Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-03T08:32:58.057Z Has data issue: false hasContentIssue false

7 - Stochastic hybrid systems

from Part I - Theory

Published online by Cambridge University Press:  21 February 2011

Jan Lunze
Affiliation:
Ruhr-Universität, Bochum, Germany
Françoise Lamnabhi-Lagarrigue
Affiliation:
Centre National de la Recherche Scientifique (CNRS), Paris
Get access

Summary

Stochastic hybrid systems involve the interaction of continuous discrete and probabilistic dynamics, and thus pose considerable conceptual, theoretical, and practical challenges. In this chapter an overview of the modeling issues that arise in the study of stochastic hybrid systems is presented. Based on this discussion, a study of the problem of reachability analysis for stochastic hybrid systems is presented.

Nondeterminism in hybrid systems

Deterministic and nondeterministic models

Much of the work on hybrid systems has focussed on deterministic models that completely characterize the future of the system without allowing any uncertainty. In practice, it is often desirable to introduce uncertainty in the models, to allow, for example, under-modeling of certain parts of the system, external unmodeled disturbances, etc. To address this need, researchers in discrete-event and hybrid systems have introduced what are known as nondeterministic models. Here the evolution is defined in a declarative way (the system specifies what solutions are allowed) as opposed to the imperative way more common in continuous dynamical/control systems (the system specifies what the solution must be).

Nondeterministic hybrid systems allow uncertainty to enter in a number of places: choice of continuous evolution (modeled, for example, by a differential inclusion), choice of discrete transition destination, or choice between continuous evolution and a discrete transition. “Choice” in this setting may reflect disturbances that add uncertainty about the system evolution, but also control inputs that can be used to steer the system evolution.

Type
Chapter
Information
Handbook of Hybrid Systems Control
Theory, Tools, Applications
, pp. 249 - 276
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×