Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:02:32.688Z Has data issue: false hasContentIssue false

Part III - Glacially Triggered Faulting in the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

The most prominent fault scarps are found in northern Fennoscandia in the northernmost parts of Norway, Sweden and Finland. In addition, signs of glacially triggered faulting were identified in adjacent Russia. The following chapters give an overview about these faults from their identification until the very recent results that include, among other things, new reactivation dating and revised fault geometries at the surface from laser scanning.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ahmadi, O., Juhlin, C., Ask, M. V. S. and Lund, B. (2015). Revealing the deeper structure of the end-glacial Pärvie fault system in northern Sweden by seismic reflection profiling. Solid Earth, 6, 621632, doi.org/10.5194/se-6-621-2015.CrossRefGoogle Scholar
Amante, C. and Eakins, B. W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum, NESDIS NGDC-24. National Geophysical Data Center, NOAA, doi.org/10.7289/V5C8276M [26.8.2019].Google Scholar
Arvidsson, R. (1996). Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science, 274 (5288), 744746, doi.org/10.1126/science.274.5288.744.Google Scholar
Arvidsson, R., Gregersen, S., Kulhánek, O. and Wahlström, R. (1991). Recent Kattegat earthquakes – evidence of active intraplate tectonics in southern Scandinavia. Physics of the Earth and Planetary Interiors, 67(3–4), 275287, doi.org/10.1016/0031-9201(91)90024-C.CrossRefGoogle Scholar
Assinovskaya, B. A., Gabsatarova, I. P., Panas, N. M. and Uski, M. (2019). Seismic events in 2014–2016 around the Karelian Isthmus and their nature. Seismic Instruments, 55(1), 2440, doi.org/10.3103/S074792391901002X.CrossRefGoogle Scholar
Berthelsen, A. (1998). The Tornquist Zone northwest of the Carpathians: an intraplate pseudosuture. Geologiska Föreningen i Stockholm Förhandlingar, 120, 223230, doi.org/10.1080/11035899801202223.Google Scholar
Bott, M. H. P. (1991). Ridge push and associated plate interior stress in normal and hot spot regions. Tectonophysics, 200(1–3), 1732, doi.org/10.1016/0040-1951(91)90003-B.CrossRefGoogle Scholar
Brandes, C., Steffen, H., Steffen, R. and Wu, P. (2015). Intraplate seismicity in northern Central Europe is induced by the last glaciation. Geology, 43(7), doi.org/10.1130/G36710.1.Google Scholar
Bungum, H., Alsaker, A., Kvamme, L. B. and Hansen, R. A. (1991). Seismicity and seismotectonics of Norway and surrounding continental shelf areas. Journal of Geophysical Research, 96, 22492265, doi.org/10.1029/90JB02010.Google Scholar
Bungum, H. and Lindholm, C. (1996). Seismo- and neotectonics in Finnmark, Kola and the southern Barents Sea, part 2: seismological analysis and seismotectonics. Tectonophysics, 270, 1528, doi.org/10.1016/S0040-1951(96)00139-4.CrossRefGoogle Scholar
Bungum, H., Lindholm, C. and Faleide, J. I. (2005). Postglacial seismicity offshore mid-Norway with emphasis on spatio-temporal-magnitudal variations. Marine and Petroleum Geology, 22, 137148, doi.org/10.1016/j.marpetgeo.2004.10.007.Google Scholar
Bungum, H., Pascal, C., Olesen, et al. (2010). To what extent is the present seismicity of Norway driven by postglacial rebound? Journal of the Geological Society of London, 167, 373384, doi.org/10.1144/0016-76492009-009.CrossRefGoogle Scholar
Byrkjeland, U., Bungum, H. and Eldholm, O. (2000). Seismotectonics of the Norwegian continental margin. Journal of Geophysical Research, 105(B3), 62216236, doi.org/10.1029/1999JB900275.CrossRefGoogle Scholar
Copley, A. (2017). The strength of earthquake-generating faults. Journal of the Geological Society, 175, 112, doi.org/10.1144/jgs2017-037.Google Scholar
Donner, J. (1995). The Quaternary History of Scandinavia. Cambridge University Press, Cambridge.Google Scholar
Fejerskov, M. and Lindholm, C. (2000). Crustal stress in and around Norway: an evaluation of stress-generating mechanisms. In Nøttvedt, et al., eds., Dynamics of the Norwegian Margin. Geological Society, London, Special Publication, Vol. 167, pp. 451467, doi.org/10.1144/GSL.SP.2000.167.01.19.Google Scholar
FENCAT (2020). Fennoscandian earthquake catalogue for 1375-2014, www.seismo.helsinki.fi/bulletin/list/catalog/FENCAT.html.Google Scholar
Fjeldskaar, W. (2000). How important are elastic deflections in the Fennoscandian postglacial uplift? Norsk Geologisk Tidsskrift, 80, 5762, doi.org/10.1080/002919600750042681.Google Scholar
Fjeldskaar, W., Lindholm, C., Dehls, J. F. and Fjeldskaar, I. (2000). Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews, 19, 14131422, doi.org/10.1016/S0277-3791(00)00070-6.CrossRefGoogle Scholar
Fredén, C. (2002). Sveriges nationalatlas [National Atlas of Sweden]. Geological Survey of Sweden, 208 pp. (in Swedish).Google Scholar
GLOBE Task Team (Hastings, D. A., Dunbar, P. K., Elphingstone, G. M. et al.). (1999). The Global Land One-Kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado.Google Scholar
Gregersen, S. (1992). Crustal stress regime in Fennoscandia from focal mechanisms. Journal of Geophysical Research, 97(B8), 11,82111,827, doi.org/10.1029/91JB02011.Google Scholar
Gregersen, S. (2002). Earthquakes and change of stress since the Ice Age in Scandinavia. Bulletin of the Geological Society Denmark, 49, 7378.Google Scholar
Gregersen, S. and Basham, P. V. (1989). Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. Nato ASI Series, Vol. 266. Kluwer Academic Publishers, Dordrecht, doi.org/10.1007/978-94-009-2311-9.Google Scholar
Gregersen, S. and Voss, P. (2009). Stress change over short geological time: case of Scandinavia over 9,000 years since the Ice Age. In Reicherter, K., Michetti, A. and Silva, P. G., eds., Paleoseismology. Historical and Prehistorical Records of Earthquake Ground Effects for Seismic Hazard Assessment. Geological Society, London, Special Publication, Vol. 316, pp. 173178, doi.org/10.1144/SP316.10.Google Scholar
Gregersen, S. and Voss, P. (2010). Irregularities in Scandinavian postglacial uplift/subsidence in time scales tens, hundreds, thousands of years. Journal of Geodynamics, 50(1), 2731, doi.org/10.1016/j.jog.2009.11.004.Google Scholar
Gregersen, S. and Voss, P. H. (2014). Review of some significant claimed irregularities in Scandinavian postglacial uplift on timescales of tens to thousands of years – earthquakes in Denmark. Solid Earth, 5, 109118, doi.org/10.5194/se-5-109-2014.Google Scholar
Gregersen, S., Voss, P., Shomali, H. et al. (2006). Physical differences in the deep lithosphere of Northern and Central Europe. In D. G. Gee and R. A. Stephenson, eds., European Lithosphere Dynamics. Geological Society, London, Memoirs, Vol. 32, pp. 313322, doi.org/10.1144/GSL.MEM.2006.032.01.18.Google Scholar
Gregersen, S., Nielsen, L. V. and Voss, P. (2008). Evidence of stretching of the lithosphere under Denmark. Geological Survey of Denmark and Greenland Bulletin, 15, 5356.Google Scholar
Gudmundsson, A. (1999). Postglacial crustal doming, stresses and fracture formation with application to Norway. Tectonophysics, 307, 407419, doi.org/10.1016/S0040–1951(99)00107-9.CrossRefGoogle Scholar
Hansen, J. M. (1986). Læsø: a result of fault displacements, earthquakes and level changes. Danish Geological Society, D, 6, 4772 (in Danish).Google Scholar
Hansen, R., Bungum, H. and Alasker, A. (1989). Three recent larger earthquakes offshore Norway. Terra Nova, 1(3), 284295, doi.org/10.1111/j.1365-3121.1989.tb00371.x.Google Scholar
Harper, J. F. (1989). Forces driving plate tectonics: the use of simple dynamic models. Reviews in Aquatic Science, 1, 319336.Google Scholar
Heidbach, O., Rajabi, M., Reiter, K. and Ziegler, M. (2016). World Stress Map 2016. GFZ Data Services, doi.org/10.5880/WSM.2016.002.Google Scholar
Hicks, E. and Ottemöller, L. (2001). The ML 4.5 Stord/Bømlo, southwestern Norway, earthquake of 12 August 2000. Norsk Geologisk Tidsskrift, 81, 293304.Google Scholar
Hicks, E., Bungum, H. and Lindholm, C. (2000). Stress inversions of earthquake focal mechanism solutions from onshore and offshore Norway. Norsk Geologisk Tidsskrift, 80, 235250.Google Scholar
Janutyte, I. and Lindholm, C. (2017). Earthquake source mechanisms in onshore and offshore Nordland, northern Norway. Norwegian Journal of Geology, 97, 177189, doi.org/10.17850/njg97-3-03.Google Scholar
Johnston, A. C., Coppersmith, K. J., Kanter, L. R. and Cornell, C. A. (1994). The Earthquakes of Stable Continental Regions. Technical Report EPRI TR-102261s-V1-V5. Electric Power Research Institute (EPRI), Palo Alto, California.Google Scholar
Juhlin, C., Dehghannejad, M., Lund, B., Malehmir, A. and Pratt, G. (2010). Reflection seismic imaging of the end-glacial Pärvie Fault system, northern Sweden. Journal of Applied Geophysics, 70(4), 307316, doi.org/10.1016/j.jappgeo.2009.06.004.Google Scholar
Keiding, M., Kreemer, C., Lindholm, C. D. et al. (2015). A comparison of strain rates and seismicity for Fennoscandia: depth dependency of deformation from glacial isostatic adjustment. Geophysical Journal International, 202, 10211028, doi.org/10.1093/gji/ggv207.CrossRefGoogle Scholar
Kierulf, H. P., Steffen, H., Simpson, M. J. R. et al. (2014). A GPS velocity field for Fennoscandia and a consistent comparison to glacial isostatic adjustment models. Journal of Geophysical Research, 119(8), 66136629, doi.org/10.1002/2013JB010889.Google Scholar
Kjellén, R. (1912). Sveriges jordskalf, försök till en seismisk landsgeografi. Göteborg 1910 [Sweden’s earthquakes, attempt for a national seismic geography]. Geologiska Föreningen i Stockholm Förhandlingar, 34(6), 211 pp.Google Scholar
Kolderup, C. F. (1905). Norges Jordskjelv [Norway’s Earthquakes]. Bergen Museums Årbog.Google Scholar
Korja, A. and Kosonen, E. (2015). Seismotectonic Framework and Seismic Source Area Models in Fennoscandia, Northern Europe. Institute of Seismology, University of Helsinki Report S-63, 284 pp.Google Scholar
Korja, A., Kihlman, S. and Oinonen, K. (2016). Seismic Source Areas in Central Fennoscandia. Institute of Seismology, University of Helsinki Report S-64, 315 pp.Google Scholar
Lagerbäck, R. (1978). Neotectonic structures in northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 100(3), 263269, doi.org/10.1080/11035897809452533.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Technical Report C836, Geological Survey of Sweden, Uppsala, Sweden.Google Scholar
Landgraf, A., Kübler, S., Hintersberger, E. and Stein, S. (eds.) (2017). Seismicity, Fault Rupture and Earthquake Hazards in Slowly Deforming Regions. Geological Society, London, Special Publication, Vol. 432, doi.org/10.1144/SP432.Google Scholar
Lidberg, M., Johansson, J. M., Scherneck, H.-G. and Milne, G. A. (2010). Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50(1), 818, doi.org/10.1016/j.jog.2009.11.010.Google Scholar
Lindblom, E. (2011). Microearthquake Study of End-Glacial Faults in Northern Sweden. Phil lic thesis in seismology, University of Uppsala, Sweden.Google Scholar
Lindblom, E., Lund, B., Tryggvason, A. et al. (2015). Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden. Geophysical Journal International, 201, 17041716, doi.org/10.1093/gji/ggv112.Google Scholar
Lindholm, C. (2019). Earthquakes in Norway. Fjellsprengningskonferansen 2019, Oslo, Norway. Fjellsprengningsteknikk Bergmekanikk/Geoteknikk 2019, 8.18.13.Google Scholar
Lindholm, C. and Bungum, H. (2019). Seismic Zonation and Earthquake Loading for Norway and Svalbard; Load Estimates as Basis for Eurocode 8 Applications. NORSAR Report, 19-005 (confidential), 176 pp.Google Scholar
Lindholm, C. D., Bungum, H., Hicks, E. and Villagran, M. (2000). Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. In Nøttvedt, et al., eds., Dynamics of the Norwegian Margin. Geological Society, London, Special Publication, Vol. 167, pp. 429439, doi.org/10.1144/GSL.SP.2000.167.01.17.Google Scholar
Lund, B. (2015). Paleoseismology of glaciated terrain. In Beer, M., Kougioumtzoglou, I. A., Patelli, E. and Au, S-.K., eds., Encyclopedia of Earthquake Engineering. Springer Verlag, Berlin/Heidelberg, pp. 17651779, doi.org/10.1007/978-3-642-36197-5_25-1.Google Scholar
Lund, B., Schmidt, P. and Hieronymus, C. (2009). Stress Evolution and Fault Stability during the Weichselian Glacial Cycle. SKB Technical Report TR-09-15, Swedish Nuclear Fuel and Waste Management Co., Stockholm, 106 pp.Google Scholar
Mazur, S., Mikolajczak, M., Krzywiec, P. et al. (2015). Is the Teisseyre Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34, 24652477, doi.org/10.1002/2015TC003934.Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137(4), 334338, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Mörner, N.-A. (2003). Paleoseismicity of Sweden. A Novel Paradigm. JOFO Grafiska AB, Stockholm.Google Scholar
Muir Wood, R. (1989). Extraordinary deglaciation reverse faulting in northern Scandinavia. In Gregersen, S. and Basham, P. V., eds., Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. Nato ASI Series, Vol. 266. Kluwer Academic Publishers, Dordrecht, pp. 141173, doi.org/10.1007/978-94-009-2311-9_10.CrossRefGoogle Scholar
Muir Wood, R. (1989). The Scandinavian earthquakes of 22 December 1759 and 31 August 1819. Disasters, 12(3), 223236, doi.org/10.1111/j.1467-7717.1988.tb00672.x.Google Scholar
Muir Wood, R. (2000). Deglaciation seismotectonics: a principal influence on intraplate seismogenesis at high latitudes. Quaternary Science Reviews, 19, 13991411, doi.org/10.1016/S0277-3791(00)00069-X.Google Scholar
Munier, R., Adams, J., Brandes, C. et al. (2020). International database of Glacially Induced Faults. PANGAEA, doi.org/10.1594/PANGAEA.922705.Google Scholar
NORSAR and NGI (1998). Development of Seismic Zonation for Norway. Final Report for Norwegian Council for Building Standardization (NBR) (on behalf of a consortium of industrial partners), NORSAR, 187 pp.Google Scholar
Ojala, A. E. K., Markovaara‐Koivisto, M., Middleton, M. et al. (2018). Dating of paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43, 24492462, doi.org/10.1002/esp.4408.Google Scholar
Olesen, O., Bungum, H., Dehls, J. et al. (2013). Neotectonics, seismicity and contemporary stress field in Norway – mechanisms and implications. In Olsen, L., Fredin, O. and Olesen, O., eds., Quaternary Geology of Norway, Geological Survey of Norway Special Publication 13. Geological Survey of Norway, Trondheim, pp. 145174.Google Scholar
Olesen, O., Janutyte, I., Michálek, J. et al. (2018). Neotectonics in Nordland – Implications for Petroleum Exploration (NEONOR2). NGU Report, 2018.010, 329 pp.Google Scholar
Olsen, L., Olesen, O. and Høgaas, F. (2020). Dating of the Stuoragurra Fault at Finnmarksvidda, northern Norway. In Nakrem, H. A. and Husås, A. M., eds., 34th Nordic Geological Winter Meeting January 8th–10th 2020, Oslo, Norway. Abstracts and Proceedings of the Geological Society of Norway, No. 1, pp. 157158.Google Scholar
Pascal, C. and Cloetingh, S. (2009). Gravitational potential stresses and stress field of passive continental margins: insights from the south-Norway shelf. Earth and Planetary Science Letters, 277, 464473, doi.org/10.1016/j.epsl.2008.11.014.Google Scholar
Pascal, C., Roberts, D. and Gabrielsen, R. H. (2010). Tectonic significance of present-day stress relief phenomena in formerly glaciated regions. Journal of the Geological Society of London, 167, 363371, doi.org/10.1144/0016-76492009-136.Google Scholar
Pirli, M., Schweitzer, J., Ottemöller, L. et al. (2010). Preliminary analysis of the 21 February 2008 Svalbard (Norway) Seismic Sequence. Seismological Research Letters, 81(1), 6375, doi.org/10.1785/gssrl.81.1.63.Google Scholar
Ramberg, I. B., Bryhni, I., Forening, N. G. and Nøttvedt, A. (2013). Landet blir til: Norges geologi [The Land Arises: Norway’s Geology]. Norsk geologisk forening, Trondheim, Norway.Google Scholar
Redfield, T. F. and Osmundsen, P. T. (2015). Some remarks on the earthquakes of Fennoscandia: a conceptual seismological model drawn from the perspective of hyperextension. Norwegian Journal of Geology, 94, 233262.Google Scholar
Renqvist, H. (1930). Finlands Jordskalv [Finland’s earthquakes] (in Swedish). Fennia, 54, 113 pp.Google Scholar
Richardson, R. M., Solomon, S. C. and Sleep, N. H. (1979). Tectonic stress in the plates. Reviews in Geophysics, 17, 9811019, doi.org/10.1029/RG017i005p00981.Google Scholar
Scherneck, H.-G., Johanson, J. M., Vermeer, M. et al. (2001). BIFROST project: 3-D crustal deformation rates derived from GPS confirm postglacial rebound in Fennoscandia. Earth, Planets and Space, 53, 703708, doi.org/10.1186/BF03352398.Google Scholar
Schulte, S. and Mooney, W. (2005). An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts. Geophysical Journal International, 161, 707721, doi.org/10.1111/j.1365-246X.2005.02554.Google Scholar
Sigmond, E. M. O. (2002). Geological map of land and sea areas of Northern Europe. Scale 1:4 million. Geological Survey of Norway, Trondheim.Google Scholar
Slunga, R. S. (1989). Focal mechanisms and crustal stresses in the Baltic Shield. In S. Gregersen and P. W. Basham, eds., Earthquakes at North Atlantic Margins: Neotectonics and Postglacial Rebound. Nato ASI Series, Vol. 266, Kluwer Academic Publishers, Dordrecht, pp. 261276, doi.org/10.1007/978-94-009-2311-9_15.Google Scholar
Slunga, R. S. (1991). The Baltic Shield earthquakes. Tectonophysics, 189(1–4), 323331, doi.org/10.1016/0040-1951(91)90505-M.Google Scholar
Smedberg, I., Uski, M., Tiira, T., Komminaho, K. and Korja, A. (2012). Intraplate earthquake swarm in Kouvola, south-eastern Finland. Geophysical Research Abstracts, 14, EGU2012–8446.Google Scholar
Solomon, S. C., Sleep, N. H. and Richardson, R. M. (1975). On the forces driving plate tectonics: inferences from absolute plate velocities and intraplate stress. Geophysical Journal of the Royal Astronomical Society, 769–801, doi.org/10.1111/j.1365-246X.1975.tb05891.x.CrossRefGoogle Scholar
Steffen, H. and Wu, P. (2011). Glacial isostatic adjustment in Fennoscandia – a review of data and modelling. Journal of Geodynamics, 52, 169204, doi.org/10.1016/j.jog.2011.03.002.Google Scholar
Stein, S. and Liu, M. (2009). Long aftershock sequences within continents and implications for earthquake hazard assessment, Nature, 462, 8789, doi.org/10.1038/nature08502.Google Scholar
Stephansson, O., Särkkä, P. and Myrvang, A. (1986). State of Stress in Fennoscandia. Proceedings of the International Symposium on Rock Stress and Rock Stress Measurements, Centek, Luleå, Sweden, 21–32.Google Scholar
Sutinen, R., Andreani, L. and Middleton, M. (2019). Post-Younger Dryas fault instability and deformations on ice lineations in Finnish Lapland. Geomorphology, 326, 202212, doi.org/10.1016/j.geomorph.2018.08.034.Google Scholar
Uski, M., Hyvönen, T., Korja, A. and Airo, M.-L. (2003). Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophysics, 363(1–2), 141157, doi.org/10.1016/S0040-1951(02)00669-8.Google Scholar
Uski, M., Tiira, T., Korja, A. and Elo, S. (2006). The 2003 earthquake swarm in Anjalankoski, south-eastern Finland. Tectonophysics, 422(1–4), 5569, doi.org/10.1016/j.tecto.2006.05.014.Google Scholar
Vestøl, O., Ågren, J., Steffen, H., Kierulf, H. and Tarasov, L. (2019). NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region. Journal of Geodesy, 93, 17591779, doi.org/10.1007/s00190-019-01280-8.Google Scholar
Wilde-Piórko, M. Grad, M. and TOR Working Group (2002). Crustal structure variation from the Precambrian to Palaeozoic platforms in Europe imaged by the inversion of teleseismic receiver functions – project TOR. Geophysical Journal International, 150, 261270, doi.org/10.1046/j.1365-246X.2002.01699.x.CrossRefGoogle Scholar
Wu, P., Johnston, P. and Lambeck, K. (1999). Postglacial rebound and fault instability in Fennoscandia. Geophysical Journal International, 139, 657670, doi.org/10.1046/j.1365-246x.1999.00963.x.Google Scholar
Zoback, M. L., Zoback, M. D., Adams, J. et al. (1989). Global patterns of tectonic stress. Nature, 341, 291298, doi.org/10.1038/341291a0.Google Scholar

References

ABEM (2012). ABEM Terrameter LS. Instruction Manual. ABEM 20120109, based on release 1.10. ABEM, Sweden.Google Scholar
Åm, M. (1994). Mineralogisk og petrologisk karakterisering av vitrings/sleppemateriale fra Stuoragurraforkastningen Finnmark [Mineralogical and Petrological Characterization of Weathering/Drag-Along Material from the Stuoragurra Fault, Finnmark]. MSc thesis, Norwegian University of Science and Technology, 102 pp.Google Scholar
Bakken, A. J. H. (1983). Nordmannvikdalen kvartærgeologi og geomorfologi [Quaternary Geology and Geomorphology of Nordmanvikdalen]. MSc thesis, University of Oslo, 126 pp.Google Scholar
Berthelsen, A. and Marker, M. (1986). 1.9–1.8 Ga old strike-slip megashears in the Baltic Shield, and their plate tectonic implications. In Galson, D. A. and Mueller, S., eds., The European Geotraverse, Part 2. Tectonophysics, 128(3–4), pp. 163–181, doi.org/10.1016/0040-1951(86)90292-1.Google Scholar
Bingen, B., Solli, A., Viola, G. et al. (2015). Geochronology of the Palaeoproterozoic Kautokeino Greenstone Belt, Finnmark, Norway: tectonic implications in a Fennoscandia context. Norwegian Journal of Geology, 95, 365396, doi.org/10.17850/njg95-3-09.Google Scholar
Bungum, H. and Lindholm, C. (1997). Seismo- and neotectonics in Finnmark, Kola Peninsula and the southern Barents Sea. Part 2: seismological analysis and seismotectonics. Tectonophysics, 270, 1528, doi.org/10.1016/S0040-1951(96)00139-4.Google Scholar
Calais, E., Camelbeeck, T., Stein, S., Liu, M. and Craig, T. J. (2016). A new paradigm for large earthquakes in stable continental plate interiors. Geophysical Research Letters, 43, 10,62110,637, doi.org/10.1002/2016GL070815.Google Scholar
Clark, D., McPherson, A. and Van Dissen, R. (2012). Long-term behaviour of Australian stable continental region (SCR) faults. Tectonophysics, 566, 130, doi.org/10.1016/j.tecto.2012.07.004.Google Scholar
Craig, T. J., Calais, E., Fleitout, L., Bollinger, L. and Scotti, O. (2016). Evidence for the release of long-term tectonic strain stored in continental interiors through intraplate earthquakes, Geophysical Research Letters, 43, 68266836, doi.org/10.1002/2016GL069359.Google Scholar
Dahlin, T. (1993). On the Automation of 2D Resistivity Surveying for Engineering and Environmental Applications. PhD thesis, Department of Engineering Geology, Lund Institute of Technology, Lund University.Google Scholar
Dalsegg, E. and Olesen, O. (2014). Resistivitetsmålinger ved Masi, Fitnajohka and Riednajávre og implikasjoner for malmleting [Resistivity Measurements at Masi, Fitnajohka and Riednajávre and Implications for Ore Exploration]. NGU Report 2014.021, 28 pp.Google Scholar
Dehls, J., Olesen, O., Olsen, L. and Blikra, L. H. (2000). Neotectonic faulting in northern Norway; the Stuoragurra and Nordmannvikdalen postglacial faults. Quaternary Science Reviews, 19, 14451460, doi.org/10.1016/S0277-3791(00)00073-1.Google Scholar
Eiken, O., Degutsch, M., Riste, P. and Rød, K. (1989). Snowstreamer: an efficient tool in seismic acquisition. First Break, 7(9), 374378, doi.org/10.3997/1365-2397.1989021.Google Scholar
Fundal, E. (1967). En undersøkelse i det prekambriske Biggevarre område i Finnmark, Nord-Norge med særlig henblikk på de såkalde albitdiabasers geologi og petrografi [An Investigation in the Precambrian Biggevarre Area in Finnmark, Northern Norway with Special Attention to the Geology and Petrography of the So-Called Albitdiabas]. NGU Report 680, 81 pp.Google Scholar
Gibbons, S. J. and Kværna, T. (2017). Illuminating the seismicity pattern of the October 8, 2005, M = 7.6 Kashmir earthquake aftershocks. Physics of the Earth and Planetary Interiors, 270, 18, doi.org/10.1016/j.pepi.2017.06.008.Google Scholar
Henderson, I. H. C., Viola, G. and Nasuti, A. (2015). A new tectonic model for the Kautokeino Greenstone Belt, northern Norway, based on high resolution airborne magnetic data and field structural analysis and implications for mineral potential. Norwegian Journal of Geology, 95, 339363, doi.org/10.17850/njg95-3-05.Google Scholar
Henkel, H. (1991). Magnetic crustal structures in northern Fennoscandia. In Wasilewski, P. and Hood, P., eds., Magnetic Anomalies – Land and Sea. Tectonophysics, 192, pp. 5779, doi.org/10.1016/0040-1951(91)90246-O.Google Scholar
Henriksen, H. (1986). Bedrock map Iddjajavri 2034 II M 1:50 000, preliminary edition. Geological Survey of Norway, Trondheim.Google Scholar
Johansen, T. A., Ruud, B. O., Bakke, N. E. et al. (2011). Seismic profiling on Arctic glaciers. First Break, 29(2), 2935.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geological Survey of Sweden Research Paper, Series C, Vol. 836, 80 pp.Google Scholar
Liu, M. and Stein, S. (2016). Mid-continental earthquakes: spatiotemporal occurrences, causes, and hazards. Earth-Science Reviews, 162, 364386, doi.org/10.1016/j.earscirev.2016.09.016.Google Scholar
Loke, M. H. (2010). RES2INV ver. 3.59. Geoelectrical Imaging 2D & 3D. Instruction Manual. 151 pp. www.geoelectrical.com.Google Scholar
Lund, B., Schmidt, P. and Hieronymus, C. (2009). Stress Evolution and Fault Instability during the Weichselian Glacial Cycle. SKB Technical Report TR-09-15, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 106 pp.Google Scholar
Mattila, J., Ojala, A. E. K., Ruskeeniemi, T. et al. (2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137, 334338, doi.org/10.1080/11035897.2015.1036360.CrossRefGoogle Scholar
Moss, E. S. and Ross, Z. E. (2011). Probabilistic fault displacement hazard analysis for reverse faults. Bulletin of the Seismological Society of America, 101, 15421553, doi.org/10.1785/0120100248.Google Scholar
Mrope, F. M., Becken, M., Ruud, B. O. et al. (2019). Magnetotelluric 2D Inversion and Joint Interpretation of MT, Seismic, Magnetic and Gravity Data from Masi, Kautokeino Municipality, Finnmark. NGU Report, 2019.009, 64 pp.Google Scholar
Muir Wood, R. (1989). Extraordinary deglaciation reverse faulting in northern Fennoscandia. In Gregersen, S. and Basham, P. W., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer Academic Publishers, Dordrecht, pp. 141173.Google Scholar
Myers, S. C., Johannesson, G. and Hanley, W. (2007). A Bayesian hierarchical method for multiple-event seismic location. Geophysical Journal International, 171, 10491063, doi.org/10.1111/j.1365-246X.2007.03555.x.Google Scholar
Nasuti, A., Roberts, D., Dumais, M.-A. et al. (2015). New high-resolution aeromagnetic and radiometric surveys in Finnmark and North Troms: linking anomaly patterns to bedrock geology and structure. Norwegian Journal of Geology, 95, 217243, doi.org/10.17850/njg95-3-10.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2017). Postglacial seismic activity along the Isovaarae–Riikonkumpu fault complex. Global and Planetary Change, 157, 5972, doi.org/10.1016/j.gloplacha.2017.08.015.Google Scholar
Ojala, A. E. K., Markovaara-Koivisto, M., Middleton, M. et al. (2018). Dating of paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43, 24492462, doi.org/10.1002/esp.4408.Google Scholar
Ojala, A. E. K., Mattila, J., Hämäläinen, J. and Sutinen, R. (2019). Lake sediment evidence of paleoseismicity: timing and spatial occurrence of late- and postglacial earthquakes in Finland. Tectonophysics, 771(228227), doi.org/10.1016/j.tecto.2019.228227.Google Scholar
Olesen, O. (1988). The Stuoragurra Fault, evidence of neotectonics in the Precambrian of Finnmark, northern Norway. Norsk Geologisk Tidsskrift, 68, 107118.Google Scholar
Olesen, O. and Sandstad, J. (1993). Interpretation of the Proterozoic Kautokeino Greenstone Belt, Finnmark, Norway from combined geophysical and geological data. Geological Survey of Norway Bulletin, 425, 4364.Google Scholar
Olesen, O., Roberts, D., Henkel, H., Lile, O. B. and Torsvik, T. H. (1990). Aeromagnetic and gravimetric interpretation of regional structural features in the Caledonides of West Finnmark and Northern Troms, north Norway. Geological Survey of Norway Bulletin, 419, 124.Google Scholar
Olesen, O., Henkel, H., Lile, O.B., Mauring, E. and Rønning, J. S. (1992a). Geophysical investigations of the Stuoragurra postglacial fault, Finnmark, northern Norway. Journal of Applied Geophysics, 29, 95118, doi.org/10.1016/0926-9851(92)90001-2.Google Scholar
Olesen, O., Henkel, H., Lile, O.B. et al. (1992b). Neotectonics in the Precambrian of Finnmark, northern Norway. Norsk Geologisk Tidsskrift, 72, 301306.Google Scholar
Olesen, O., Blikra, L. H., Braathen, A. et al. (2004). Neotectonic deformation in Norway and its implications: a review. Norwegian Journal of Geology, 84, 334.Google Scholar
Olesen, O., Brönner, M., Ebbing, J. et al. (2010). New aeromagnetic and gravity compilations from Norway and adjacent areas – methods and applications. In Vining, B. A. and Pickering, S. C., eds., Petroleum Geology: From Mature Basins to New Frontiers. Proceedings of the 7th Petroleum Geology Conference. Petroleum Geology Conference Series 7, Geological Society of London, pp. 559–586, doi.org/10.1144/0070559.Google Scholar
Olesen, O., Bungum, H., Lindholm, C. et al. (2013). Neotectonics, seismicity and contemporary stress field in Norway – mechanisms and implications. In Olsen, L., Fredin, O. and Olesen, O., eds., Quaternary Geology of Norway. Geological Survey of Norway Special Publication, 13, pp. 145174.Google Scholar
Olsen, L., Olesen, O., Dehls, J. and Tassis, G. (2018). Late-/postglacial age and tectonic origin of the Nordmannvikdalen Fault, northern Norway. Norwegian Journal of Geology, 98, 483500, doi.org/10.17850/njg98-3-09.Google Scholar
Olsen, L., Olesen, O. and Høgaas, F. (2020). Dating of the Stuoragurra Fault at Finnmarksvidda, northern Norway. In Nakrem, H. A. and Husås, A. M., eds., 34th Nordic Geological Winter Meeting January 8th–10th 2020, Oslo, Norway. Abstracts and Proceedings of the Geological Society of Norway, 1, pp. 157158.Google Scholar
Olsen, L., Olesen, O., Høgaas, F. and Tassis, G. (2021). A part of the Stuoragurra postglacial fault complex, at Máze in N-Norway, is less than 600 yrs old. In Nakrem, H. A. and Husås, A. M. (eds.), Vinterkonferansen 2021, Digital, January 6–8, 2020. Abstracts and Proceedings of the Geological Society of Norway, 1, p. 55.Google Scholar
Palmu, J.-P., Ojala, A. E. K., Ruskeeniemi, T., Sutinen, R. and Mattila, J. (2015). LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. GFF, 137, 344352, doi.org/10.1080/11035897.2015.1068370.Google Scholar
Roberts, D., Olesen, O. and Karpuz, M. R. (1997). Seismo- and neotectonics in Finnmark, Kola Peninsula and the southern Barents Sea; part 1, geological and neotectonic framework. Tectonophysics, 270, 113, doi.org/10.1016/S0040-1951(96)00173-4.Google Scholar
Siedlecka, A. (1985). Geology of the Iešjávri-Skoganvarre area, northern Finnmarksvidda, North Norway. Geological Survey of Norway Bulletin, 403, 103112.Google Scholar
Siedlecka, A. (1987). Berggrunnskart Iešjávri; 1934 II, foreløpig utgave, M 1:50 000 [Iešjávri bedrock map; 1934 II, preliminary edition, M 1:50,000]. Norges geologiske undersøkelse, Trondheim.Google Scholar
Siedlecka, A., Davidsen, B., Rice, A. H. N. and Townsend, C. (2011). Berggrunnskart; Skoganvarri 2034 IV, M 1:50 000, revidert foreløpig utgave [Bedrock map; Skoganvarri 2034 IV, M 1:50,000, revised preliminary edition]. Norges geologiske undersøkelse, Trondheim.Google Scholar
Siedlecka, A. and Roberts, D. (1996). Finnmark Fylke. Berggrunnsgeologi Finnmark Fylke M 1:500 000 [Finnmark Fylke; bedrock map M 1:500 000]. Norges geologiske undersøkelse, Trondheim.Google Scholar
Skaar, J. A. Å. (2014). 3D Geophysical and Geological Modelling of the Karasjok Greenstone Belt. PhD thesis, Norwegian University of Science and Technology, 170 pp.Google Scholar
Sletten, K., Olsen, L. and Blikra, L.H. (2000). Slides in low-gradient areas of Finnmarksvidda. In Dehls, J. and Olesen, O., eds., Neotectonics in Norway, Annual Technical Report 1999. NGU Report 2000.001, 41–42.Google Scholar
Smith, C. A., Grigull, S. and Mikko, H. (2018). Geomorphic evidence for multiple surface ruptures of the Merasjärvi “postglacial fault,” northern Sweden. GFF, 140, doi.org/10.1080/11035897.2018.1492963Google Scholar
Smith, C. A., Sundh, M. and Mikko, H. (2014). Surficial geologic evidence for early Holocene faulting and seismicity. International Journal of Earth Sciences, 103, 17111724, doi.org/10.1007/s00531-014-1025-6.Google Scholar
Solli, A. (1983). Precambrian stratigraphy in the Masi area, Southwestern Finnmark, Norway. Geological Survey of Norway Bulletin, 380, 97105.Google Scholar
Solli, A. (1988). Masi, 1933 IV – berggrunnsgeologisk kart – M 1:50,000 [Masi, 1933 IV – Map of bedrock geology – M 1:50,000]. Norges geologiske undersøkelse, Trondheim.Google Scholar
Steffen, R., Steffen, H., Wu, P. and Eaton, D. W. (2014a). Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle. Tectonics, 33, doi.org/10.1002/2013TC003450.Google Scholar
Steffen, R., Wu, P., Steffen, H. and Eaton, D. W. (2014b). On the implementation of faults in finite-element glacial isostatic adjustment models. Computers & Geosciences, 62, 150159, doi.org/10.1016/j.cageo.2013.06.012.Google Scholar
Stein, S. and Liu, M. (2009). Long aftershock sequences within continents and implications for earthquake hazard assessment. Nature, 462, 8789, doi.org/10.1038/nature08502.Google Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007.Google Scholar
Tolgensbakk, J. and Sollid, J. L. (1988). Kåfjord, kvartærgeologi og geomorfologi 1:50,000, 1634 II [Kåfjord, Quaternary geology and geomorphology, 1:50,000, 1634 II]. Geografisk Institutt, University of Oslo.Google Scholar
Townsend, C., Rice, A. H. N. and Mackay, A. (1989). The structure and stratigraphy of the southwestern portion of the Gaissa Thrust Belt and the adjacent Kalak Nappe Complex, N Norway. In Gayer, R. A., ed., The Caledonide Geology of Scandinavia. Graham & Trotman, London, pp. 111126.Google Scholar
Vestøl, O., Ågren, J., Steffen, H., Kierulf, H. and Tarasov, L. (2019). NKG2016LU: a new land uplift model for Fennoscandia and the Baltic Region. Journal of Geodesy, 93(9), 17591779, doi.org/10.1007/s00190-019-01280-8.Google Scholar
Wells, D. L. and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 9741002.Google Scholar
Wesnousky, S. G. (2008). Displacement and geometrical characteristics of earthquake surface ruptures: issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bulletin of the Seismological Society of America, 98, 16091632, doi.org/10.1785/0120070111.Google Scholar
Wu, P., Johnston, P. and Lambeck, K. (1999). Postglacial rebound and fault instability in Fennoscandia. Geophysical Journal International, 139(3), 657670, doi.org/10.1046/j.1365-246x.1999.00963.x.Google Scholar
Zwaan, K. B. (1985). Berggrunnskart Suolovuopmi 1934 III, M 1:50 000, foreløpig utgave [Map of bedrock geology Suolovuompi 1934 III, M 1:50,000, preliminary edition]. Norges geologiske undersøkelse, Trondheim.Google Scholar

References

Arvidsson, R. (1996). Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science, 274(5288), 744746, doi.org/10.1126/science.274.5288.744.Google Scholar
Berglund, M. and Dahlström, N. (2015). Postglacial fault scarps in Jämtland, central Sweden. GFF, 137, 339343, doi.org/10.1080/11035897.2015.1036361.Google Scholar
Johnson, M. D., Fredin, O., Ojala, A. E. K. and Peterson, G. (2015). Unraveling Scandinavian geomorphology: the LiDAR revolution. GFF, 137(4), 245251, doi.org/10.1080/11035897.2015.1111410.Google Scholar
Lagerbäck, R. (1978). Neotectonic structures in northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 100(3), 263269, doi.org/10.1080/11035897809452533.Google Scholar
Lagerbäck, R. (1988a). Periglacial phenomena in the wooded areas of Northern Sweden – relicts from the Tärendö Interstadial. Boreas, 17, 487499, doi.org/10.1111/j.1502-3885.1988.tb00563.x.Google Scholar
Lagerbäck, R. (1988b). The Veiki moraines in northern Sweden – widespread evidence of an Early Weichselian deglaciation. Boreas, 17, 469486, doi.org/10.1111/j.1502-3885.1988.tb00562.x.Google Scholar
Lagerbäck, R. (1990). Late Quaternary faulting and paleoseismicity in northern Fennoscandia with particular reference to the Lansjärv area, Northern Sweden. GFF, 112, 333354, doi.org/10.1080/11035899009452733.Google Scholar
Lagerbäck, R. (1992). Dating of Late Quaternary faulting in northern Sweden. Journal of the Geological Society, 149(2), 285291, doi.org/10.1144/gsjgs.149.2.0285.Google Scholar
Lagerbäck, R. and Robertsson, A.-M. (1988). Kettle holes – stratigraphical archives for Weichselian geology and palaeoenvironment in northernmost Sweden. Boreas, 17, 439468, doi.org/10.1111/j.1502-3885.1988.tb00561.x.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Research Paper C 836. Geological Survey of Sweden.Google Scholar
Lagerbäck, R. and Witschard, F. (1983). Neotectonics in Northern Sweden – Geological Investigations. SKBF Technical Report 83-58, Stockholm, 70 pp.Google Scholar
Lantmäteriet (2020). Produkt beskrivning: GSD-Höjddata, grid 2+. Dokumentversion 2.7 [Product description: GSD elevation data, grid 2+. Document version 2.7]. Lantmäteriet, Gävle, 10 pp.Google Scholar
Lindén, M., Möller, P., Björck, S. and Sandgren, P. (2006). Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas, 35(1), 122, doi.org/10.1111/j.1502-3885.2006.tb01109.x.Google Scholar
Lundqvist, J. and Lagerbäck, R. (1976). The Pärve Fault: a late-glacial fault in the Precambrian of Swedish Lapland. Geologiska Föreningens i Stockholm Förhandlingar, 98, 4551, doi.org/10.1080/11035897609454337.Google Scholar
Mattila, J., Ojala, A. E. K., Ruskeeniemi, T. et al. (2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022.Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137, 334338, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Muir Wood, R. (1989). Extraordinary deglaciation reverse faulting in northern Fennoscandia. In Gregersen, S. and Basham, P. W., eds., Earthquakes at North-Atlantic Passive Margins: Neotectonics and Postglacial Rebound. Kluwer, Dordrecht, pp. 141173.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019). Postglacial reactivation of the Suasselkä PGF complex in SW Finnish Lapland. International Journal of Earth Sciences, 108(3), 10491065, doi.org/10.1007/s00531-019-01695-w.Google Scholar
Plafker, G. (1965). Tectonic deformation associated with the 1964 Alaska earthquake. Science, 148(3678), 16751687, doi.org/10.1126/science.148.3678.1675.Google Scholar
Ransed, G. and Wahlroos, J.-E. (2007). Map of Quaternary deposits 24H Sorsele, scale 1:100 000. Geological Survey of Sweden, K42.Google Scholar
Sigfúsdóttir, T. (2013). A Sedimentological and Stratigraphical Study of Veiki Moraine in Northernmost Sweden. Dissertations in Geology at Lund University.Google Scholar
Smith, C. A., Grigull, S. and Mikko, H. (2018). Geomorphic evidence of multiple surface ruptures of the Merasjärvi “postglacial fault,” northern Sweden. GFF, 140(4), 318322, doi.org/10.1080/11035897.2018.1492963.Google Scholar
Smith, C. A., Sundh, M. and Mikko, H. (2014). Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences, 103(6), 17111724, doi.org/10.1007/s00531-014-1025-6.Google Scholar

References

Kirsch, M., Lorenz, S., Zimmermann, R. et al. (2019). Hyperspectral outcrop models for palaeoseismic studies. The Photogrammetric Record, 34(168), 358407, doi.org/10.1111/phor.12300.Google Scholar
Kuivamäki, A., Vuorela, P. and Paananen, M. (1998). Indication of Postglacial and Recent Bedrock Movements in Finland and Russian Karelia. Geological Survey of Finland Nuclear Waste Disposal Research Report YST-99, Espoo, Finland, 97 pp.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa [English summary: Recent faults in Lapland]. Geologi, 6, 3036 (in Finnish).Google Scholar
Kujansuu, R. (1972). On landslides in Finnish Lapland. Geological Survey of Finland Bulletin, 256, 22 pp., tupa.gtk.fi/julkaisu/bulletin/bt_256.pdf.Google Scholar
Lagerbäck, R. and Sundh, M. (2008). Early Holocene Faulting and Paleoseismicity in Northern Sweden. Geological Survey of Sweden Research Paper Series C, Vol. 836, 80 pp.Google Scholar
Markovaara-Koivisto, M., Ojala, A. E. K., Mattila, J. et al. R. (2020). Geomorphological evidence of paleoseismicity: surficial and underground structures of Pasmajärvi postglacial fault. Earth Surface Processes and Landforms, 45, 30113024, doi.org/10.1002/esp.4948.Google Scholar
Mattila, J., Ojala, A. E. K., Ruskeeniemi, T. et al. (2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022.Google Scholar
Middleton, M., Heikkonen, J., Nevalainen, P., Hyvönen, E. and Sutinen, R. (2020a). Machine learning-based mapping of micro-topographic earthquake-induced paleo Pulju moraines and liquefaction spreads. Geomorphology, 358, 107099, doi.org/10.1016/j.geomorph.2020.107099.Google Scholar
Middleton, M., Nevalainen, P., Hyvönen, E., Heikkonen, J. and Sutinen, R. (2020b). Pattern recognition of LiDAR data and sediment anisotropy advocate polygenetic subglacial mass-flow origin of the Kemijärvi hummocky moraine field in northern Finland. Geomorphology, 362, 107212, doi.org/10.1016/j.geomorph.2020.107212.Google Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137(4), 334338, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Nevalainen, P., Middleton, M., Sutinen, R., Heikkonen, J. and Pahikkala, T. (2016). Detecting terrain stoniness from airborne laser scanning data. Remote Sensing, 8, 720, doi.org/10.3390/rs8090720.Google Scholar
Nordkalott Project (1986). Geological map, Northern Fennoscandia, 1:1 mill. Geological Surveys of Finland, Norway and Sweden.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2017). Postglacial seismic activity along the Isovaara–Riikonkumpu fault complex. Global and Planetary Change, 157, 5972, doi.org/10.1016/j.gloplacha.2017.08.015.Google Scholar
Ojala, A. E. K., Markovaara-Koivisto, M., Middleton, M. et al. (2018a). Dating of seismically-induced paleolandslides in western Finnish Lapland. Earth Surface Processes and Landforms, 43(11), 24492462, doi.org/10.1002/esp.4408.Google Scholar
Ojala, A. E. K., Mattila, J., Virtasalo, J., Kuva, J. and Luoto, T. P. (2018b). Seismic deformation of varved sediments in southern Fennoscandia at 7400 cal BP. Tectonophysics, 744, 5871, doi.org/10.1016/j.tecto.2018.06.015.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019a). Postglacial Faults in FinlandA Review of PGSdyn-Project Results. Posiva Report 2019-1, 118 pp., Posiva Oy, Eurajoki.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019b). Postglacial reactivation of the Suasselkä GIF complex in Finnish Lapland. International Journal of Earth Sciences, 108, 10491065, doi.org/10.1007/s00531-019-01695-w.Google Scholar
Ojala, A. E. K., Mattila, J., Markovaara-Koivisto, M. et al. (2019c). Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology, 326, 190201, doi.org/10.1016/j.geomorph.2017.08.045.Google Scholar
Ojala, A. E. K., Mattila, J., Hämäläinen, J. and Sutinen, R. (2019d). Lake sediment evidence of paleoseismicity: timing and spatial occurrence of Late- and postglacial earthquakes in Finland. Tectonophysics, 771(228227), doi.org/10.1016/j.tecto.2019.228227.Google Scholar
Ojala, A. E. K., Mattila, J., Middleton, M. et al. (2020). Earthquake-induced deformation structures in glacial sediments – evidence on fault reactivation and instability at the Vaalajärvi fault in northern Fennoscandia. Journal of Seismology, 24, 549–571, doi.org/10.1007/s10950-020-09915-6.Google Scholar
Olesen, O., Blikra, L. H., Braathen, A. et al. (2004). Neotectonic deformation in Norway and its implications: a review. Norwegian Journal of Geology, 84, 334.Google Scholar
Palmu, J-P., Ojala, A. E. K., Ruskeeniemi, T., Sutinen, R. and Mattila, J. (2015). LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. GFF, 137(4), 344352, doi.org/10.1080/11035897.2015.1068370.Google Scholar
Sutinen, R. (2005). Timing of early Holocene landslides in Kittilä, Finnish Lapland. Geological Survey of Finland Special Paper, 40, 5358.Google Scholar
Sutinen, R., Piekkari, M. and Middleton, M. (2009a). Glacial geomorphology in Utsjoki, Finnish Lapland proposes Younger Dryas fault-instability. Global and Planetary Change, 69, 1628, doi.org/10.1016/j.gloplacha.2009.07.002.Google Scholar
Sutinen, R., Middleton, M., Liwata, M., Piekkari, M. and Hyvönen, E. (2009b). Sediment anisotropy coincides with moraine ridge trend in south-central Finnish Lapland. Boreas, 38, 638646, doi.org/10.1111/j.1502-3885.2009.00089.x.Google Scholar
Sutinen, R., Hyvönen, E. and Kukkonen, I. (2014a). LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland. International Journal of Applied Earth Observation and Geoinformation, 27, 9198, doi.org/10.1016/j.jag.2013.05.004.Google Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014b). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007.Google Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Airo, M-L. (2018). Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland. Global and Planetary Change, 160, 4660, doi.org/10.1016/j.gloplacha.2017.11.011.Google Scholar
Sutinen, R., Andreani, L. and Middleton, M. (2019a). Post-Younger Dryas fault instability and deformations on ice-lineations in Finnish Lapland. Geomorphology, 326, 202212, doi.org/10.1016/j.geomorph.2018.08.034.Google Scholar
Sutinen, R., Hänninen, P., Hyvönen, E. et al. (2019b). Electrical-sedimentary anisotropy of landforms adjacent to postglacial faults in Lapland. Geomorphology, 326, 213224, doi.org/10.1016/j.geomorph.2018.01.008.Google Scholar
Sutinen, R., Sutinen, A. and Middleton, M. (2021). Subglacial squeeze-up moraines adjacent to the Vaalajärvi-Ristonmännikkö glacially-induced fault system, Finnish Lapland. Geomorphology, 384, 107716, doi.org/10.1016/j.geomorph.2021.107716.Google Scholar
Tanner, V. (1930). Studier över kvartärsystemet I Fennoscandias nordliga delar IV [Studies of the Quaternary system in northern Fennoscandia – IV]. Bulletin de la Commission Géologique de Finlande, 88, 594 pp.Google Scholar

References

Assinovskaya, B. A. (2004). Instrumental data on earthquakes in the Karelian region. In Sharov, N. V., ed., Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniia [Deep Structure and Seismicity of the Karelian Region and Its Framework]. Karelian Science Center RAS, Petrozavodsk, Russia, pp. 213229.Google Scholar
Avenarius, I. G. (1989). Morphostructural analysis of the zone of neotectonic dislocations on the southern slope of the Khibiny Mountains. Geomorfologiya, 2, 5256.Google Scholar
Baluyev, A. S., Zhuravlyov, V. A., Terekhov, Y. N. and Przhiyalgovsky, Y. S. (2012). Tektonika Belogo moria (Ob’iasnitel’naia zapiska k «Tektonicheskoi karte Belogo moria i prilegaiushchikh territorii masshtaba 1:1500000) [Tectonics of the White Sea (Explanatory note to the Tectonic map of the White Sea and adjacent territories at a scale of 1:1 500 000)]. Issue 597, GEOS: Tr. GIN RAS, Moscow.Google Scholar
Biske, G. S. (1959). Chetvertichnye otlozheniia i geomorfologiia Karelii [Quaternary Sediments and Geomorphology of Karelia], Gos. izd-vo Karel’skoi ASSR, Petrozavodsk, Russia.Google Scholar
Biske, Yu. S., Sumareva, I. V. and Sheetov, M. V. (2009). Late Holocene seismic event in the south-eastern Ladoga area. The principles of research and deformation textures. Vestnik of St. Petersburg University, 7(1), 325.Google Scholar
Demidov, I. N., Lukashov, A. D., Lavrova, N. B., Shelekhova, T. S. and Vyakhirev, S. A. (1998). Paleoecology and paleoseismology of the Mt. Vottovaara area (West Karelia) in the late glacial and postglacial time. Paleoklimaty i evolyutsiya paleogeograficheskikh obstanovok v geologicheskoi istorii Zemli: Tezisy dokladov Mezhdunarodnogo simpoziuma [Paleoclimates and Evolution of Paleogeographic Environments during the Geological History of the Earth: Abstracts of International Symposium Reports], Petrozavodsk, Russia, 27–31 August 1998, pp. 28–30.Google Scholar
Karpov, N. N. (1960). Traces of postglacial tectonic faults in the Khibiny Mountains. Moscow University Bulletin, 5(4), 61.Google Scholar
Krapivner, R. B. (2018). Krizis lednikovoi teorii: argumenty i fakty [Crisis of the glacial theory: arguments and facts]. GEOS, Moscow.Google Scholar
Kolodyazhnyi, S. Y., Baluyev, A. S. and Zykov, D. S. (2019). Structure and evolution of the Belomorian–Severodvinsk shear zone in the Late Proterozoic and Phanerozoic, East European Platform. Geotectonics, 53(1), 6083, doi.org/10.1134/S0016852119010047.Google Scholar
Lukashov, A. D. (1995). Paleoseismoteсtoniсs in the Northern Part of Lake Onega (Zaonezhskij Peninsula, Russian Karelia). Geological Survey of Finland. Nuсlear Waste Disposal Researсh Report YST-90, Espoo, Finland, 36 pp.Google Scholar
Lukashov, A. D. (2004). Geodynamics of the contemporary times. In Sharov, N. V., ed., Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniia [Deep Structure and Seismicity of the Karelian Region and Its Framework], Karelian Science Center RAS, Petrozavodsk, Russia, pp. 150191.Google Scholar
Marakhanov, A. V. and Romanenko, F. A. (2014). New data on postglacial seismic dislocations of the Northern Karelia (Karelian coast of the White Sea). Iudakhinskie chteniia. Geodinamika i ekologiia Barents-regiona v XXI v. Materialy dokladov Vserossiiskoi konferentsii s mezhdunarodnym uchastiem [Yudakhin Readings. Geodynamics and ecology of the Barents region in the XXIst century]. Proceedings of the All-Russian Conference with International Participation, Institute of Ecological Problems of the North, Arkhangelsk, Russia, 15–18 September 2014, pp. 137–140.Google Scholar
Marinin, A. V., Sim, L. A. and Bondar, I. V. (2019). Tectodynamics of the Vuoksi Fault Zone in the Karelian Isthmus. Trudy Fersmanovskoj nauchnoj sessii GI KNC RAN, pp. 364–368.Google Scholar
Michetti, A. M., Andermard, F. and Azuma, T. (2007). Intensity Scale ESI-2007: Memory Descriptive della carta geologica d’Italia. APAT, Rome, 74 pp.Google Scholar
Murzaev, P. M. (1935). On the age and formation of the gorges of the southern slope of the Khibiny massif. Izvestiâ Leningradskogo geologo-gidrogeodezičeskogo tresta, 6(1), 1419.Google Scholar
Nikiforov, C. L., Koshel, S. M. and Froll, V. V. (2012). Digital model of the bottom of the White Sea. Moscow University Bulletin, 5(4), 8692.Google Scholar
Nikolaev, N. I. (1967). Neotectonics and seismicity of the East European Platform. Izv. Academy of Sciences of the USSR, 2, 1327.Google Scholar
Nikolaeva, S. B. (2001). Paleoseismic manifestations in the north-eastern part of the Baltic Shield and their geological and tectonic position. Geomorfologiya, 4, 6674.Google Scholar
Nikolaeva, S. B. (2008). Disastrous earthquakes in the vicinities of the town of Murmansk: paleoseismological and geological evidence. Journal of Volcanology and Seismology, 2(3), 189198, doi.org/10.1134/S0742046308030068.Google Scholar
Nikolaeva, S. B. (2009). Seismites in Late Pleistocene and Holocene deposits of the northwestern Kola region (northern Baltic Shield). Russian Geology and Geophysics, 50(7), 644650, doi.org/10.1016/j.rgg.2008.12.009.Google Scholar
Nikolaeva, S. B. (2013). Evidence of seismic events on the coast of Murman in the Late Glacial and Holocene. News of the Russian Geographical Society, 145(4), 5365.Google Scholar
Nikolaeva, S. B., Lavrova, N. B. and Denisov, D. B. (2017). A catastrophic Holocene event in the lake bottom sediments of the Kola region (northeastern Fennoscandian shield). Doklady Earth Sciences, 473(1), 308312, doi.org/10.1134/S1028334X17030072.Google Scholar
Nikolaeva, S. B., Nikonov, A. A., Shvarev, S. V. and Rodkin, M. V. (2018). Detailed paleoseismological research on the flank of the Lake Imandra depression (Kola region): new approaches and results. Russian Geology and Geophysics, 59(6), 697708, doi.org/10.1016/j.rgg.2018.05.008.Google Scholar
Nikonov, A. A. (1964), Razvitie rel’efa i paleogeografija antropogena na zapade Kol’skogo poluostrova [Development of the Relief and Paleogeography of the Anthropogen in the West of the Kola Peninsula], Nauka, Moscow.Google Scholar
Nikonov, A. A. (2004). Historical and instrumental data on seismicity of the region. Historical earthquakes. In Sharov, N. V., ed., Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniia [Deep Structure and Seismicity of the Karelian Region and Its Framework]. Karelian Science Center RAS, Petrozavodsk, Russia, pp. 192–213.Google Scholar
Nikonov, A. A. and Shvarev, S. V. (2015). Seismolineaments and destructive earthquakes in the Russian part of the Baltic shield: new solutions for the past 13 thousand years. Geologo-geofizicheskaja sreda i raznoobraznye projavlenija sejsmichnosti [Geological-geophysical environment and diverse manifestations of seismic activity]. Proceedings of the International Conference, Neriungri, Russia, 23–25 September 2015, pp. 243–251.Google Scholar
Nikonov, A. A., Shvarev, S. V., Sim, L. A. et al. (2014). Paleoseismodeformations of hard rocks in the Karelian isthmus. Doklady Earth Sciences, 457, 10081013, doi.org/10.1134/S1028334X14080145.Google Scholar
Nikonov, A. A., Nikolaeva, S. B. and Shvarev, S. V. (2015). Murmansk coastal band in the Russian part of European Arctic as outstanding seismogenic zone: newest approach. In Pavlenko, V. I., ed., Prirodnye resursy i kompleksnoe osvoenie pribrezhnyj rajonov Arkticheskoj zony. Sb. nauchnyh trudov [Natural Resources and Integrated Development of Coastal Areas of the Arctic Zone. Collection of Scientific Papers]. Arhangel’skij nauchnyj centr Ural’skogo otdelenija RAN, Arkhangelsk, Russia, pp. 34–40.Google Scholar
Rodionov, A. I., Nikolaeva, S. B. and Ryazantsev, P. A. (2018). Evaluation of GPR capabilities in the study of seismogenic faulting and deformation in the bottom sediments of Lake Upoloksha (northeast of the Fennoscandian shield). Geodynamics & Tectonophysics, 9(4), 11891203, doi.org/10.5800/GT-2018-9-4-0390.Google Scholar
Rybalko, A. E., Tokarev, M. Y., Fedorova, N. K. and Nikitin, M. A. (2011). New data on geology and geomorphology of the Kandalaksha Gulf from high-frequency seismoacoustic profiling and geological sampling. Geologiya morei i okeanov: Materialy XIX Mezhdunarodnoi konferentsii (shkoly) po morskoi geologii [Geology of Seas and Oceans: Proceedings of XIX International Conference–Workshop on Marine Geology, Moscow, Vol. 5], pp. 174–177.Google Scholar
Saarnisto, M. (1970). The Late Weichselian and Flandrian history of the Saimaa lake complex. Societas Scientiarum Fennica, Commentationes Physico-Mathematicae, 37, 107.Google Scholar
Shvarev, S. V. and Nikonov, A. A. (2018). Morphotectonics of the White Sea basin in comparison with the specified characteristics of historical earthquakes. Materialy Vserossijskoj nauchnoj konferencii: Pozdne – i postgljacial’naja istorija Belogo morja: geologija, tektonika, sedimentacionnye obstanovki, hronologija, KDU, University Book, Moscow, pp. 174180 (in Russian).Google Scholar
Shvarev, S. V. and Rodkin, M. V. (2018). Structural position and parameters of the paleoearthquakes in the area of Vottovaara Mountain (middle Karelia, eastern part of the Fennoscandian Shield). Seismic Instruments, 54, 99218, doi.org/10.3103/S0747923918020093.Google Scholar
Shvarev, S. V., Nikonov, A. A., Rodkin, M. V. and Poleshchuk, A. V. (2018). The active tectonics of the Vuoksi Fault Zone in the Karelian Isthmus: parameters of paleoearthquakes estimated from bedrock and soft sediment deformation features. Bulletin of the Geological Society of Finland, 90, 257273.Google Scholar
Shvarev, S. V., Subetto, D. A., Nikonov, A. A., Zaretskaja, N. E. and Romanov, A. O. (2019). Seismites in the pre- and postglacial sediments of the Karelian isthmus (eastern Fennoscandia). In Börner, A., Hüneke, H. and Lorenz, S., eds., Field Symposium of INQUA PeriBaltic Working Group. From Weichselian Ice-Sheet Dynamics to Holocene Land Use Development in Western Pomerania and Mecklenburg. Abstract Volume. Scientific Technical Report STR 19/01, Potsdam GFZ German Research Centre for Geosciences, pp. 102–105, doi.org/10.2312/GFZ.b103-19012.Google Scholar
Starovojtov, A. V., Tokarev, M. Y., Terekhina, Y. E. and Kozupicza, N. A. (2018). The structure of the sedimentary cover of the Kandalaksha Bay of the White Sea according to seismic data. Moscow University Bulletin, 4(2), 8192.Google Scholar
Subetto, D. A, Shvarev, S. V., Nikonov, A. A. et al. (2018). New evidence of the Vuoksi River origin by geodynamic cataclysm. Bulletin of the Geological Society of Finland, 90, 275289.Google Scholar
Sviridenko, L. P., Isanina, E. V. and Sharov, N. V. (2017). Deep structure, volcano-plutonism and tectonics of Lake Ladoga region. Trudy Karel’skogo nauchnogo centra RAN, 2, 7385.Google Scholar
Trifonov, V. G. (1999). Neotektonika Evrazii [Neotectonics of Eurasia]. Scientific World, Moscow, Russia.Google Scholar
Verzilin, N. N., Bobkov, A. A., Kulkova, M. A. et al. (2013). On age and formation of modern dissected relief of Kola Peninsula northern part. Vestnik of Saint-Petersburg University, 7(2), pp. 7993.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×