Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T14:48:01.224Z Has data issue: false hasContentIssue false

10 - The grand description – Liouville's equation and entropy

Published online by Cambridge University Press:  05 July 2011

Get access

Summary

All for one, one for all, that is our device.

Alexandre Dumas, Elder

Langevin's equation, the Fokker–Planck equation, the master equation, and Boltzmann's equation are all just partial descriptions of gravitating systems. Each is based on different assumptions, suited to different conditions. They all arise from physical, rather intuitive, approaches to the problem. But there is also a more general description from which our previous ones emerge as special cases. We know this must be true because Newton's equations of motion provide a complete description of all the orbits. The trouble with Newton's equations is that they are not very compact: N objects generate 6N equations. True, the total angular and linear momenta, and energy, are conserved, at least for isolated systems, but this is not usually a great simplification.

By extending our imagination, we can cope with the problem. We previously imagined a six-dimensional phase space for the collisionless Boltzmann equation. Each point in this phase space represented the three position and three velocity (or momentum) coordinates of a single particle. It was a slight generalization of the twodimensional phase plane whose coordinates are values of a quantity and its first derivative resulting from a second order differential equation for that quantity. The terminology probably arose from the case of the harmonic oscillator where this plane gave the particular stage or phase in the recurring sequence of movement of the oscillator.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×