Book contents
- Frontmatter
- Contents
- Introduction
- Galois groups through invariant relations
- Construction of Co3. An example of the use of an integrated system for computational group theory
- Embedding some recursively presented groups
- The Dedekind-Frobenius group determinant: new life in an old problem
- Group characters and π-sharpness
- Permutation group algorithms via black box recognition algorithms
- Nonabelian tensor products of groups: the commutator connection
- Simple subalgebras of generalized Witt algebras of characteristic zero
- Applications of the Baker-Hausdorff formula in the theory of finite p-groups
- Generalizations of the restricted Burnside problem for groups with automorphisms
- The ∑m-conjecture for a class of metabelian groups
- Rings with periodic groups of units II
- Some free-by-cyclic groups
- The residually weakly primitive geometries of the Suzuki simple group Sz(8)
- Semigroup identities and Engel groups
- Groups whose elements have given orders
- The Burnside groups and small cancellation theory
- Solvable Engel groups with nilpotent normal closures
- Nilpotent injectors in finite groups
- Some groups with right Engel elements
- The growth of finite subgroups in p-groups
- Symplectic amalgams and extremal subgroups
- Primitive prime divisor elements in finite classical groups
- On the classification of generalized Hamiltonian groups
- Permutability properties of subgroups
- When Schreier transversals grow wild
- Probabilistic group theory
- Combinatorial methods: from groups to polynomial algebras
- Formal languages and the word problem for groups
- Periodic cohomology and free and proper actions on ℝn × Sm
- On modules over group rings of soluble groups of finite rank
- On some series of normal subgroups of the Gupta-Sidki 3-group
Rings with periodic groups of units II
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Introduction
- Galois groups through invariant relations
- Construction of Co3. An example of the use of an integrated system for computational group theory
- Embedding some recursively presented groups
- The Dedekind-Frobenius group determinant: new life in an old problem
- Group characters and π-sharpness
- Permutation group algorithms via black box recognition algorithms
- Nonabelian tensor products of groups: the commutator connection
- Simple subalgebras of generalized Witt algebras of characteristic zero
- Applications of the Baker-Hausdorff formula in the theory of finite p-groups
- Generalizations of the restricted Burnside problem for groups with automorphisms
- The ∑m-conjecture for a class of metabelian groups
- Rings with periodic groups of units II
- Some free-by-cyclic groups
- The residually weakly primitive geometries of the Suzuki simple group Sz(8)
- Semigroup identities and Engel groups
- Groups whose elements have given orders
- The Burnside groups and small cancellation theory
- Solvable Engel groups with nilpotent normal closures
- Nilpotent injectors in finite groups
- Some groups with right Engel elements
- The growth of finite subgroups in p-groups
- Symplectic amalgams and extremal subgroups
- Primitive prime divisor elements in finite classical groups
- On the classification of generalized Hamiltonian groups
- Permutability properties of subgroups
- When Schreier transversals grow wild
- Probabilistic group theory
- Combinatorial methods: from groups to polynomial algebras
- Formal languages and the word problem for groups
- Periodic cohomology and free and proper actions on ℝn × Sm
- On modules over group rings of soluble groups of finite rank
- On some series of normal subgroups of the Gupta-Sidki 3-group
Summary
Abstract
In this note we will survey and extend some results on periodicity of unit groups of associative rings. Special attention will be paid to group rings.
Preliminaries
In this paper we assume that rings are associative, in general with 1 ≠ 0. If R is a ring then U(R) will denote the unit group of the ring R, R+ the additive group of R, RU the subring of R generated by U(R) and J(R) the (Jacobson) radical of the ring R. By an order we mean here a ℤ-order. For other notions and results of ring theory one can consult for example [17].
We will apply rather standard notation and terminology on groups. For example, Cn will denote the cyclic group of order n and Q8 the quaternion group of order 8. For further information about groups see for example [18, 23].
Various finiteness conditions for groups of units of associative rings, in particular of group rings are studied in the literature (see for example [25, 20, 13, 26, 15]). In this paper we are going to concentrate on periodicity of groups of units.
- Type
- Chapter
- Information
- Groups St Andrews 1997 in Bath , pp. 503 - 511Publisher: Cambridge University PressPrint publication year: 1999
- 1
- Cited by