Published online by Cambridge University Press: 20 February 2010
In our study of several solutions in the previous chapters we have mentioned that some special properties that arise for special values of the parameters (mass, charges) are related to supersymmetry; more precisely, to the existence of (unbroken) supersymmetry. Those statements were a bit surprising because we were dealing with solutions of purely bosonic theories (Einstein–Maxwell, Kaluza–Klein …).
The goal of this chapter is to explain the concept and implications of unbroken supersymmetry and how it can be applied in purely bosonic contexts, including pure GR. Supersymmetry will be shown to have a very deep meaning, underlying more familiar symmetries that can be constructed as squares of supersymmetries. At the very least, supersymmetry can be considered as an extremely useful tool that simplifies many calculations and demonstrations of very important results in GR that are related directly or indirectly to the positivity of energy (a manifest property of supersymmetric theories).
As a further reason to devote a full chapter to this topic, unbroken supersymmetry is a crucial ingredient in the stringy calculation of the BH entropy by the counting of microstates. It ensures the stability of the solution and the calculation under classical and quantum perturbations.
To place this subject in a wider context, we will start by giving in Section 13.1 a general definition of residual (unbroken) symmetry and we will relate it to the definition of a vacuum. Vacua are characterized by their symmetries, which determine the conserved charges of point-particles moving in them and, ultimately, the spectra of quantum-field theories (QFTs) defined on them.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.