Book contents
- Frontmatter
- Contents
- List of Contributors
- Foreword
- Preface
- Acknowledgements
- 1 An introduction to global volcanic hazard and risk
- 2 Global volcanic hazard and risk
- 3 Volcanic ash fall hazard and risk
- 4 Populations around Holocene volcanoes and development of a Population Exposure Index
- 5 An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multi-disciplinary DEVORA project
- 6 Tephra fall hazard for the Neapolitan area
- 7 Eruptions and lahars of Mount Pinatubo, 1991-2000
- 8 Improving crisis decision-making at times of uncertain volcanic unrest (Guadeloupe, 1976)
- 9 Forecasting the November 2010 eruption of Merapi, Indonesia
- 10 The importance of communication in hazard zone areas: case study during and after 2010 Merapi eruption, Indonesia
- 11 Nyiragongo (Democratic Republic of Congo), January 2002: a major eruption in the midst of a complex humanitarian emergency
- 12 Volcanic ash fall impacts
- 13 Health impacts of volcanic eruptions
- 14 Volcanoes and the aviation industry
- 15 The role of volcano observatories in risk reduction
- 16 Developing effective communication tools for volcanic hazards in New Zealand, using social science
- 17 Volcano monitoring from space
- 18 Volcanic unrest and short-term forecasting capacity
- 19 Global monitoring capacity: development of the Global Volcano Research and Monitoring Institutions Database and analysis of monitoring in Latin America
- 20 Volcanic hazard maps
- 21 Risk assessment case history: the Soufrière Hills Volcano, Montserrat
- 22 Development of a new global Volcanic Hazard Index (VHI)
- 23 Global distribution of volcanic threat
- 24 Scientific communication of uncertainty during volcanic emergencies
- 25 Volcano Disaster Assistance Program: Preventing volcanic crises from becoming disasters and advancing science diplomacy
- 26 Communities coping with uncertainty and reducing their risk: the collaborative monitoring and management of volcanic activity with the vigías of Tungurahua
- Index
- Online Appendix A
- Online Appendix B - part 1 (low res)
- Online Appendix B - part 2 (low res)
20 - Volcanic hazard maps
Published online by Cambridge University Press: 05 August 2015
- Frontmatter
- Contents
- List of Contributors
- Foreword
- Preface
- Acknowledgements
- 1 An introduction to global volcanic hazard and risk
- 2 Global volcanic hazard and risk
- 3 Volcanic ash fall hazard and risk
- 4 Populations around Holocene volcanoes and development of a Population Exposure Index
- 5 An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multi-disciplinary DEVORA project
- 6 Tephra fall hazard for the Neapolitan area
- 7 Eruptions and lahars of Mount Pinatubo, 1991-2000
- 8 Improving crisis decision-making at times of uncertain volcanic unrest (Guadeloupe, 1976)
- 9 Forecasting the November 2010 eruption of Merapi, Indonesia
- 10 The importance of communication in hazard zone areas: case study during and after 2010 Merapi eruption, Indonesia
- 11 Nyiragongo (Democratic Republic of Congo), January 2002: a major eruption in the midst of a complex humanitarian emergency
- 12 Volcanic ash fall impacts
- 13 Health impacts of volcanic eruptions
- 14 Volcanoes and the aviation industry
- 15 The role of volcano observatories in risk reduction
- 16 Developing effective communication tools for volcanic hazards in New Zealand, using social science
- 17 Volcano monitoring from space
- 18 Volcanic unrest and short-term forecasting capacity
- 19 Global monitoring capacity: development of the Global Volcano Research and Monitoring Institutions Database and analysis of monitoring in Latin America
- 20 Volcanic hazard maps
- 21 Risk assessment case history: the Soufrière Hills Volcano, Montserrat
- 22 Development of a new global Volcanic Hazard Index (VHI)
- 23 Global distribution of volcanic threat
- 24 Scientific communication of uncertainty during volcanic emergencies
- 25 Volcano Disaster Assistance Program: Preventing volcanic crises from becoming disasters and advancing science diplomacy
- 26 Communities coping with uncertainty and reducing their risk: the collaborative monitoring and management of volcanic activity with the vigías of Tungurahua
- Index
- Online Appendix A
- Online Appendix B - part 1 (low res)
- Online Appendix B - part 2 (low res)
Summary
Introduction
Generating hazard maps for active or potentially active volcanoes is recognised as a fundamental step towards the mitigation of risk to vulnerable communities (Tilling, 2005). The responsibility for generating such maps most commonly lies with government institutions but in many cases input from the academic community is also relied on. Volcanic hazard maps communicate information about a suite of hazards including tephra (ash) fall, lava flows, pyroclastic density currents, lahars (volcanic mudflows) and debris avalanches (volcanic landslides). The hazard footprint of each of these depends, to a first order, on whether they are erupted into the atmosphere (and therefore dominated by transport in the atmosphere), or whether they form flows which travel along the ground surface away from the volcano. For each hazard type, the magnitude (volume) and intensity (discharge rate) of the event also determines the extent of the footprint. Tephra fall differs from the other hazards in that it can have proximal-to-regional and in extreme cases, global effects. The other hazard types characteristically affect the environs of the volcano, with the most mobile types, lahars and pyroclastic density currents, capable of reaching distal drainages over 100 km from the volcano.
It is of critical importance to understand that a wide variety of methods are currently employed to generate hazard maps, and that the respective philosophies on which they are based are equally diverse, as well as to acknowledge the notion that one model cannot fit all situations. Some hazard maps are based solely on the distribution of prior events as determined by the geology, others take into account estimated recurrence intervals of past events, or use computer simulations of volcanic processes to gauge potential future extents of impact. Increasingly, computational modelling of volcanic processes is combined with geological information and statistical models in order to develop fully probabilistic hazard maps.
Types of volcanic hazard maps currently in use
A preliminary review of hazard maps has recently been carried out by the authors. The review was based on 120 hazard maps, which were available either in print form, or electronically from legitimate sources on the internet, such as government institution websites. The hazard maps have been categorised into five main families depending on the type of information incorporated in the map and how it is conveyed (Figure 20.1).
- Type
- Chapter
- Information
- Global Volcanic Hazards and Risk , pp. 335 - 342Publisher: Cambridge University PressPrint publication year: 2015
- Creative Commons
- This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 3.0 https://creativecommons.org/cclicenses/
- 34
- Cited by