Published online by Cambridge University Press: 01 June 2011
In 1704 in Berlin, Heinrich Diesbach and Johann Konrad Dippel attempted to manufacture a synthetic red pigment. By accident, Dippel mixed potash, animal oil derived from blood, and iron sulfate. Thereafter, he discovered that he had produced an insoluble, light-fast, dark blue pigment. This color was first used extensively to dye the uniforms of the Prussian army, and became known as “Prussian blue.” Almost 150 years later, physicians and scientists recognized the feasibility of visualizing iron in tissue using a similar staining sequence. After more than 250 years, it became practical to quantify iron in blood and tissue, permitting case finding and screening for hemochromatosis and iron overload. Maneuvers to treat iron overload began in the same era. In the interval 1994–1996, the genetic bases of four different iron disorders (X-linked sideroblastic anemia, aceruloplasminemia, hereditary hyperferritinemia-cataract syndrome, and HFE hemochromatosis) were elucidated. The pace of basic science, clinical, and sociological revelations pertinent to hemochromatosis and iron overload disorders continues to accelerate. This chapter provides an abbreviated chronology of these discoveries.
Iron in tissue
In 1847, Rudolph Virchow reported the occurrence of golden brown granular pigment at sites of hemorrhage and congestion in tissue examined by microscopy. The pigment was soluble in sulfuric acid, yielded a red ash on ignition, and produced a positive Prussian blue reaction. In 1867, Max Perls formulated the first practical acidified ferrocyanide reaction for histologic analysis of iron, and applied the staining reaction to a variety of tissues.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.