Book contents
- Frontmatter
- Contents
- Introduction
- Galois groups through invariant relations
- Construction of Co3. An example of the use of an integrated system for computational group theory
- Embedding some recursively presented groups
- The Dedekind-Frobenius group determinant: new life in an old problem
- Group characters and π-sharpness
- Permutation group algorithms via black box recognition algorithms
- Nonabelian tensor products of groups: the commutator connection
- Simple subalgebras of generalized Witt algebras of characteristic zero
- Applications of the Baker-Hausdorff formula in the theory of finite p-groups
- Generalizations of the restricted Burnside problem for groups with automorphisms
- The ∑m-conjecture for a class of metabelian groups
- Rings with periodic groups of units II
- Some free-by-cyclic groups
- The residually weakly primitive geometries of the Suzuki simple group Sz(8)
- Semigroup identities and Engel groups
- Groups whose elements have given orders
- The Burnside groups and small cancellation theory
- Solvable Engel groups with nilpotent normal closures
- Nilpotent injectors in finite groups
- Some groups with right Engel elements
- The growth of finite subgroups in p-groups
- Symplectic amalgams and extremal subgroups
- Primitive prime divisor elements in finite classical groups
- On the classification of generalized Hamiltonian groups
- Permutability properties of subgroups
- When Schreier transversals grow wild
- Probabilistic group theory
- Combinatorial methods: from groups to polynomial algebras
- Formal languages and the word problem for groups
- Periodic cohomology and free and proper actions on ℝn × Sm
- On modules over group rings of soluble groups of finite rank
- On some series of normal subgroups of the Gupta-Sidki 3-group
Primitive prime divisor elements in finite classical groups
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Introduction
- Galois groups through invariant relations
- Construction of Co3. An example of the use of an integrated system for computational group theory
- Embedding some recursively presented groups
- The Dedekind-Frobenius group determinant: new life in an old problem
- Group characters and π-sharpness
- Permutation group algorithms via black box recognition algorithms
- Nonabelian tensor products of groups: the commutator connection
- Simple subalgebras of generalized Witt algebras of characteristic zero
- Applications of the Baker-Hausdorff formula in the theory of finite p-groups
- Generalizations of the restricted Burnside problem for groups with automorphisms
- The ∑m-conjecture for a class of metabelian groups
- Rings with periodic groups of units II
- Some free-by-cyclic groups
- The residually weakly primitive geometries of the Suzuki simple group Sz(8)
- Semigroup identities and Engel groups
- Groups whose elements have given orders
- The Burnside groups and small cancellation theory
- Solvable Engel groups with nilpotent normal closures
- Nilpotent injectors in finite groups
- Some groups with right Engel elements
- The growth of finite subgroups in p-groups
- Symplectic amalgams and extremal subgroups
- Primitive prime divisor elements in finite classical groups
- On the classification of generalized Hamiltonian groups
- Permutability properties of subgroups
- When Schreier transversals grow wild
- Probabilistic group theory
- Combinatorial methods: from groups to polynomial algebras
- Formal languages and the word problem for groups
- Periodic cohomology and free and proper actions on ℝn × Sm
- On modules over group rings of soluble groups of finite rank
- On some series of normal subgroups of the Gupta-Sidki 3-group
Summary
Abstract
This is an essay about a certain family of elements in the general linear group GL(d, q) called primitive prime divisor elements, or ppd-elements. A classification of the subgroups of GL(d, q) which contain such elements is discussed, and the proportions of ppd-elements in GL(d, q) and the various classical groups are given. This study of ppd-elements was motivated by their importance for the design and analysis of algorithms for computing with matrix groups over finite fields. An algorithm for recognising classical matrix groups, in which ppd-elements play a central role is described.
Introduction
The central theme of this essay is the study of a special kind of element of the general linear group GL(d, q) of nonsingular d × d matrices over a finite field GF (q) of order q. We define these elements, which we call primitive prime divisor elements or ppd-elements, and give good estimates of the frequencies with which they occur in GL(d, q) and the various classical matrix groups. Further we describe a classification of the subgroups of GL(d, q) which contain ppd-elements, and explore their role in the design and analysis of a randomised algorithm for recognising the classical matrix groups computationally.
Perhaps the best way to introduce these ideas, and to explain the reasons for investigating this particular set of research questions, may be to give a preliminary discussion of a generic recognition algorithm for matrix groups.
- Type
- Chapter
- Information
- Groups St Andrews 1997 in Bath , pp. 605 - 623Publisher: Cambridge University PressPrint publication year: 1999
- 4
- Cited by