Book contents
- Frontmatter
- Contents
- Preface
- Programme Committee
- Tutorials
- Introduction to Gröbner Bases
- Gröbner Bases, Symbolic Summation and Symbolic Integration
- Gröbner Bases and Invariant Theory
- A Tutorial on Generic Initial Ideals
- Gröbner Bases and Algebraic Geometry
- Gröbner Bases and Integer Programming
- Gröbner Bases and Numerical Analysis
- Gröbner Bases and Statistics
- Gröbner Bases and Coding Theory
- Janet Bases for Symmetry Groups
- Gröbner Bases in Partial Differential Equations
- Gröbner Bases and Hypergeometric Functions
- Introduction to Noncommutative Gröbner Bases Theory
- Gröbner Bases Applied to Geometric Theorem Proving and Discovering
- Research Papers
- Appendix An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert)
- Index of Tutorials
Gröbner Bases in Partial Differential Equations
Published online by Cambridge University Press: 05 July 2011
- Frontmatter
- Contents
- Preface
- Programme Committee
- Tutorials
- Introduction to Gröbner Bases
- Gröbner Bases, Symbolic Summation and Symbolic Integration
- Gröbner Bases and Invariant Theory
- A Tutorial on Generic Initial Ideals
- Gröbner Bases and Algebraic Geometry
- Gröbner Bases and Integer Programming
- Gröbner Bases and Numerical Analysis
- Gröbner Bases and Statistics
- Gröbner Bases and Coding Theory
- Janet Bases for Symmetry Groups
- Gröbner Bases in Partial Differential Equations
- Gröbner Bases and Hypergeometric Functions
- Introduction to Noncommutative Gröbner Bases Theory
- Gröbner Bases Applied to Geometric Theorem Proving and Discovering
- Research Papers
- Appendix An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert)
- Index of Tutorials
Summary
1. In this paper, I will describe some recent (and rather unexpected) applications of the theory of Gröbner bases to the study of the structure of solutions of linear systems of constant coefficients partial differential systems. Gröbner bases first appeared in Buchbergers's Ph.D. thesis [5] (see also [6] where the main results were first published), and their theory has provided the conceptual basis for the creation of several computational algebra packages which can be utilized for the solution of polynomial problems. The approach that I have successfully applied in a series of joint papers [1], [2], [3], [4], [10], [11] is made possible by the algebrization of analysis which began in the sixties [12], [16] and was then perfected by M. Sato and his collaborators in the seventies [20], [21]. In this introductory section, I will briefly recall the foundations of this algebraic approach to partial differential equations, while in section 2, I will show a few concrete and remarkable applications of Gröbner bases to specific systems of differential equations. I would like to point out that the way in which we have been using Gröbner bases is twofold: on one hand we have used some symbolic computation packages which are based on the theory of Gröbner bases; on the other hand (see Theorem 2), we have used the theory itself to generalize results which had been computed in special cases.
- Type
- Chapter
- Information
- Gröbner Bases and Applications , pp. 235 - 245Publisher: Cambridge University PressPrint publication year: 1998
- 2
- Cited by