Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T03:20:59.040Z Has data issue: false hasContentIssue false

25 - Combining Statistical and Causal Mediation Analysis

from Part IV - Understanding What Your Data Are Telling You About Psychological Processes

Published online by Cambridge University Press:  12 December 2024

Harry T. Reis
Affiliation:
University of Rochester, New York
Tessa West
Affiliation:
New York University
Charles M. Judd
Affiliation:
University of Colorado Boulder
Get access

Summary

Mediation analysis practices in social and personality psychology would benefit from the integration of practices from statistical mediation analysis, which is currently commonly implemented in social and personality psychology, and causal mediation analysis, which is not frequently used in psychology. In this chapter, I briefly describe each method on its own, then provide recommendations for how to integrate practices from each method to simultaneously evaluate statistical inference and causal inference as part of a single analysis. At the end of the chapter, I describe additional areas of recent development in mediation analysis that that social and personality psychologists should also consider adopting I order to improve the quality of inference in their mediation analysis: latent variables and longitudinal models. Ultimately, this chapter is meant to be a kind introduction to causal inference in the context of mediation with very practical recommendations for how one can implement these practices in one’s own research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberson, C. L. (2019). Applied Power Analysis for the Behavioral Sciences, 2nd ed. Routledge.CrossRefGoogle Scholar
Aguinis, H., Beaty, J. C., Boik, R. J., and Pierce, C. A. (2005). Effect size and power in assessing moderating effects of categorical variables using multiple regression: A 30-year review. Journal of Applied Psychology, 90(1), 94107.CrossRefGoogle ScholarPubMed
American Psychological Association. (2020). Publication Manual of the American Psychological Association 2020: The Official Guide to APA Style, 7th ed. American Psychological Association.Google Scholar
Arbuckle, J. L. (2019). Amos (Version 26.0) [computer program]. IBM SPSS.Google Scholar
Baron, R. M., and Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 11731182.CrossRefGoogle ScholarPubMed
Bauer, D. J., Preacher, K. J., and Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendation. Psychological Methods, 11(2), 142163.CrossRefGoogle Scholar
Biesanz, J. C., Falk, C. F., and Savalei, V. (2010). Assessing mediational models: Testing and interval estimation for indirect effects. Multivariate Behavioral Research, 45, 661701.CrossRefGoogle ScholarPubMed
Bind, M.- VanderWeele, A., Coull, T., B. A., and Schwartz, J. D. (2016). Causal mediation analysis for longitudinal data with exogenous exposure. Biostatistics, 17(1), 122134.CrossRefGoogle ScholarPubMed
Bullock, J. G., and Green, G. P. (2021). The failings of conventional mediation analysis and a design-based alternative. Advances in Methods and Practices in Psychological Science, 4(4), 118.CrossRefGoogle Scholar
Bullock, J. G., Green, D. P., and Ha, S. E. (2010). Yes, but what’s the mechanism? (Don’t expect an easy answer). Journal of Personality and Social Psychology, 98, 550558.CrossRefGoogle ScholarPubMed
Card, N. A. (2012). Multilevel mediational analysis in the study of daily lives. In Mehl, M. R. and Conner, T. S. (eds.) Handbook of Research Methods for Studying Daily Life. Guilford Press.Google Scholar
Charlton, A., Montoya, A. K., Price, J., and Hilgard, J. (2021). Noise in the process: An assessment of the evidential value of mediation effects in marketing journals. DOI: 10.31234/osf.io/ck2r5.CrossRefGoogle Scholar
Chen, D., and Fritz, M. S. (2021). Comparing alternative corrections for bias in the bias-corrected bootstrap test of mediation. Evaluation & the Health Professions, 44(4), 416427.CrossRefGoogle ScholarPubMed
Cheung, G. W., and Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296325.CrossRefGoogle Scholar
Cheung, M. W. L. (2007). Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 14(2), 227446.CrossRefGoogle Scholar
Cole, D. A., and Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558577.CrossRefGoogle ScholarPubMed
Cole, D. A., and Preacher, K. J. (2014). Manifest variable path analysis: Potentially serious and misleading consequences due to uncorrected measurement error. Psychological Methods, 19(2), 300315.CrossRefGoogle ScholarPubMed
Daniel, R. M., Stavola, B. L. D., Cousens, S. N., and Vansteelandt, S. (2015). Causal mediation with multiple mediators. Biometrics, 71(1), 115.CrossRefGoogle ScholarPubMed
Earp, B. D., and Trafimow, D. (2015). Replication, falsification, and the crisis of confidence in social psychology. Frontiers in Psychology, 6, 111.CrossRefGoogle ScholarPubMed
Falk, C. F., and Biesanz, J. C. (2015). Inference and interval estimation methods for indirect effects with latent variable models. Structural Equation Modeling: A Multidisciplinary Journal, 22, 2438.CrossRefGoogle Scholar
Fiedler, K., Harris, C., and Schott, M. (2018). Unwarranted inferences from statistical mediation tests: An analysis of articles published in 2015. Journal of Experimental Psychology, 75, 95102.Google Scholar
Flake, J. K., Pek, J., and Hehman, E. (2017). Construct validation in social and personality research: Current practice and recommendations. Social Psychological and Personality Science, 8(4), 370378.CrossRefGoogle Scholar
Fritz, M. S., and MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18(3), 233239.CrossRefGoogle ScholarPubMed
Funk, M. J., Westreich, D., Wiesen, C., Sturmer, T., Brookhart, M. A., and Davidson, M. (2011). Doubly robust estimation of causal effects. American Journal of Epidemiology, 173(7), 761767.CrossRefGoogle ScholarPubMed
Gonzalez, O., and MacKinnon, D. P. (2021). The measurement of the mediator and its influence on statistical mediation conclusions. Psychological Methods, 26(1), 117.CrossRefGoogle ScholarPubMed
Gonzalez, O., and Valente, M. J. (2022). Accommodating a latent XM interaction in statistical mediation analysis. Multivariate Behavioral Research, 58(4), 659–674.CrossRefGoogle Scholar
Gorsuch, R. L. (1983). Factor Analysis. Lawrence Erlbaum Associates.Google Scholar
Götz, M., O’Boyle, E. H., Gonzalez-Mulé, E., Banks, G. C., and Bollmann, S. S. (2021). The “Goldilocks” zone: (Too) many confidence intervals in tests of mediation just exclude zero. Psychological Bulletin, 147(1), 95114.CrossRefGoogle Scholar
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408420.CrossRefGoogle Scholar
Hayes, A. F. (2015). An index and test of linear moderated mediation. Multivariate Behavioral Research, 50(1), 122.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2022). Introduction to Mediation, Moderation, and Conditional Process Analysis, 3rd ed. Guilford Press.Google Scholar
Hayes, A. F., and Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? Psychological Science, 24, 1918–1927.CrossRefGoogle ScholarPubMed
Hoyle, R. H., and Kenny, D. A. (1999). Sample size, reliability, and tests of statistical mediation. In Hoyle, R. H. (ed.) Statistical Strategies for Small Sample Research. Sage.Google Scholar
Iacobucci, D. (2012). Mediation analysis and categorical variables: The final frontier. Journal of Consumer Psychology, 22(4), 582594.CrossRefGoogle Scholar
Iacobucci, D., Saldanha, N., and Deng, J. X. (2007). A meditation on mediation: Evidence that structural equations models perform better than regressions. Journal of Consumer Psychology, 17(2), 140154.CrossRefGoogle Scholar
Imai, K., Keele, K., and Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects. Statistical Science, 25(1), 5171.CrossRefGoogle Scholar
Imai, K., Tingley, D., and Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society, 176(1), 551.CrossRefGoogle Scholar
Imbens, G. W., and Rubin, D. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press.CrossRefGoogle Scholar
Kenny, D. A. (2017). An interactive tool for the estimation of power in tests of mediation (computer software), https://davidakenny.shinyapps.io/MedPower.Google Scholar
Kenny, D. A., and Judd, C. M. (2014). Power anomalies in testing mediation. Psychological Science, 25(2), 334339.CrossRefGoogle ScholarPubMed
Kenny, D. A., Korchmaros, J. D., and Bolger, N. (2003). Lower-level mediation in multilevel models. Psychological Methods, 8(2), 115128.CrossRefGoogle ScholarPubMed
Kozlov, M. (2022). NIH issues a seismis mandate: Share data publicly. Nature, 602, 558559.CrossRefGoogle ScholarPubMed
Krull, J. L., and MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate Behavioral Research, 36, 249277.CrossRefGoogle ScholarPubMed
Ledgerwood, A., and Shrout, P. E. (2011). The trade-off between accuracy and precision in latent variable models of mediation processes. Journal of Personality and Social Psychology, 101, 11741188.CrossRefGoogle ScholarPubMed
Lee, H., Cashin, A. G., Lamb, S. E., Hopewell, S., Vansteelandt, S., VanderWeele, T. J., and McAuley, J. H. (2021). A guideline for reporting mediation analyses of randomized trials and observational studies: The agrema statement. JAMA, 326, 10451056.CrossRefGoogle ScholarPubMed
Lindenberger, U., von Oertzen, T., Ghisletta, P., and Hertzog, C. (2011). Cross-sectional age variance extraction: What’s change got to do with it? Psychology and Aging, 26(1), 3447.CrossRefGoogle Scholar
Liu, S. H., Ulbricht, C. M., Chrysanthopoulou, S. A., and Lapane, K. L. (2016). Implementation and reporting of causal mediation analysis in 2015: A systematic review in epidemiological studies. BMC Research Notes, 9(354), DOI: 10.1186/s13104-016-2163-7.CrossRefGoogle ScholarPubMed
Liu, X., and Wang, L. (2019). Sample size planning for detecting mediation effects: A power analysis procedure considering uncertainty in effect size estimates. Multivariate Behavioral Research, 54(6), 822839.CrossRefGoogle Scholar
MacKinnon, D. P. (2000). Contrasts in multiple mediator models. In Rose, J., Chassin, L., Presson, C. C., and Sherman, S. J. (eds.) Multivariate Applications in Substance Use Research: New Methods for New Questions. Erlbaum.Google Scholar
MacKinnon, D. P. (2008). Introduction to Statistical Mediation Analysis. Lawrence Erlbaum Associates.Google Scholar
MacKinnon, D. P., Fritz, M. S., Williams, J., and Lockwood, C. M. (2007). Distribution of the product confidence limits for the indirect effect: Program PRODCLIN. Behavior Research Methods, 39(3), 384389.CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., and Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83104.CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., and Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99128.CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Valente, M. J., and Gonzalez, O. (2020). The correspondence between causal and traditional mediation analysis: The link is the mediator by treatment interaction. Prevention Science, 21, 147157.CrossRefGoogle ScholarPubMed
Martínez, C. A., van Prooijen, J., and Lange, P. A. M. V. (2022). A threat-based hate model: How symbolic and realistic threats underlie hate and aggression. Journal of Experimental Social Psychology, 103, 113.CrossRefGoogle Scholar
Maxwell, S. E., and Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 2344.CrossRefGoogle ScholarPubMed
Maxwell, S. E., Cole, D. A., and Mitchell, M. A. (2011). Bias in cross-sectional analyses of longitudinal mediation: Partial and complete mediation under an autoregressive model. Psychological Methods, 12, 2344.CrossRefGoogle Scholar
Meule, A. (2019). Contemporary understanding of mediation testing. Meta-Psychology, 3, DOI: 10.15626/MP.2018.870.CrossRefGoogle Scholar
Montoya, A. K., and Hayes, A. F. (2017). Two-condition within-participant statistical mediation analysis: A path-analytic framework. Psychological Methods, 22(1), 627.CrossRefGoogle ScholarPubMed
Muthèn, B., and Asprouhov, T. (2015). Causal effects in mediation modeling: An introduction with applications to latent variables. Structural Equation Modeling, 22(1), 1223.CrossRefGoogle Scholar
Muthèn, L. K., and Muthèn, B. O. (1998–2011). Mplus User’s Guide, 6th ed. Muthèn and Muthèn.Google Scholar
Nezlek, J. B. (2011). Multilevel Modeling for Social and Personality Psychology. Sage.CrossRefGoogle Scholar
Nuijten, M. B., Borghuis, J., Veldkamp, C. L. S., Dominguez-Alvarez, L., van Assen, M. A. L. M., and Wicherts, J. M. (2017). Journal data sharing policies and statistical reporting inconsistencies in psychology. Collabra: Psychology, 3(1), 31, DOI: 10.1525/collabra.102.CrossRefGoogle Scholar
O’Laughlin, K. D., Martin, M. J., and Ferrer, E. (2018). Cross-sectional analysis of longitudinal mediation processes. Multivariate Behavioral Research, 53(3), 375402.CrossRefGoogle ScholarPubMed
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669710.CrossRefGoogle Scholar
Pearl, J. (2001). Direct and Indirect Effects. Morgan Kaufman.Google Scholar
Pituch, K. A., Whittaker, T. A., and Stapleton, L. M. (2005). A comparison of methods to test for mediation in multisite experiments. Multivariate Behavioral Research, 40, 123.CrossRefGoogle ScholarPubMed
Preacher, K. J. (2015). Advances in mediation analysis: A survey and synthesis of new developments. Annual Review of Psychology, 66, 825852.CrossRefGoogle ScholarPubMed
Preacher, K. J., and Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, 36, 717731.CrossRefGoogle ScholarPubMed
Qin, X. (2023) Sample size and power calculations for causal mediation analysis: A tutorial and shiny app. Behavior Research Methods, https://doi.org/10.3758/s13428-023-02118-0.CrossRefGoogle Scholar
Raudenbush, S. W., and Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. Sage.Google Scholar
Revelle, W. (2022). psych: Procedures for psychological, psychometric, and personality research (computer software manual), https://CRAN.R-project.org/package=psych (R package version 2.2.5).Google Scholar
Robins, J. M., and Greenland, S. (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology, 3(2), 143155.CrossRefGoogle ScholarPubMed
Rockwood, N. J., and Hayes, A. F. (2022). Multilevel mediation analysis. In O’Connell, A. A., McCoach, D. B., and Bell, B. (eds.) Multilevel Modeling Methods with Introductory and Advanced Applications. Information Age Publishing.Google Scholar
Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for observational data. Advances in Methods and Practices in Psychological Science, 1(1), 2742.CrossRefGoogle Scholar
Rohrer, J. M., and Aslan, R. C. (2021). Precise answers to vague questions: Issues with interactions. Advances in Methods and Practices in Psychology, 4(2), 119.Google Scholar
Rosenbaum, P. R., and Rubin, D. B. (1984). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 4155.CrossRefGoogle Scholar
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 136.CrossRefGoogle Scholar
Roth, D. L., and MacKinnon, D. P. (2012). Mediation analysis with longitudinal data. In Newsom, J. T., Jones, R. N., and Hofer, S. M. (eds.) Longitudinal Data Analysis: A Practical Guide for Researchers in Aging, Health, and Social Sciences. Routledge.Google Scholar
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66(5), 688701.CrossRefGoogle Scholar
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions. Journal of American Statistical Association, 100(469), 322331.CrossRefGoogle Scholar
Rucker, D. D., Preacher, K. J., Tormala, Z. L., and Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5, 359371.CrossRefGoogle Scholar
Schoemann, A. M., Boulton, A. J., and Short, S. D. (2017). Determining power and sample size for simple and complex mediation models. Social Psychological and Personality Science, 8(4), 379386.CrossRefGoogle Scholar
Schroder, H. S., Fisher, M. E., Yanli, L., Lo, S. L., Danovitch, J. H., and Moser, J. S. (2017). Neural evidence for enhanced attention to mistakes among school-aged children with a growth mindset. Developmental Cognitive Neuroscience, 24(1), 4250.CrossRefGoogle ScholarPubMed
Selig, J. P., and Preacher, K. J. (2008). Monte Carlo method for assessing mediation: An interactive tool for creating confidence intervals for indirect effects (computer software), available from http://quantpsy.org.Google Scholar
Selig, J. P., and Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6(2–3), 144164.CrossRefGoogle Scholar
Shrout, P. E. (2011). Commentary: Mediation analysis, causal process, and cross-sectional data. Multivariate Behavioral Research, 46(5), 852860.CrossRefGoogle ScholarPubMed
Shrout, P. E., and Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422445.CrossRefGoogle ScholarPubMed
Siy, J. O., Germano, A., Vianna, L., Azpeitia, J., Yan, S., Montoya, A. K., and Cheryan, S. (2023). Does the follow-your-passions ideology cause greater academic and occupational gender disparities than other cultural ideologies? Journal of Personality and Social Psychology, 125(3) 548570.CrossRefGoogle ScholarPubMed
Smith, L. H., and VanderWeele, T. J. (2019). Mediational E-values: Approximate sensitivity analysis for unmeasured mediator-outcome confounding. Epidemiology, 30(6), 835837.CrossRefGoogle ScholarPubMed
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290312.CrossRefGoogle Scholar
Stone, C. A., and Sobel, M. E. (1990). The robustness of estimates of total indirect effects in covariance structure models estimated by maximum likelihood. Psychometrika, 55(2), 337352.CrossRefGoogle Scholar
Syropoulos, S., Lifshin, U., Greenberg, J., Horner, D. E., and Leidner, B. (2022). Bigotry and the human–animal divide: (Dis)belief in human evolution and bigoted attitudes across different cultures. Journal of Personality and Social Psychology, 123(6), 12641292.CrossRefGoogle ScholarPubMed
Thoemmes, F. J., and Kim, E. S. (2011). A systematic review of propensity score methods in the social sciences. Multivariate Behavioral Research, 1, 90118.CrossRefGoogle Scholar
Thoemmes, F. J., and Ong, A. D. (2015). A primer on inverse probability of treatment weighting and marginal structural models. Emerging Adulthood, 4(1), 4059.CrossRefGoogle Scholar
Tibbe, T. D., and Montoya, A. K. (2022). Correcting the bias correction for the bootstrap confidence interval in mediation analysis. Frontiers in Psychology, 13, DOI: 10.3389/fpsyg.2022.810258.CrossRefGoogle ScholarPubMed
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., and Imai, K. (2014). Mediation: R package for causal mediation analysis. Journal of Statistical Software, 59(5), 138.CrossRefGoogle Scholar
Tofighi, D., Hsiao, Y.- Y., Kruger, E. S., MacKinnon, D. P., Horn, M. L. V., and Witkiewitz, K. (2018). Sensitivity analysis of the no-omitted confounder assumption in latent growth curve mediation models. Structural Equation Modeling: A Multidisciplinary Journal, 26(1), 94109.CrossRefGoogle Scholar
Tofighi, D., and MacKinnon, D. P. (2011). Rmediation: An R package for mediation analysis confidence intervals. Behavior Research Methods, 43, 692700.CrossRefGoogle Scholar
Valente, M. J., Pelham, W. E., Smyth, H., and MacKinnon, D. P. (2017). Confounding in statistical mediation analysis: What it is and how to address it. Journal of Counseling Psychology, 64(6), 659671.CrossRefGoogle Scholar
VanderWeele, T. J. (2010). Direct and indirect effect for neighborhood-based clustered and longitudinal data. Sociological Methods & Research, 38(4), 515544.CrossRefGoogle ScholarPubMed
VanderWeele, T. J., and Chiba, Y. (2014). Sensitivity analysis for direct and indirect effects in the presence of exposure-induced mediator-outcome confounders. Epidemiology, Biostatistics and Public Health, 11(2), e9027, DOI: 10.2427/9027.Google ScholarPubMed
Vanderweele, T. J., and Robins, J. M. (2007). Four types of effect modification: A classification based on directed acyclic graphs. Epidemiology, 18(5), 561568.CrossRefGoogle ScholarPubMed
Vo, T., Superchi, C., Boutron, I., and Vansteelandt, S. (2020). The conduct and reporting of mediation analysis in recently published randomized controlled trials: Results from a methodological systematic review. Journal of Clinical Epidemiology, 117, 7888.CrossRefGoogle ScholarPubMed
Williams, J., and MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural Equation Modeling, 15, 2351.CrossRefGoogle ScholarPubMed
Wysocki, A. C., Lawson, K. M., and Rhemtulla, M. (2022). Statistical control requires causal justification. Advances in Methods and Practice in Psychological Science, 5(2), DOI: 10.1177/25152459221095823.CrossRefGoogle Scholar
Yzerbyt, V. Y., Muller, D., Batailler, C., and Judd, C. M. (2018). New recommendations for testing indirect effects in mediational models: The need to report and test component paths. Journal of Personality and Social Psychology: Attitudes and Social Cognition, 115(6), 929943.CrossRefGoogle ScholarPubMed
Yzerbyt, V. Y., Muller, D., and Judd, C. M. (2004). Adjusting researchers’ approach to adjustment: On the use of covariates when testing interactions. Journal of experimental social psychology, 40, 424431.CrossRefGoogle Scholar
Zhang, Z., and Wang, L. (2013). Methods for mediation analysis with missing data. Psychometrika, 78(1), 154184.CrossRefGoogle ScholarPubMed
Zhang, Z., and Yuan, K. H. (2018). Practical Statistical Power Analysis Using Webpower and R. ISDSA Press.CrossRefGoogle Scholar
Zhang, Z., Zyphur, M. J., and Preacher, K. J. (2009). Testing multilevel mediation using hierarchical linear models: Problems and solutions. Organizational Research Methods, 12, 695719.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×