Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T15:42:43.817Z Has data issue: false hasContentIssue false

6 - N = 2 matter multiplets with a finite number of auxiliary fields. N = 2 duality transformations

Published online by Cambridge University Press:  24 August 2009

A. S. Galperin
Affiliation:
Fannie Mae, Washington DC
E. A. Ivanov
Affiliation:
Joint Institute for Nuclear Research, Dubna, Russia
E. S. Sokatchev
Affiliation:
Laboratoire d'Annecy-le-Vieux de Physique Théorique, France
Get access

Summary

In this chapter we demonstrate that all known off-shell N = 2 matter multiplets with finite sets of auxiliary fields are described by Grassmann analytic superfields with properly chosen harmonic constraints. We define the N = 2 superfield duality transformation and use it to show explicitly that the general self-couplings of these constrained N = 2 matter superfields are reduced to particular classes of the q+ hypermultiplet self-coupling.

Introductory remarks

As was mentioned in Section 5.1.4, before the invention of harmonic superspace N = 2 off-shell matter had been described by constrained superfields in ordinary N = 2 superspace. These are the N = 2 tensor multiplet [D19, S6, W6], non-linear multiplet [D16, D17], relaxed hypermultiplet [H15] and its generalizations [Y1], etc. Since such superfields have finite sets of components, they are sometimes easier to deal with than the unconstrained Grassmann analytic superfields, e.g., when constructing physical component actions. However, they are certainly not adequate for describing the most general N = 2 matter action and, respectively, the most general set of hyper-Kähler metrics. The natural object representing N = 2 off-shell matter is the Grassmann analytic superfield q+. Only with its help one can establish a one-to-one correspondence between N = 2 matter and hyper-Kähler manifolds.

Type
Chapter
Information
Harmonic Superspace , pp. 107 - 127
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×