Book contents
- Frontmatter
- Contents
- Preface
- Programme Committee
- Tutorials
- Research Papers
- The Fractal Walk
- Gröbner Bases Property on Elimination Ideal in the Noncommutative Case
- 17 The CoCoA 3 Framework for a Family of Buchberger-like Algorithms
- 18 Newton Identities in the Multivariate Case: Pham Systems
- 19 Gröbner Bases in Rings of Differential Operators
- 20 Canonical Curves and the Petri Scheme
- 21 The Buchberger Algorithm as a Tool for Ideal Theory of Polynomial Rings in Constructive Mathematics
- 22 Gröbner Bases in Non-Commutative Reduction Rings
- 23 Effective Algorithms for Intrinsically Computing SAGBI-Gröbner Bases in a Polynomial Ring over a Field
- 24 De Nugis Groebnerialium 1: Eagon, Northcott, Gröbner
- 25 An application of Gröbner Bases to the Decomposition of Rational Mappings
- 26 On some Basic Applications of Gröbner Bases in Non-commutative Polynomial Rings
- 27 Full Factorial Designs and Distracted Fractions
- 28 Polynomial interpolation of Minimal Degree and Gröbner Bases
- 29 Inversion of Birational Maps with Gröbner Bases
- 30 Reverse Lexicographic Initial Ideals of Generic Ideals are Finitely Generated
- 31 Parallel Computation and Gröbner Bases: An Application for Converting Bases with the Gröbner Walk
- Appendix An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert)
- Index of Tutorials
17 - The CoCoA 3 Framework for a Family of Buchberger-like Algorithms
Published online by Cambridge University Press: 05 July 2011
- Frontmatter
- Contents
- Preface
- Programme Committee
- Tutorials
- Research Papers
- The Fractal Walk
- Gröbner Bases Property on Elimination Ideal in the Noncommutative Case
- 17 The CoCoA 3 Framework for a Family of Buchberger-like Algorithms
- 18 Newton Identities in the Multivariate Case: Pham Systems
- 19 Gröbner Bases in Rings of Differential Operators
- 20 Canonical Curves and the Petri Scheme
- 21 The Buchberger Algorithm as a Tool for Ideal Theory of Polynomial Rings in Constructive Mathematics
- 22 Gröbner Bases in Non-Commutative Reduction Rings
- 23 Effective Algorithms for Intrinsically Computing SAGBI-Gröbner Bases in a Polynomial Ring over a Field
- 24 De Nugis Groebnerialium 1: Eagon, Northcott, Gröbner
- 25 An application of Gröbner Bases to the Decomposition of Rational Mappings
- 26 On some Basic Applications of Gröbner Bases in Non-commutative Polynomial Rings
- 27 Full Factorial Designs and Distracted Fractions
- 28 Polynomial interpolation of Minimal Degree and Gröbner Bases
- 29 Inversion of Birational Maps with Gröbner Bases
- 30 Reverse Lexicographic Initial Ideals of Generic Ideals are Finitely Generated
- 31 Parallel Computation and Gröbner Bases: An Application for Converting Bases with the Gröbner Walk
- Appendix An Algorithmic Criterion for the Solvability of a System of Algebraic Equations (translated by Michael Abramson and Robert Lumbert)
- Index of Tutorials
Summary
Abstract
In this paper we report how we have implemented in release 3.3 of the system CoCoA algorithms for computing Gröbner bases, syzygies, and minimal free resolution of submodules of finitely generated free modules over polynomial rings. In particular we describe the environment we have built where these algorithms are obtained as special instances of a single parametrized algorithm. The outcome is a framework which offers not only efficiency in computing, but also efficiency in designing new algorithms; moreover, it allows the user to interactively execute the above computations, and easily customize the way they are carried out.
Introduction
Computing Gröbner bases, syzygies, and finite free resolutions of ideals and of submodules of finitely generated free modules over polynomial rings is a fundamental task in Computational Commutative Algebra. Nowadays there are several specialized computer algebra systems, developed by researchers in the field, which efficiently perform such computations, for instance Asir (Noro and Takeshima 1992), CoCoA (Capani et al. 1996), Macaulay (Bayer and Stillman 1992), Macaulay 2 (Grayson and Stillman 1996), Singular (Greuel et al. 1996).
The cornerstone in this area has been the (now) classical algorithm due to Buchberger (1965) which produces a Gröbner basis of an ideal in a polynomial ring R over a field, starting from any of its possible finite sets of generators. This algorithm can be suitably modified (Schreyer 1980, Spear 1977) in such a way that it also computes the syzygy module of a list of polynomials.
- Type
- Chapter
- Information
- Gröbner Bases and Applications , pp. 338 - 350Publisher: Cambridge University PressPrint publication year: 1998