Book contents
- Frontmatter
- Contents
- Introduction
- Galois groups through invariant relations
- Construction of Co3. An example of the use of an integrated system for computational group theory
- Embedding some recursively presented groups
- The Dedekind-Frobenius group determinant: new life in an old problem
- Group characters and π-sharpness
- Permutation group algorithms via black box recognition algorithms
- Nonabelian tensor products of groups: the commutator connection
- Simple subalgebras of generalized Witt algebras of characteristic zero
- Applications of the Baker-Hausdorff formula in the theory of finite p-groups
- Generalizations of the restricted Burnside problem for groups with automorphisms
- The ∑m-conjecture for a class of metabelian groups
- Rings with periodic groups of units II
- Some free-by-cyclic groups
- The residually weakly primitive geometries of the Suzuki simple group Sz(8)
- Semigroup identities and Engel groups
- Groups whose elements have given orders
- The Burnside groups and small cancellation theory
- Solvable Engel groups with nilpotent normal closures
- Nilpotent injectors in finite groups
- Some groups with right Engel elements
- The growth of finite subgroups in p-groups
- Symplectic amalgams and extremal subgroups
- Primitive prime divisor elements in finite classical groups
- On the classification of generalized Hamiltonian groups
- Permutability properties of subgroups
- When Schreier transversals grow wild
- Probabilistic group theory
- Combinatorial methods: from groups to polynomial algebras
- Formal languages and the word problem for groups
- Periodic cohomology and free and proper actions on ℝn × Sm
- On modules over group rings of soluble groups of finite rank
- On some series of normal subgroups of the Gupta-Sidki 3-group
Probabilistic group theory
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Introduction
- Galois groups through invariant relations
- Construction of Co3. An example of the use of an integrated system for computational group theory
- Embedding some recursively presented groups
- The Dedekind-Frobenius group determinant: new life in an old problem
- Group characters and π-sharpness
- Permutation group algorithms via black box recognition algorithms
- Nonabelian tensor products of groups: the commutator connection
- Simple subalgebras of generalized Witt algebras of characteristic zero
- Applications of the Baker-Hausdorff formula in the theory of finite p-groups
- Generalizations of the restricted Burnside problem for groups with automorphisms
- The ∑m-conjecture for a class of metabelian groups
- Rings with periodic groups of units II
- Some free-by-cyclic groups
- The residually weakly primitive geometries of the Suzuki simple group Sz(8)
- Semigroup identities and Engel groups
- Groups whose elements have given orders
- The Burnside groups and small cancellation theory
- Solvable Engel groups with nilpotent normal closures
- Nilpotent injectors in finite groups
- Some groups with right Engel elements
- The growth of finite subgroups in p-groups
- Symplectic amalgams and extremal subgroups
- Primitive prime divisor elements in finite classical groups
- On the classification of generalized Hamiltonian groups
- Permutability properties of subgroups
- When Schreier transversals grow wild
- Probabilistic group theory
- Combinatorial methods: from groups to polynomial algebras
- Formal languages and the word problem for groups
- Periodic cohomology and free and proper actions on ℝn × Sm
- On modules over group rings of soluble groups of finite rank
- On some series of normal subgroups of the Gupta-Sidki 3-group
Summary
Abstract
In recent years there have been several developments in the study of probabilistic aspects of certain finite and profinite groups, and various conjectures in this field were settled. Moreover, the probabilistic approach led to the solution of interesting problems whose formulation had nothing to do with probability; these include problems regarding the modular group, free groups, as well as conjectures on finite permutation groups. In this lecture series I will try to survey these developments and discuss directions for further research.
Contents:
Finite simple groups: random generation
Applications: free groups, the modular group, symmetric groups
Profinite groups I: Hausdorff dimension
Profinite groups II: random generation
Permutation groups: minimal degree, genus, base size
Finite simple groups: random generation
Group theory and measure theory seem to intersect highly non-trivially, and so there are many branches in mathematics which could be referred to as probabilistic group theory. In this lecture series I would like to focus on a relatively young area, which concerns probabilistic aspects of finite groups and their inverse limits. I shall also demonstrate how probabilistic ideas can be used to solve classical problems in finite and infinite groups.
A classical scheme, applied successfully in combinatorics, number theory, and other areas, is to prove existence theorems using a probabilistic approach. The idea is to show that most objects have a certain property, and then to deduce that an object with that property exists.
- Type
- Chapter
- Information
- Groups St Andrews 1997 in Bath , pp. 648 - 678Publisher: Cambridge University PressPrint publication year: 1999
- 13
- Cited by