Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T16:47:52.508Z Has data issue: false hasContentIssue false

17 - Glacially Induced Faulting in Poland

from Part IV - Glacially Triggered Faulting at the Edge and in the Periphery of the Fennoscandian Shield

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

Poland is in an intraplate area characterized almost everywhere by low recent tectonic activity. This does not imply, however, that earthquakes have not affected it, even in the – geologically speaking – recent geological past. This is due to Pleistocene glaciations, which left traces in the form of earthquake-induced deformed layers. The strongly deformed layers (seismites) as well as some fault zones with significant offsets crossing also Quaternary sediments can indicate fault (re-)activation due to glacial isostatic adjustment. We inventory and describe the five sites/areas in the intraplate northern and central parts of Poland where traces of glacial isostatic adjustment occur. We do not deal, however, with the mountain areas of southern Poland, because Alpine pressure and glacial isostatic adjustment may each, possibly jointly, have acted there as a trigger; distinguishing between traces left by them is not yet viable.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badura, J. and Przybylski, B. (2000). Mapa neotektoniczna Dolnego Śląska [Neotectonic Map of Lower Silesia]. Unpublished report, Archive of Polish Geological Institute, Lower Silesia Division, Wrocław, map and 43 pp. (in Polish).Google Scholar
Badura, J., Zuchiewicz, W., Štěpančíková, P. et al. (2007). The Sudetic Marginal Fault: a young morphotectonic feature of central Europe. Acta Geodynamica et Geomaterialia, 148, 729.Google Scholar
Belzyt, S., Pisarska-Jamroży, M., Bitinas, A. et al. (2021). Repetitive Late Pleistocene soft-sediment deformation by seismicity-induced liquefaction in north-western Lithuania. Sedimentology, doi.org/10.1111/sed.12883.Google Scholar
Birkenmajer, K. (1976). Plejstoceńskie deformacje tektoniczne w Szaflarach na Podhalu [Pleistocene tectonic deformations in Szaflary, Podhale region]. Rocznik Polskiego Towarzystwa Geologicznego, 46, 309324 (in Polish).Google Scholar
Brandes, C., Polom, U. and Winsemann, J. (2011). Reactivation of basement faults: interplay of ice-sheet advance, glacial lake formation and sediment loading. Basin Research, 23, 5364, doi.org/10.1111/j.1365-2117.2010.00468.x.CrossRefGoogle Scholar
Brandes, C., Winsemann, J., Roskosch, J. et al. (2012). Activity along the Osning Thrust in central Europe during the Lateglacial: ice-sheet and lithosphere interactions. Quaternary Science Reviews, 38, 4962, doi.org/10.1016/j.quascirev.2012.01.021.Google Scholar
Brodzikowski, K. (1995). Pleistocene glacigenic deposition in a tectonically active, subsiding zone: the Kleszczów Graben, central Poland. In Ehlers, J., Kozarski, S. and Gibbard, P., eds., Glacial Deposits in North-East Europe. Brookfield Balkema, A. A. Rotterdam, pp. 361385.Google Scholar
Brodzikowski, K., Gotowała, R., Kasza, L. and van Loon, A. J. (1987a). The Kleszczów Graben (central Poland): reconstruction of the deformational history and inventory of the resulting soft-sediment deformation structures. In Jones, M. E. and Preston, R. M. F., eds., Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publication, Vol. 29, pp. 241–254, doi.org/10.1144/GSL.SP.1987.029.01.18.Google Scholar
Brodzikowski, K., Hałuszczak, A., Krzyszkowski, D. and van Loon, A. J. (1987b). Genesis and diagnostic value of large-scale gravity-induced penecontemporaneous deformation horizons in Quaternary sediments of the Kleszczów Graben (central Poland). In Jones, M. E. and Preston, R. M. F., eds., Deformation of Sediments and Sedimentary Rocks. Geological Society, London, Special Publication, Vol. 29, pp. 287–298, doi.org/10.1144/GSL.SP.1987.029.01.22.Google Scholar
Brodzikowski, K., van Loon, A. J. and Zieliński, T. (1997). Development of a lake in a subsiding basin in front of a Saalian ice sheet (Kleszczów Graben, central Poland). Sedimentary Geology, 113, 5580, doi.org/10.1016/S0037-0738(97)00046-8.Google Scholar
Chmal, R. (2006). Objaśnienia do szczegółowej mapy geologicznej Polski w skali 1:50000. Arkusz Piła [Explanations to the Detailed Geological Map of Poland, Scale 1:50000. Sheet Piła]. Polish Geological Institute Press, Warsaw (in Polish).Google Scholar
Dadlez, R. and Dembowska, J. (1965). Budowa geologiczna parantyklinorium pomorskiego [The geology of the Pomeranian para-anticlinorium]. Prace Instytutu Geologicznego 40, 175 pp. (in Polish).Google Scholar
Dadlez, R. (1979). Tektonika Kompleksu Cechsztyńsko–Mezozoicznego [Tectonics of the Zechstein–Mesozoic Complex]. In Jaskowiak-Schoeneich, M., ed., Budowa geologiczna niecki szczecińskiej i bloku Gorzowa [The Geological Structure of the Szczecin Trough and the Gorzow Block]. Prace Instytutu Geologicznego, 96, pp. 108121 (in Polish).Google Scholar
Dzierżek, J. (1997). Geology of sub-Quaternary basement and stratigraphy of Quaternary sediments in the middle Noteć river valley, western Poland. Annales Societatis Geologorum Poloniae, 67, 5781.Google Scholar
Gotowała, R. and Hałuszczak, A. (2002). The Late Alpine structural development of the Kleszczow Graben (Central Poland) as a result of reactivation of the pre-existing, regional dislocations. EGU Stephan Mueller Special Publication, 1, 137150, doi.org/10.5194/smsps-1-137-2002.Google Scholar
Gregersen, S., Wiejacz, P., Dębski, W. et al. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth and Planetary Interiors, 164, 6374, doi.org/10.1016/j.pepi.2007.06.005.Google Scholar
Gruszka, B. (2007). The Pleistocene glaciolacustrine sediments in the Bełchatów mine (central Poland): endogenic and exogenic controls. Sedimentary Geology, 193, 149166, doi.org/10.1016/j.sedgeo.2006.01.008.Google Scholar
Gruszka, B. and van Loon, A. J. (2007). Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). Sedimentary Geology, 193, 93104, doi.org/10.1016/j.sedgeo.2006.01.009.CrossRefGoogle Scholar
Gruszka, B. and Zieliński, T. (1996). Gravity flow origin of glaciolacustrine sediments in a tectonically active basin (Pleistocene, central Poland). Annales Societatis Geologorum Poloniae, 66, 5981.Google Scholar
Guterch, B. (2009). Sejsmiczność Polski w świetle danych histycznych [Seismicity of Poland in the light of historical records]. Przegląd Geologiczny, 57, 513520. (in Polish)Google Scholar
Guterch, B., Lewandowska-Marciniak, H. and Niewiadomski, J. (2005). Earthquakes recorded in Poland along the Pieniny Klippen Belt, Western Carpathians. Acta Geologica Polonica, 53, 2844.Google Scholar
Hoffmann, G. and Reicherter, K. (2012). Soft-sediment deformation of Late Pleistocene sediments along the southwestern coast of the Baltic Sea (NE Germany). International Journal of Earth Sciences, 101, 351363, doi.org/10.1007/s00531-010-0633-z.Google Scholar
Jarosiński, M. (2006). Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly, 50, 303321.Google Scholar
Kurzawa, M. (2003). The sedimentary record and rates of Quaternary vertical tectonic movements in NW Poland. Quaternary International, 101, 137148, doi.org/10.1016/S1040-6182(02)00096-4.CrossRefGoogle Scholar
Laskowska-Wysoczańska, W. (1995). Neotectonic and glacial control on geomorphic development of middle and eastern parts of the Sandomierz Basin and the Carpathian margin. Folia Quaternaria, 66, 105122.Google Scholar
Migoń, P. and Łach, J. (1998). Geomorphological evidence of neotectonics in the Kaczawa sector of the Sudetic marginal fault, southwestern Poland. Geologica Sudetica, 31, 307316.Google Scholar
Migoń, P., Krzyszkowski, D. and Gogół, K. (1998). Geomorphic evolution of the front of the Sudetes between Dobromierz and Paszowice and adjacent areas, with particular reference to the fluvial systems. Geologica Sudetica, 31, 289305.Google Scholar
Mojski, J. E. (1985). Geology of Poland. Volume I Stratigraphy, Part 3b Cainozoic. Geological Press, Warsaw, 248 pp.Google Scholar
Morawski, W. (2009a). Neotectonics induced by ice-sheet advances in NE Poland. Geologos, 15, 199217, doi.org/10.2478/v10118-009-0004-z.Google Scholar
Morawski, W. (2009b). Differences in the regional stratigraphy of NE Poland caused by vertical movements due to glacioisostasy. Geologos, 15, 235250, doi.org/10.2478/v10118-009-0006-x.Google Scholar
Mörner, N. A. (1991). Intense earthquakes and seismotectonics as a function of glacial isostasy. Tectonophysics, 188(3–4), 407410, doi.org/10.1016/0040-1951(91)90471-4.CrossRefGoogle Scholar
Olszak, I. (1999). Chronostratigraphy of the western part of the cliff of Kępa Swarzewska near Jastrzębia Góra (Baltic Coast). Peribalticum, 7, 4163.Google Scholar
Pagaczewski, J. (1972). Catalogue of earthquakes in Poland in 1000–1972 years. Publications of the Institute of Geophysics Polish Academy of Sciences, 51, 336.Google Scholar
Pikies, R. (2007). Influence of tectonic processes on the relief of sub-Quaternary surface and influence of these processes on formation of Quaternary in deep-water part of the southern Baltic Sea. MELA Conference, Living Morphotectonics of the European Lowland, Cedynia, Poland, pp. 60–70.Google Scholar
Piotrowski, A., Brose, F., Sydor, P., Seidler, J. and Pisarska-Jamroży, M. (2012). Stanowisko 3 – Siekierki. Osady Interglacjału Eemskiego w Siekierkach [Eemian interglacial deposits at Siekierki]. In Błaszkiewicz, M. and Brose, F., eds., Korelacja osadów plejstocenu na pograniczu polsko-niemieckim w Dolinie Dolnej Odry [Pleistocene Sediment Correlations in the Lower Odra Region]. Polish Geological Institute Press, Warsaw, pp. 161163 (in Polish).Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Börner, A. et al. (2018). Evidence from seismites for glacio-isostatically induced crustal faulting in front of an advancing land-ice mass (Rügen Island, SW Baltic Sea). Tectonophysics, 745, 338348, doi.org/10.1016/j.tecto.2018.08.004.Google Scholar
Pisarska-Jamroży, M. and Woźniak, P.P. (2019). Debris flow and glacioisostatic-induced soft-sediment deformation structures in a Pleistocene glaciolacustrine fan: the southern Baltic Sea coast, Poland. Geomorphology, 326, 225238, doi.org/10.1016/j.geomorph.2018.01.015.Google Scholar
Pisarska-Jamroży, M., van Loon, A. J., Roman, M. and Mleczak, M. (2019a). Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisostatic crustal rebound. Geomorphology, 326, 239251, doi.org/10.1016/j.geomorph.2018.01.010.Google Scholar
Pisarska-Jamroży, M., Belzyt, S., Bitinas, A., Jusienė, A. and Woronko, B. (2019b). Seismic shocks, periglacial conditions and glacitectonics as causes of the deformation of a Pleistocene meandering river succession in central Lithuania. Baltica, 32, 6377, doi.org/10.5200/baltica.2019.1.6.Google Scholar
Przybylski, B. (1998). Late Quaternary evolution of the Nysa Kłodzka river valley in the Sudetic Foreland, southwestern Poland. Geologia Sudetica, 31, 197211.Google Scholar
Rodríguez-Pascua, M. A., Calvo, J. P., De Vicente, G. and Gomez-Gras, D. (2000). Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135, 117135, doi.org/10.1016/S0037-0738(00)00067-1.CrossRefGoogle Scholar
Różycka, M. and Migoń, P. (2018). Tectonic geomorphology of the Sudetes Mountains (central Europe) – a review and re-appraisal. Annales Societatis Geologorum Poloniae, 87, 275300.Google Scholar
Rühle, E. (1973). Ruchy neotektoniczne w Polsce [Neotectonic movements in Poland]. In Rühle, E., ed., Metodyka badań osadów czwartorzędowych [Methodology of research of Quaternary sediments]. Geological Press, Warsaw, pp. 1331 (in Polish).Google Scholar
Rühle, E. (1978). Mapa geologiczna Polski bez utworów kenozoicznych i kredowych 1: 500 000 [Geological map of Poland without Cenozoic and Cretaceous strata 1: 500,000]. Instytut Geologiczny, Warsaw (in Polish).Google Scholar
Ryka, W. (1989). Podłoże krystaliczne polskiej części południowego Bałtyku [Crystaline basement of the South Baltic Sea]. Kwartalnik Geologiczny, 34, 2136 (in Polish).Google Scholar
Ryka, W. and Dadlez, R. (1995). Podłoże krystaliczne [Crystalline basement]. In Mojski, J. E., ed., Atlas geologiczny południowego Bałtyku [Geological Atlas of the South Baltic Sea]. Polish Geological Institute Press, Warsaw, (in Polish).Google Scholar
Skompski, S. (2001). Objaśnienia do szczegółowej mapy geologicznej Polski w skali 1:50000, Arkusz Puck [Explanations to the detailed Geological Map of Poland, Scale 1:50000. Sheet Puck]. Polish Geological Institute Press, Warsaw, 40 pp. (in Polish).Google Scholar
Słodkowska, B. (2009). Palynology of the Palaeogene and Neogene from Warmia and Mazury areas (NE Poland). Geologos, 15, 219234, doi.org/10.2478/v10118-009-0005-y.Google Scholar
Štěpančíková, P., Stemberk, J., Vilímek, V. and Košťák, B. (2008). Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology, 102, 6880, doi.org/10.1016/j.geomorph.2007.06.016.Google Scholar
Štěpančíková, P., Hók, J., Nývlt, D. et al. (2010). Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics, 485, 269282, doi.org/10.1016/j.tecto.2010.01.004.Google Scholar
Tokarski, A. K. and Świerczewska, E. (2005). Neofractures versus inherited fractures in structural analysis: a case study from Quaternary fluvial gravels. Annales Societatis Geologorum Poloniae, 75, 95104.Google Scholar
Tokarski, A. K., Świerczewska, E. and Zuchiewicz, W. (2007). Fractured clasts in neotectonics reconstructions: an example from Nowy Sącz Basin, western Outer Carpathians, Poland. Studia Quaternaria, 24, 4752.Google Scholar
Tylmann, K., Rinterknecht, V. R., Woźniak, P. P. et al. (2019a). Retreat of the southern front of the last Scandinavian Ice Sheet: dates and rates. 20th Congress of the International Union for Quaternary Research (INQUA). Book of Abstracts, app.oxfordabstracts.com/events/ 574/ program-app/titles.Google Scholar
Tylmann, K., Rinterknecht, V. R., Woźniak, P. P. et al.(2019b). The local last glacial maximum of the southern Scandinavian Ice Sheet front: cosmogenic nuclide dating of erratics in northern Poland. Quaternary Science Reviews, 219, 3646, doi.org/10.1016/j.quascirev.2019.07.004.CrossRefGoogle Scholar
van Loon, A. J., Brodzikowski, K. and Zieliński, T. (1995). Shock-induced resuspension deposits from a Pleistocene proglacial lake (Kleszczów Graben, central Poland). Journal of Sedimentary Research, A65, 417422, doi.org/10.1306/D42680DB-2B26-11D7-8648000102C1865D.Google Scholar
van Loon, A. J. and Pisarska-Jamroży, M. (2014). Sedimentological evidence of Pleistocene earthquakes in NW Poland induced by glacioisostatic rebound. Sedimentary Geology, 300, 110, doi.org/10.1016/j.sedgeo.2013.11.006.Google Scholar
van Loon, A. J., Pisarska-Jamroży, M., Nartišs, M., Krievāns, M. and Soms, J. (2016). Seismites resulting from high‑frequency, high‑magnitude earthquakes in Latvia caused by Late Glacial glacio‑isostatic uplift. Journal of Palaeogeography, 5, 363380, doi.org/10.1016/j.jop.2016.05.002.Google Scholar
van Loon, A. J., Pisarska-Jamroży, M. and Woronko, B. (2020). Sedimentological distinction in glacigenic sediments between load casts induced by periglacial processes from those induced by seismic shocks. Geological Quarterly, 64, 626640, doi.org/10.7306/gq.1546.Google Scholar
Wiejacz, P. and Dębski, W. (2001). New observation of Gulf of Gdansk seismic events. Physics of the Earth and Planetary Interiors, 123, 233245, doi.org/10.1016/S0031-9201(00)00212-0.Google Scholar
Witkowski, A. (1989). Ewolucja i tektonika staropaleozoicznego kompleksu strukturalnego południowego Bałtyku [Evolution and tectonics of the Lower Palaeozoic structural complex in the southern Baltic Sea]. Kwartalnik Geologiczny, 34, 5166 (in Polish with English summary).Google Scholar
Woźniak, P. P. and Pisarska-Jamroży, M. (2016). Rzucewo-soft-sediment deformation structures in glaciolimnic sediments-different trigger mechanisms. In Sokołowski, R. and Moskalewicz, D., eds., Quaternary Geology of North-Central Poland from the Baltic Coast to the LGM Limit, University of Gdańsk, pp. 53–67.Google Scholar
Woźniak, P. P. and Pisarska-Jamroży, M. (2018). Debris flows with soft-sediment clasts in a Pleistocene glaciolacustrine fan (Gdańsk Bay, Poland). Catena, 165, 178191, doi.org/10.1016/j.catena.2018.01.022.Google Scholar
Woźniak, P. P., Pisarska-Jamroży, M. and Elwirski, Ł. (2018). Orientation of gravels and soft-sediment clasts in subaqueous debrites – implications for palaeodirection reconstruction: case study from Puck Bay, northern Poland. Bulletin of the Geological Society of Finland, 90, 161174, doi.org/10.17741/bgsf/90.2.002.Google Scholar
Wójcik, A. (2003). Czwartorzęd zachodniej części Dołów Jasielsko-Sanockich (polskie Karpaty Zewnętrzne) [The Quaternary of the western part of Jasielsko-Sanockie Doły (Polish Outer Carpathians)]. Prace Państwowego Instytutu Geologicznego, 178, 148 pp.Google Scholar
Żelaźniewicz, A., Aleksandrowski, P., Buł, Z. et al. (2011). Regionalizacja tektoniczna Polski [Tectonic division of Poland]. Committee of Geological Sciences, Polish Academy of Sciences Press, Wrocław, 60 pp.Google Scholar
Znosko, J. (1998). Mapa tektoniczna Polski [Tectonic map of Poland]. Polish Geological Institute Press, Warsaw (in Polish).Google Scholar
Zuchiewicz, W. (1995). Selected aspects of neotectonics of the Polish Carpathians. Folia Quaternaria, 66, 145204.Google Scholar
Zuchiewicz, W., Badura, J., Jarosiński, M. and Commission on Neotectonics, Committee for Quaternary Research, Polish Academy of Sciences (2007). Neotectonics of Poland: an overview of active faulting. Studia Quaternaria, 24, 520.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×