J Infect Dis, 190, 330–4.CrossRefGoogle ScholarPubMed
Green, N. M., Zhang, S., Porcella, S. F., et al. (2005). Genome sequence of a serotype M28 strain of group a Streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J Infect Dis, 192, 760–70.CrossRefGoogle ScholarPubMed
Hambly, E., and Suttle, C. A. (2005). The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol, 8, 444–50.CrossRefGoogle ScholarPubMed
Hardt, W. D., Urlaub, H., and Galan, J. E. (1998). A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci USA, 95, 2574–9.CrossRefGoogle ScholarPubMed
Hatfull, G. F., Pedulla, M. L., Jacobs-Sera, D., et al. (2006). Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet, 2, e92.CrossRefGoogle ScholarPubMed
Hattman, S., and Sun, W. (1997). Escherichia coli OxyR modulation of bacteriophage Mu mom expression in dam+ cells can be attributed to its ability to bind hemimethylated Pmom promoter DNA. Nucleic Acids Res, 25, 4385–8.CrossRefGoogle ScholarPubMed
Hendrix, R., and Casjens, S. (2006). Bacteriophage λ and its genetic neighborhood. In Calendar, R. (Ed.) The bacteriophages, (2nd. ed.). New York: Oxford.Google Scholar
Hendrix, R. W. (2002). Bacteriophages: evolution of the majority. Theor Popul Biol, 61, 471–80.CrossRefGoogle ScholarPubMed
Hendrix, R. W. (2003). Bacteriophage genomics. Curr Opin Microbiol, 6, 506–11.CrossRefGoogle ScholarPubMed
Hendrix, R. W., Lawrence, J. G., Hatfull, G. F., and Casjens, S. (2000). The origins and ongoing evolution of viruses. Trends Microbiol, 8, 504–8.CrossRefGoogle ScholarPubMed
Herold, S., Karch, H., and Schmidt, H. (2004). Shiga toxin-encoding bacteriophages - genomes in motion. Int J Med Microbiol, 294, 115–21.CrossRefGoogle ScholarPubMed
Hershey, A. D., and Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol, 36, 39–56.CrossRefGoogle ScholarPubMed
Hershey, A. D., and Rotman, R. (1949). Genetic recombination between host range and plaque-type mutants of bacteriophage in single bacterial cells. Genetics, 34, 44–55.Google ScholarPubMed
Hewson, I., O'Neil, I., Fuhrman, J. A., and Dennison, W. C. (2001). Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr, 46, 1734–46.CrossRefGoogle Scholar
Ho, T. D., Figueroa-Bossi, N., Wang, M., et al. (2002). Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J Bacteriol, 184, 5234–9.CrossRefGoogle ScholarPubMed
Hurst, M. R., Glare, T. R., and Jackson, T. A. (2004). Cloning Serratia entomophila antifeeding genes - a putative defective prophage active against the grass grub Costelytra zealandica. J Bacteriol, 186, 5116–28.CrossRefGoogle ScholarPubMed
Iguchi, A., Iyoda, S., Terajima, J., Watanabe, H., and Osawa, R. (2006). Spontaneous recombination between homologous prophage regions causes large-scale inversions within the Escherichia coli O157:H7 chromosome. Gene, 372, 199–207.CrossRefGoogle ScholarPubMed
Jiang, S. C., and Paul, J. H. (1998). Gene transfer by transduction in the marine environment. Appl Environ Microbiol, 64, 2780–7.Google ScholarPubMed
Jiang, W., Li, Z., Zhang, Z., et al. (2003). Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat Struct Biol, 10, 131–5.CrossRefGoogle ScholarPubMed
Johnson, T., Giddings, C., Horne, S., et al. (2002). Location of increased serum survival gene and selected virulence traits on a conjugative R plasmid in an avian Escherichia coli isolate. Avian Dis, 46, 342–542.CrossRefGoogle Scholar
Johnson, T. J., Siek, K. E., Johnson, S. J., and Nolan, L. K. (2006). DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol, 188, 745–58.CrossRefGoogle ScholarPubMed
Juhala, R. J., Ford, M. E., Duda, R. L., et al. (2000). Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol, 299, 27–51.CrossRefGoogle ScholarPubMed
Killmann, H., Braun, M., Herrmann, C., and Braun, V. (2001). FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol, 183, 3476–87.CrossRefGoogle ScholarPubMed
Koonin, E. V., Senkevich, T. G., and Dolja, V. V. (2006). The ancient Virus World and evolution of cells. Biol Direct, 1, 29.CrossRefGoogle Scholar
Korres, H., and Verma, N. K. (2006). Identification of essential loops and residues of glucosyltransferase V (GtrV) of Shigella flexneri. Mol Membr Biol, 23, 407–19.CrossRefGoogle ScholarPubMed
Lang, A. S., and Beatty, J. T. (2007). Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol, 15, 54–62.CrossRefGoogle ScholarPubMed
Lawrence, J. G., Hendrix, R. W., and Casjens, S. (2001). Where are the bacterial pseudogenes?Trends Microbiol, 9, 535–40.CrossRefGoogle Scholar
Lindell, D., Sullivan, M. B., Johnson, Z. I., et al. (2004). Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA, 101, 11013–8.CrossRefGoogle ScholarPubMed
Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M., and Chisholm, S. W. (2005). Photosynthesis genes in marine viruses yield proteins during host infection. Nature, 438, 86–9.CrossRefGoogle ScholarPubMed
Luria, S. E., and Delbrück, M. (1943). Mutation of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511.Google Scholar
Mann, N. H., Cook, A., Millard, A., Bailey, S., and Clokie, M. (2003). Marine ecosystems: bacterial photosynthesis genes in a virus. Nature, 424, 741.CrossRefGoogle ScholarPubMed
Markine-Goriaynoff, N., Gillet, L., Etten, J. L., et al. (2004). Glycosyltransferases encoded by viruses. J Gen Virol, 85, 2741–54.CrossRefGoogle ScholarPubMed
Matsumoto, M., Ichikawa, N., Tanaka, S., Morita, T., and Matsushiro, A. (1985). Molecular cloning of the φ80 adsorption-inhibiting cor gene. Jpn J Genet, 60, 475–83.CrossRefGoogle Scholar
McDonough, M. A., and Butterton, J. R. (1999). Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1. Mol Microbiol, 34, 1058–69.CrossRefGoogle ScholarPubMed
Mehta, P., Casjens, S., and Krishnaswamy, S. (2004). Analysis of the lambdoid prophage element e14 in the E. coli K-12 genome. BMC Microbiol, 4, 4.CrossRefGoogle ScholarPubMed
Millard, A., Clokie, M. R., Shub, D. A., and Mann, N. H. (2004). Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci USA, 101, 11007–12.CrossRefGoogle ScholarPubMed
Mirold, S., Rabsch, W., Rohde, M., et al. (1999). Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc Natl Acad Sci USA, 96, 9845–50.CrossRefGoogle ScholarPubMed
Morais, M. C., Choi, K. H., Koti, J. S., et al. (2005). Conservation of the capsid structure in tailed dsDNA bacteriophages: the pseudoatomic structure of phi29. Mol Cell, 18, 149–59.CrossRefGoogle ScholarPubMed
Moran, N. A., Degnan, P. H., Santos, S. R., Dunbar, H. E., and Ochman, H. (2005). The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA, 102, 16919–26.CrossRefGoogle Scholar
Morgan, G., Hatfull, G., Casjens, S., and Hendrix, R. (2002). Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol, 317, 337–59.CrossRefGoogle ScholarPubMed
Nakagawa, I., Kurokawa, K., Yamashita, A., et al. (2003). Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res, 13, 1042–55.CrossRefGoogle ScholarPubMed
Nakayama, K., Takashima, K., Ishihara, H., et al. (2000). The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol, 38, 213–31.CrossRefGoogle ScholarPubMed
Neve, H., Freudenberg, W., Diestel-Feddersen, F., Ehlert, R., and Heller, K. J. (2003). Biology of the temperate Streptococcus thermophilus bacteriophage TP-J34 and physical characterization of the phage genome. Virology, 315, 184–94.CrossRefGoogle ScholarPubMed
Newton, G. J., Daniels, C., Burrows, L. L., et al. (2001). Three-component-mediated serotype conversion in Pseudomonas aeruginosa by bacteriophage D3. Mol Microbiol, 39, 1237–47.CrossRefGoogle ScholarPubMed
Nilsson, A. S., Karlsson, J. L., and Haggard-Ljungquist, E. (2004). Site-specific recombination links the evolution of P2-like coliphages and pathogenic enterobacteria. Mol Biol Evol, 21, 1–13.CrossRefGoogle ScholarPubMed
Ochman, H., Lerat, E., and Daubin, V. (2005). Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA, 102(Suppl 1), 6595–9.CrossRefGoogle Scholar
Oram, D. M., Avdalovic, A., and Holmes, R. K. (2002). Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J Bacteriol, 184, 5723–32.CrossRefGoogle Scholar
Patel, J. C., and Galan, J. E. (2006). Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol, 175, 453–63.CrossRefGoogle ScholarPubMed
Pedulla, M. L., Ford, M. E., Houtz, J. M., et al. (2003). Origins of highly mosaic mycobacteriophage genomes. Cell, 113, 171–82.CrossRefGoogle ScholarPubMed
Pelludat, C., Mirold, S., and Hardt, W. D. (2003). The SopEφ phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J Bacteriol, 185, 5182–91.CrossRefGoogle ScholarPubMed
Penner, M., Morad, I., Snyder, L., and Kaufmann, G. (1995). Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J Mol Biol, 249, 857–68.CrossRefGoogle ScholarPubMed
Piuri, M., and Hatfull, G. F. (2006). A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol, 62, 1569–85.CrossRefGoogle ScholarPubMed
Quinones, M., Davis, B. M., and Waldor, M. K. (2006a). Activation of the Vibrio cholerae SOS response is not required for intestinal cholera toxin production or colonization. Infect Immun, 74, 927–30.CrossRefGoogle ScholarPubMed
Quinones, M., Kimsey, H. H., Ross, W., Gourse, R. L., and Waldor, M. K. (2006b). LexA represses CTXφ transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. J Biol Chem, 281, 39407–12.CrossRefGoogle ScholarPubMed
Sandkvist, M. (2001). Type II secretion and pathogenesis. Infect Immun, 69, 3523–35.CrossRefGoogle ScholarPubMed
Silver-Mysliwiec, T. H., and Bramucci, M. G. (1990). Bacteriophage-enhanced sporulation: comparison of spore-converting bacteriophages PMB12 and SP10. J Bacteriol, 172, 1948–53.CrossRefGoogle ScholarPubMed
Sitkiewicz, I., Nagiec, M. J., Sumby, P., et al. (2006). Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci USA, 103, 16009–14.CrossRefGoogle ScholarPubMed
Smoot, J. C., Barbian, K. D., Gompel, J. J., et al. (2002). Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci USA, 99, 4668–73.CrossRefGoogle ScholarPubMed
Stent, G. (1963). Molecular biology of bacterial viruses, San Francisco: W. H. Freeman.Google Scholar
Sternberg, N., and Weisberg, R. (1977). Packaging of coliphage lambda DNA. II. The role of the gene D protein. J Mol Biol, 117, 733–59.CrossRefGoogle ScholarPubMed
Stewart, A. W., and Johnson, M. G. (1977). Increased numbers of heat-resistant spores produced by two strains of Clostridium perfringens bearing temperate phage s9. J Gen Microbiol, 103, 45–50.CrossRefGoogle ScholarPubMed
Sullivan, M. B., Lindell, D., Lee, J. A., et al. (2006). Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol, 4, e234.CrossRefGoogle ScholarPubMed
Summers, W. C. (1999). Félix d'Herelle and the origins of molecular biology, New Haven, CT: Yale University Press.Google Scholar
Susskind, M. M., and Botstein, D. (1978). Molecular genetics of bacteriophage P22. Microbiol Rev, 42, 385–413.Google ScholarPubMed
Suttle, C. A. (2005). Viruses in the sea. Nature, 437, 356–61.CrossRefGoogle Scholar
Tang, L., Gilcrease, E. B., Casjens, S. R., and Johnson, J. E. (2006). Highly discriminatory binding of capsid-cementing proteins in bacteriophage L. Structure, 14, 837–45.CrossRefGoogle ScholarPubMed
Tobe, T., Beatson, S. A., Taniguchi, H., et al. (2006). An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA, 103, 14941–6.CrossRefGoogle ScholarPubMed
Uc-Mass, A., Loeza, E. J., Garza, M., et al. (2004). An orthologue of the cor gene is involved in the exclusion of temperate lambdoid phages. Evidence that Cor inactivates FhuA receptor functions. Virology, 329, 425–33.CrossRefGoogle ScholarPubMed
Uchida, T., Gill, D. M., and Pappenheimer, A. M. (1971). Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat New Biol, 233, 8–11.CrossRefGoogle ScholarPubMed
Unkmeir, A., and Schmidt, H. (2000). Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect Immun, 68, 4856–64.CrossRefGoogle ScholarPubMed
Vlisidou, I., Dziva, F., Ragione, R. M., et al. (2006). Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infect Immun, 74, 758–64.CrossRefGoogle ScholarPubMed
Wagner, P. L., and Waldor, M. K. (2002). Bacteriophage control of bacterial virulence. Infect Immun, 70, 3985–93.CrossRefGoogle ScholarPubMed
Wagner, P. L., Livny, J., Neely, M. N., et al. (2002). Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol, 44, 957–70.CrossRefGoogle ScholarPubMed
Waldor, M. K., and Mekalanos, J. J. (1996). Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272, 1910–4.CrossRefGoogle ScholarPubMed
Weigele, P. R., Pope, W. H., Pedulla, M. L., et al. (2007). Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol, 9, 1675–95.CrossRefGoogle ScholarPubMed
Weinbauer, M. G., Fuks, D., and Peduzzi, P. (1993). Distribution of viruses and dissolved DNA along a coastal trophic gradient in the northern Adriatic sea. Appl Environ Microbiol, 59, 4074–82.Google ScholarPubMed
Weitz, J. S., Hartman, H., and Levin, S. A. (2005). Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci USA, 102, 9535–40.CrossRefGoogle ScholarPubMed
West, N. P., Sansonetti, P., Mounier, J., et al. (2005). Optimization of virulence functions through glucosylation of Shigella LPS. Science, 307, 1313–7.CrossRefGoogle ScholarPubMed
Whitman, W. B., Coleman, D. C., and Wiebe, W. J. (1998). Prokaryotes: the unseen majority. Proc Natl Acad Sci USA, 95, 6578–83.CrossRefGoogle ScholarPubMed
Wikoff, W. R., Liljas, L., Duda, R. L., et al. (2000). Topologically linked protein rings in the bacteriophage HK97 capsid. Science, 289, 2129–33.CrossRefGoogle ScholarPubMed
Williams, C., Galyov, E. E., and Bagby, S. (2004). Solution structure, backbone dynamics, and interaction with Cdc42 of Salmonella guanine nucleotide exchange factor SopE2. Biochemistry, 43, 11998–2008.CrossRefGoogle ScholarPubMed
Williams, K. P. (2002). Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res, 30, 866–75.CrossRefGoogle ScholarPubMed
Yang, F., Yang, J., Zhang, X., et al. (2005). Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res, 33, 6445–58.CrossRefGoogle ScholarPubMed
Yang, G., Dowling, A. J., Gerike, U., Ffrench-Constant, R. H., and Waterfield, N. R. (2006). Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol, 188, 2254–61.CrossRefGoogle ScholarPubMed
Zeidner, G., Bielawski, J. P., Shmoish, M., et al. (2005). Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ Microbiol, 7, 1505–13.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×