Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T16:59:36.780Z Has data issue: false hasContentIssue false

1 - Geometric and analytic setting

Published online by Cambridge University Press:  13 August 2009

Frédéric Hélein
Affiliation:
Ecole Normale Supérieure, Lyon
Get access

Summary

This chapter essentially describes the objects and properties that will interest us in this work. For a more detailed exposition of the general background in Riemannian geometry and in analysis on manifolds, one may refer for instance to [183] and [98]. After recalling how to associate, to each Riemannian metric on a manifold, a Laplacian operator on the same manifold, we will give a definition of smooth harmonic map between two manifolds. Very soon, we will use the variational framework, which consists in viewing harmonic maps as the critical points of the Dirichlet functional.

Next, we introduce a frequently used ingredient in this book: Noether's theorem. We present two versions of it: one related to the symmetries of the image manifold, and the other which is a consequence of an invariance of the problem under diffeomorphisms of the domain manifold (in this case it is not exactly Noether's theorem, but a “covariant” version).

These concepts may be extended to contexts where the map between the two manifolds is less regular. In fact, a relatively convenient space is that of maps with finite energy (Dirichlet integral), H1 (M, N). This space appears naturally when we try to use variational methods to construct harmonic maps, for instance the minimization of the Dirichlet integral. The price to pay is that when the domain manifold has dimension larger than or equal to 2, maps in H1 (M, N) are not smooth, in general. Moreover, H1 (M, N) does not have a differentiable manifold structure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×