Published online by Cambridge University Press: 24 August 2009
In this chapter we define the gauge group and prepotentials of conformal N = 2 supergravity in harmonic superspace. The gauge group is a local version of the analytic superspace realization of the rigid superconformal group SU (2, 2|2) discussed in Chapter 9. The prepotentials arise as the Grassmann analytic vielbeins covariantizing the harmonic derivative D++. Then we construct the harmonic superspace action of Einstein N = 2 supergravity. Its first basic ingredient is the action for a Maxwell compensating superfield in the background of conformal supergravity. As a second compensator we take a q+ hypermultiplet. This gives rise to an essentially new, ‘principal’ version of Einstein N = 2 supergravity. It contains an infinite number of auxiliary fields (coming from the q+ compensator) and is the only one allowing for the most general matter couplings. The previously known versions correspond to choosing as compensators N = 2 matter superfields with finite sets of auxiliary fields. They can be reduced to the principal version by duality transformations.
From conformal to Einstein gravity
In the formulation of supergravity we are going to follow the method of compensation of conformal supergravity [D17, D18, D21, K1, S7]. The idea of the method is to start with a graviton field belonging to an irreducible representation of the Poincaré group with spin 2 (conformal gravity).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.