Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T19:03:17.994Z Has data issue: false hasContentIssue false

10 - Seismicity and Sources of Stress in Fennoscandia

from Part III - Glacially Triggered Faulting in the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

This chapter investigates the Fennoscandian uplift area since the latest Ice Age and addresses the question if glacial isostatic adjustment may influence current seismicity. The region is in an intraplate area, with stresses caused by the lithospheric relative plate motions. Discussions on whether uplift and plate tectonics are the only causes of stress have been going on for many years in the scientific community.

This review considers the improved sensitivity of the seismograph networks, and at the same time attempts to omit man-made explosions and mining events in the pattern, to present the best possible earthquake pattern. Stress orientations and their connection to the uplift pattern and known tectonics are evaluated. Besides plate motion and uplift, one finds that some regions are affected stress-wise by differences in geographical sediment loading as well as by topography variations. The stress release in the present-day earthquakes shows a pattern that deviates from that of the time right after the Ice Age. This chapter treats the stress pattern generalized for Fennoscandia and guides the interested reader to more details in the national chapters.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadi, O., Juhlin, C., Ask, M. V. S. and Lund, B. (2015). Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling. Solid Earth, 6, 621632, doi.org/10.5194/se-6-621-2015.Google Scholar
Amante, C. and Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, NESDIS NGDC-24. National Geophysical Data Center, NOAA, doi.org/10.7289/V5C8276M [26.8.2019].Google Scholar
Arvidsson, R. (1996). Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science, 274 (5288), 744746, doi.org/10.1126/science.274.5288.744.CrossRefGoogle Scholar
Arvidsson, R., Gregersen, S., Kulhánek, O. and Wahlström, R. (1991). Recent Kattegat earthquakes – evidence of active intraplate tectonics in southern Scandinavia. Physics of the Earth and Planetary Interiors, 67(3–4), 275287, doi.org/10.1016/0031-9201(91)90024-C.Google Scholar
Assinovskaya, B. A., Gabsatarova, I. P., Panas, N. M. and Uski, M. (2019). Seismic events in 2014–2016 around the Karelian Isthmus and their nature. Seismic Instruments, 55(1), 2440, doi.org/10.3103/S074792391901002X.Google Scholar
Berthelsen, A. (1998). The Tornquist Zone northwest of the Carpathians: an intraplate pseudosuture. Geologiska Föreningen i Stockholm Förhandlingar, 120, 223230, doi.org/10.1080/11035899801202223.Google Scholar
Bott, M. H. P. (1991). Ridge push and associated plate interior stress in normal and hot spot regions. Tectonophysics, 200(1–3), 1732, doi.org/10.1016/0040-1951(91)90003-B.Google Scholar
Brandes, C., Steffen, H., Steffen, R. and Wu, P. (2015). Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43(7), doi.org/10.1130/G36710.1.CrossRefGoogle Scholar
Bungum, H., Alsaker, A., Kvamme, L. B. and Hansen, R. A. (1991). Seismicity and seismotectonics of Norway and surrounding continental shelf areas. Journal of Geophysical Research, 96, 22492265, doi.org/10.1029/90JB02010.Google Scholar
Bungum, H. and Lindholm, C. (1996). Seismo- and neotectonics in Finnmark, Kola and the southern Barents Sea, part 2: seismological analysis and seismotectonics. Tectonophysics, 270, 1528, doi.org/10.1016/S0040-1951(96)00139-4.Google Scholar
Bungum, H., Lindholm, C. and Faleide, J. I. (2005). Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal-magnitudal variations. Marine and Petroleum Geology, 22, 137148, doi.org/10.1016/j.marpetgeo.2004.10.007.Google Scholar
Bungum, H., Pascal, C., Olesen, et al. (2010). To what extent is the present seismicity of Norway driven by postglacial rebound? Journal of the Geological Society of London, 167, 373384, doi.org/10.1144/0016-76492009-009.Google Scholar
Byrkjeland, U., Bungum, H. and Eldholm, O. (2000). Seismotectonics of the Norwegian continental margin. Journal of Geophysical Research, 105(B3), 62216236, doi.org/10.1029/1999JB900275.Google Scholar
Copley, A. (2017). The strength of earthquake-generating faults. Journal of the Geological Society, 175, 112, doi.org/10.1144/jgs2017-037.CrossRefGoogle Scholar
Donner, J. (1995). The Quaternary History of Scandinavia. Cambridge University Press, Cambridge.Google Scholar
Fejerskov, M. and Lindholm, C. (2000). Crustal stress in and around Norway: an evaluation of stress-generating mechanisms. In Nøttvedt, et al., eds., Dynamics of the Norwegian Margin. Geological Society, London, Special Publication, Vol. 167, pp. 451467, doi.org/10.1144/GSL.SP.2000.167.01.19.Google Scholar
FENCAT (2020). Fennoscandian earthquake catalogue for 1375-2014, www.seismo.helsinki.fi/bulletin/list/catalog/FENCAT.html.Google Scholar
Fjeldskaar, W. (2000). How important are elastic deflections in the Fennoscandian postglacial uplift? Norsk Geologisk Tidsskrift, 80, 5762, doi.org/10.1080/002919600750042681.CrossRefGoogle Scholar
Fjeldskaar, W., Lindholm, C., Dehls, J. F. and Fjeldskaar, I. (2000). Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews, 19, 14131422, doi.org/10.1016/S0277-3791(00)00070-6.Google Scholar
Fredén, C. (2002). Sveriges nationalatlas [National Atlas of Sweden]. Geological Survey of Sweden, 208 pp. (in Swedish).Google Scholar
GLOBE Task Team (Hastings, D. A., Dunbar, P. K., Elphingstone, G. M. et al.). (1999). The Global Land One-Kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado.Google Scholar
Gregersen, S. (1992). Crustal stress regime in Fennoscandia from focal mechanisms. Journal of Geophysical Research, 97(B8), 11,82111,827, doi.org/10.1029/91JB02011.Google Scholar
Gregersen, S. (2002). Earthquakes and change of stress since the Ice Age in Scandinavia. Bulletin of the Geological Society Denmark, 49, 7378.Google Scholar
Gregersen, S. and Basham, P. V. (1989). Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. Nato ASI Series, Vol. 266. Kluwer Academic Publishers, Dordrecht, doi.org/10.1007/978-94-009-2311-9.Google Scholar
Gregersen, S. and Voss, P. (2009). Stress change over short geological time: case of Scandinavia over 9,000 years since the Ice Age. In Reicherter, K., Michetti, A. and Silva, P. G., eds., Paleoseismology. Historical and Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment. Geological Society, London, Special Publication, Vol. 316, pp. 173178, doi.org/10.1144/SP316.10.Google Scholar
Gregersen, S. and Voss, P. (2010). Irregularities in Scandinavian postglacial uplift/subsidence in time scales tens, hundreds, thousands of years. Journal of Geodynamics, 50(1), 2731, doi.org/10.1016/j.jog.2009.11.004.Google Scholar
Gregersen, S. and Voss, P. H. (2014). Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years – earthquakes in Denmark. Solid Earth, 5, 109118, doi.org/10.5194/se-5-109-2014.Google Scholar
Gregersen, S., Voss, P., Shomali, H. et al. (2006). Physical differences in the deep lithosphere of Northern and Central Europe. In D. G. Gee and R. A. Stephenson, eds., European Lithosphere Dynamics. Geological Society, London, Memoirs, Vol. 32, pp. 313322, doi.org/10.1144/GSL.MEM.2006.032.01.18.Google Scholar
Gregersen, S., Nielsen, L. V. and Voss, P. (2008). Evidence of stretching of the lithosphere under Denmark. Geological Survey of Denmark and Greenland Bulletin, 15, 5356.Google Scholar
Gudmundsson, A. (1999). Postglacial crustal doming, stresses and fracture formation with application to Norway. Tectonophysics, 307, 407419, doi.org/10.1016/S0040–1951(99)00107-9.Google Scholar
Hansen, J. M. (1986). Læsø: a result of fault displacements, earthquakes and level changes. Danish Geological Society, D, 6, 4772 (in Danish).Google Scholar
Hansen, R., Bungum, H. and Alasker, A. (1989). Three recent larger earthquakes offshore Norway. Terra Nova, 1(3), 284295, doi.org/10.1111/j.1365-3121.1989.tb00371.x.CrossRefGoogle Scholar
Harper, J. F. (1989). Forces driving plate tectonics: the use of simple dynamic models. Reviews in Aquatic Science, 1, 319336.Google Scholar
Heidbach, O., Rajabi, M., Reiter, K. and Ziegler, M. (2016). World Stress Map 2016. GFZ Data Services, doi.org/10.5880/WSM.2016.002.Google Scholar
Hicks, E. and Ottemöller, L. (2001). The ML 4.5 Stord/Bømlo, southwestern Norway, earthquake of 12 August 2000. Norsk Geologisk Tidsskrift, 81, 293304.Google Scholar
Hicks, E., Bungum, H. and Lindholm, C. (2000). Stress inversions of earthquake focal mechanism solutions from onshore and offshore Norway. Norsk Geologisk Tidsskrift, 80, 235250.Google Scholar
Janutyte, I. and Lindholm, C. (2017). Earthquake source mechanisms in onshore and offshore Nordland, northern Norway. Norwegian Journal of Geology, 97, 177189, doi.org/10.17850/njg97-3-03.Google Scholar
Johnston, A. C., Coppersmith, K. J., Kanter, L. R. and Cornell, C. A. (1994). The Earthquakes of Stable Continental Regions. Technical Report EPRI TR-102261s-V1-V5. Electric Power Research Institute (EPRI), Palo Alto, California.Google Scholar
Juhlin, C., Dehghannejad, M., Lund, B., Malehmir, A. and Pratt, G. (2010). Reflection seismic imaging of the end-glacial Pärvie Fault system, northern Sweden. Journal of Applied Geophysics, 70(4), 307316, doi.org/10.1016/j.jappgeo.2009.06.004.CrossRefGoogle Scholar
Keiding, M., Kreemer, C., Lindholm, C. D. et al. (2015). A comparison of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment. Geophysical Journal International, 202, 10211028, doi.org/10.1093/gji/ggv207.Google Scholar
Kierulf, H. P., Steffen, H., Simpson, M. J. R. et al. (2014). A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. Journal of Geophysical Research, 119(8), 66136629, doi.org/10.1002/2013JB010889.CrossRefGoogle Scholar
Kjellén, R. (1912). Sveriges jordskalf, försök till en seismisk landsgeografi. Göteborg 1910 [Sweden’s earthquakes, attempt for a national seismic geography]. Geologiska Föreningen i Stockholm Förhandlingar, 34(6), 211 pp.Google Scholar
Kolderup, C. F. (1905). Norges Jordskjelv [Norway’s Earthquakes]. Bergen Museums Årbog.Google Scholar
Korja, A. and Kosonen, E. (2015). Seismotectonic Framework and Seismic Source Area Models in Fennoscandia, Northern Europe. Institute of Seismology, University of Helsinki Report S-63, 284 pp.Google Scholar
Korja, A., Kihlman, S. and Oinonen, K. (2016). Seismic Source Areas in Central Fennoscandia. Institute of Seismology, University of Helsinki Report S-64, 315 pp.Google Scholar
Lagerbäck, R. (1978). Neotectonic structures in northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 100(3), 263269, doi.org/10.1080/11035897809452533.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Technical Report C836, Geological Survey of Sweden, Uppsala, Sweden.Google Scholar
Landgraf, A., Kübler, S., Hintersberger, E. and Stein, S. (eds.) (2017). Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publication, Vol. 432, doi.org/10.1144/SP432.Google Scholar
Lidberg, M., Johansson, J. M., Scherneck, H.-G. and Milne, G. A. (2010). Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50(1), 818, doi.org/10.1016/j.jog.2009.11.010.Google Scholar
Lindblom, E. (2011). Microearthquake Study of End-Glacial Faults in Northern Sweden. Phil lic thesis in seismology, University of Uppsala, Sweden.Google Scholar
Lindblom, E., Lund, B., Tryggvason, A. et al. (2015). Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden. Geophysical Journal International, 201, 17041716, doi.org/10.1093/gji/ggv112.CrossRefGoogle Scholar
Lindholm, C. (2019). Earthquakes in Norway. Fjellsprengningskonferansen 2019, Oslo, Norway. Fjellsprengningsteknikk Bergmekanikk/Geoteknikk 2019, 8.18.13.Google Scholar
Lindholm, C. and Bungum, H. (2019). Seismic Zonation and Earthquake Loading for Norway and Svalbard; Load Estimates as Basis for Eurocode 8 Applications. NORSAR Report, 19-005 (confidential), 176 pp.Google Scholar
Lindholm, C. D., Bungum, H., Hicks, E. and Villagran, M. (2000). Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. In Nøttvedt, et al., eds., Dynamics of the Norwegian Margin. Geological Society, London, Special Publication, Vol. 167, pp. 429439, doi.org/10.1144/GSL.SP.2000.167.01.17.Google Scholar
Lund, B. (2015). Paleoseismology of glaciated terrain. In Beer, M., Kougioumtzoglou, I. A., Patelli, E. and Au, S-.K., eds., Encyclopedia of Earthquake Engineering. Springer Verlag, Berlin/Heidelberg, pp. 17651779, doi.org/10.1007/978-3-642-36197-5_25-1.CrossRefGoogle Scholar
Lund, B., Schmidt, P. and Hieronymus, C. (2009). Stress Evolution and Fault Stability during the Weichselian Glacial Cycle. SKB Technical Report TR-09-15, Swedish Nuclear Fuel and Waste Management Co., Stockholm, 106 pp.Google Scholar
Mazur, S., Mikolajczak, M., Krzywiec, P. et al. (2015). Is the Teisseyre Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34, 24652477, doi.org/10.1002/2015TC003934.CrossRefGoogle Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137(4), 334338, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Mörner, N.-A. (2003). Paleoseismicity of Sweden. A Novel Paradigm. JOFO Grafiska AB, Stockholm.Google Scholar
Muir Wood, R. (1989). Extraordinary deglaciation reverse faulting in northern Scandinavia. In Gregersen, S. and Basham, P. V., eds., Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. Nato ASI Series, Vol. 266. Kluwer Academic Publishers, Dordrecht, pp. 141173, doi.org/10.1007/978-94-009-2311-9_10.Google Scholar
Muir Wood, R. (1989). The Scandinavian earthquakes of 22 December 1759 and 31 August 1819. Disasters, 12(3), 223236, doi.org/10.1111/j.1467-7717.1988.tb00672.x.Google Scholar
Muir Wood, R. (2000). Deglaciation seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quaternary Science Reviews, 19, 13991411, doi.org/10.1016/S0277-3791(00)00069-X.Google Scholar
Munier, R., Adams, J., Brandes, C. et al. (2020). International database of Glacially Induced Faults. PANGAEA, doi.org/10.1594/PANGAEA.922705.Google Scholar
NORSAR and NGI (1998). Development of Seismic Zonation for Norway. Final Report for Norwegian Council for Building Standardization (NBR) (on behalf of a consortium of industrial partners), NORSAR, 187 pp.Google Scholar
Ojala, A. E. K., Markovaara‐Koivisto, M., Middleton, M. et al. (2018). Dating of paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43, 24492462, doi.org/10.1002/esp.4408.Google Scholar
Olesen, O., Bungum, H., Dehls, J. et al. (2013). Neotectonics, seismicity and contemporary stress field in Norway – mechanisms and implications. In Olsen, L., Fredin, O. and Olesen, O., eds., Quaternary Geology of Norway, Geological Survey of Norway Special Publication 13. Geological Survey of Norway, Trondheim, pp. 145174.Google Scholar
Olesen, O., Janutyte, I., Michálek, J. et al. (2018). Neotectonics in Nordland – Implications for Petroleum Exploration (NEONOR2). NGU Report, 2018.010, 329 pp.Google Scholar
Olsen, L., Olesen, O. and Høgaas, F. (2020). Dating of the Stuoragurra Fault at Finnmarksvidda, northern Norway. In Nakrem, H. A. and Husås, A. M., eds., 34th Nordic Geological Winter Meeting January 8th–10th 2020, Oslo, Norway. Abstracts and Proceedings of the Geological Society of Norway, No. 1, pp. 157158.Google Scholar
Pascal, C. and Cloetingh, S. (2009). Gravitational potential stresses and stress field of passive continental margins: insights from the south-Norway shelf. Earth and Planetary Science Letters, 277, 464473, doi.org/10.1016/j.epsl.2008.11.014.Google Scholar
Pascal, C., Roberts, D. and Gabrielsen, R. H. (2010). Tectonic significance of present-day stress relief phenomena in formerly glaciated regions. Journal of the Geological Society of London, 167, 363371, doi.org/10.1144/0016-76492009-136.Google Scholar
Pirli, M., Schweitzer, J., Ottemöller, L. et al. (2010). Preliminary analysis of the 21 February 2008 Svalbard (Norway) Seismic Sequence. Seismological Research Letters, 81(1), 6375, doi.org/10.1785/gssrl.81.1.63.Google Scholar
Ramberg, I. B., Bryhni, I., Forening, N. G. and Nøttvedt, A. (2013). Landet blir til: Norges geologi [The Land Arises: Norway’s Geology]. Norsk geologisk forening, Trondheim, Norway.Google Scholar
Redfield, T. F. and Osmundsen, P. T. (2015). Some remarks on the earthquakes of Fennoscandia: a conceptual seismological model drawn from the perspective of hyperextension. Norwegian Journal of Geology, 94, 233262.Google Scholar
Renqvist, H. (1930). Finlands Jordskalv [Finland’s earthquakes] (in Swedish). Fennia, 54, 113 pp.Google Scholar
Richardson, R. M., Solomon, S. C. and Sleep, N. H. (1979). Tectonic stress in the plates. Reviews in Geophysics, 17, 9811019, doi.org/10.1029/RG017i005p00981.Google Scholar
Scherneck, H.-G., Johanson, J. M., Vermeer, M. et al. (2001). BIFROST project: 3-D crustal deformation rates derived from GPS confirm postglacial rebound in Fennoscandia. Earth, Planets and Space, 53, 703708, doi.org/10.1186/BF03352398.Google Scholar
Schulte, S. and Mooney, W. (2005). An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophysical Journal International, 161, 707721, doi.org/10.1111/j.1365-246X.2005.02554.CrossRefGoogle Scholar
Sigmond, E. M. O. (2002). Geological map of land and sea areas of Northern Europe. Scale 1:4 million. Geological Survey of Norway, Trondheim.Google Scholar
Slunga, R. S. (1989). Focal mechanisms and crustal stresses in the Baltic Shield. In S. Gregersen and P. W. Basham, eds., Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. Nato ASI Series, Vol. 266, Kluwer Academic Publishers, Dordrecht, pp. 261276, doi.org/10.1007/978-94-009-2311-9_15.Google Scholar
Slunga, R. S. (1991). The Baltic Shield earthquakes. Tectonophysics, 189(1–4), 323331, doi.org/10.1016/0040-1951(91)90505-M.Google Scholar
Smedberg, I., Uski, M., Tiira, T., Komminaho, K. and Korja, A. (2012). Intraplate earthquake swarm in Kouvola, south-eastern Finland. Geophysical Research Abstracts, 14, EGU2012–8446.Google Scholar
Solomon, S. C., Sleep, N. H. and Richardson, R. M. (1975). On the forces driving plate tectonics: inferences from absolute plate velocities and intraplate stress. Geophysical Journal of the Royal Astronomical Society, 769–801, doi.org/10.1111/j.1365-246X.1975.tb05891.x.CrossRefGoogle Scholar
Steffen, H. and Wu, P. (2011). Glacial isostatic adjustment in Fennoscandia – a review of data and modelling. Journal of Geodynamics, 52, 169204, doi.org/10.1016/j.jog.2011.03.002.CrossRefGoogle Scholar
Stein, S. and Liu, M. (2009). Long aftershock sequences within continents and implications for earthquake hazard assessment, Nature, 462, 8789, doi.org/10.1038/nature08502.CrossRefGoogle ScholarPubMed
Stephansson, O., Särkkä, P. and Myrvang, A. (1986). State of Stress in Fennoscandia. Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Centek, Luleå, Sweden, 21–32.Google Scholar
Sutinen, R., Andreani, L. and Middleton, M. (2019). Post-Younger Dryas fault instability and deformations on ice lineations in Finnish Lapland. Geomorphology, 326, 202212, doi.org/10.1016/j.geomorph.2018.08.034.Google Scholar
Uski, M., Hyvönen, T., Korja, A. and Airo, M.-L. (2003). Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophysics, 363(1–2), 141157, doi.org/10.1016/S0040-1951(02)00669-8.Google Scholar
Uski, M., Tiira, T., Korja, A. and Elo, S. (2006). The 2003 earthquake swarm in Anjalankoski, south-eastern Finland. Tectonophysics, 422(1–4), 5569, doi.org/10.1016/j.tecto.2006.05.014.Google Scholar
Vestøl, O., Ågren, J., Steffen, H., Kierulf, H. and Tarasov, L. (2019). NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region. Journal of Geodesy, 93, 17591779, doi.org/10.1007/s00190-019-01280-8.Google Scholar
Wilde-Piórko, M. Grad, M. and TOR Working Group (2002). Crustal structure variation from the Precambrian to Palaeozoic platforms in Europe imaged by the inversion of teleseismic receiver functions – project TOR. Geophysical Journal International, 150, 261270, doi.org/10.1046/j.1365-246X.2002.01699.x.Google Scholar
Wu, P., Johnston, P. and Lambeck, K. (1999). Postglacial rebound and fault instability in Fennoscandia. Geophysical Journal International, 139, 657670, doi.org/10.1046/j.1365-246x.1999.00963.x.Google Scholar
Zoback, M. L., Zoback, M. D., Adams, J. et al. (1989). Global patterns of tectonic stress. Nature, 341, 291298, doi.org/10.1038/341291a0.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×