Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T19:06:59.005Z Has data issue: false hasContentIssue false

5 - Glacially Induced Fault Identification with LiDAR, Based on Examples from Finland

from Part II - Methods and Techniques for Fault Identification and Dating

Published online by Cambridge University Press:  02 December 2021

Holger Steffen
Affiliation:
Lantmäteriet, Sweden
Odleiv Olesen
Affiliation:
Geological Survey of Norway
Raimo Sutinen
Affiliation:
Geological Survey of Finland
Get access

Summary

Using information from airborne light detection and ranging (LiDAR) data has produced a breakthrough in identification of postglacial faults and earthquake-deformed Quaternary deposits. LiDAR digital elevation models (DEMs) also improve the collection of detailed information on their spatial distribution, characteristics and geometry, and provides guidance for the more costly and time-consuming field studies. In areas of weak glacial erosion, younger and older (i.e. Pre-Late Weichselian) ruptures have been discovered superimposed on the same or adjacent postglacial fault segments, as has been identified when combining the DEM information and test pit sedimentological studies. We discuss Finnish examples and identify advantages, disadvantages and limitations. Advantages include verification of previously known fault scarps, detection of new postglacial fault segments, systems and entire complexes and the ability to measure the dimensions (lengths and offset) of the fault scarps from the LiDAR DEM data. Disadvantages include that inventory of the sub- and postglacial fault scarps is only possible when linear scarps cross-cut glacial and postglacial sediments.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biland, J. and Çöltekin, A. (2017). An empirical assessment of the impact of the light direction on the relief inversion effect in shaded relief maps: NNW is better than NW. Cartography and Geographic Information Science, 44(4), 358372, doi.org/10.1080/15230406.2016.1185647.Google Scholar
Jenness, J. (2013). DEM surface tools. Jenness Enterprises. www.jennessent.com/arcgis/surface_area.htm.Google Scholar
Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406421.Google Scholar
Keiding, M., Olesen, O. and Dehls, J. (2018). Neotectonic map of Norway and adjacent areas. Geological Survey of Norway, doi.org/10.13140/RG.2.2.32996.48005.Google Scholar
Kuivamäki, A. (1986). Havaintoja Venejärven ja Ruostejärven postglasiaalisista siirroksista. [English abstract: Observations of the Venejärvi and Ruostejärvi Postglacial Faults]. Geological Survey of Finland Espoo, Report YST-52, Espoo, Finland, 20 pp.Google Scholar
Kuivamäki, A., Paananen, M. and Kukkonen, I. (1988). The Pasmajärvi postglacial Fault – a reactivated pre-existing fracture zone. Nordiske geologiske vintermøde: abstracts af foredrag anmeldt til det 18. Nordiske Geologiske Vintermøde 12–14 January 1988, 240, København.Google Scholar
Kuivamäki, A., Vuorela, P. and Paananen, M. (1998). Indications of Postglacial and Recent Bedrock Movements in Finland and Russian Karelia. Geological Survey of Finland Nuclear Waste Disposal Research Report, YST-99, Espoo, Finland, 92 pp.Google Scholar
Kujansuu, R. (1964). Nuorista siirroksista Lapissa. [English summary: Recent faults in Lapland]. Geologi, 6, 3036.Google Scholar
Kujansuu, R. (1972). On landslides in Finnish Lapland. Bulletin de la Commission Géologique de Finlande, 256, 22 pp.Google Scholar
Kukkonen, I. and Kuivamäki, A. (1985). Geologisia ja geofysikaalisia havaintoja Pasmajärven ja Suasselän postglasiaalisista siirroksista. [English abstract: Geological and Geophysical Observations of the Pasmajärvi and Suasselkä Postglacial Faults]. Geological Survey of Finland Report YST-46, Espoo, Finland, 14 pp.Google Scholar
Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100, 19711988, doi.org/10.1785/0120090189.CrossRefGoogle Scholar
Maanmittauslaitos (2016). Kansallisen maastotietokannan laatumalli, korkeusmallit, 1.3, biturl.top/yUBjQv.Google Scholar
Malamud, B. D., Turcotte, D. L., Guzzetti, F. and Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29, 687711, doi.org/10.1002/esp.1064.Google Scholar
Mattila, J., Ojala, A., Sutinen, R., Palmu, J.-P. and Ruskeeniemi, T. (2016). Digging deeper with LiDAR: vertical slip profiles of post-glacial faults. In LITHOSPHERE 2016 Symposium, November 9–11, 2016, Espoo, Finland, pp. 87–90.Google Scholar
Mattila, J., Ojala, A. E. K., Ruskeeniemi, T. et al. (2019). Evidence of multiple slip events on postglacial faults in northern Fennoscandia. Quaternary Science Reviews, 215, 242252, doi.org/10.1016/j.quascirev.2019.05.022.CrossRefGoogle Scholar
Mikko, H., Smith, C. A., Lund, B., Ask, M. V. S. and Munier, R. (2015). LiDAR-derived inventory of post-glacial fault scarps in Sweden. GFF, 137, 334338, doi.org/10.1080/11035897.2015.1036360.Google Scholar
Moss, E. S. and Ross, Z. E. (2011). Probabilistic fault displacement hazard analysis for reverse faults. Bulletin of the Seismological Society of America, 101, 15421553, doi.org/10.1785/0120100248.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2017). Postglacial seismic activity along the Isovaara-Riikonkumpu fault complex. Global and Planetary Change, 157, 5972, doi.org/10.1016/j.gloplacha.2017.08.015.CrossRefGoogle Scholar
Ojala, A. E. K., Markovaara-Koivisto, M., Middleton, M. et al. (2018). Dating of seismically-induced paleolandslides in western Finnish Lapland. Earth Surface Processes and. Landforms, 43, 24492462, doi.org/10.1002/esp.4408.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019a). Postglacial Faults in Finland – A Review of PGSdyn Project Results. Posiva Report 2019-01, 118 pp., Posiva Oy, Eurajoki.Google Scholar
Ojala, A. E. K., Mattila, J., Markovaara-Koivisto, M. et al. (2019b). Distribution and morphology of landslides in northern Finland: an analysis of postglacial seismic activity. Geomorphology, 326, 190201, doi.org/10.1016/j.geomorph.2017.08.045.Google Scholar
Ojala, A. E. K., Mattila, J., Ruskeeniemi, T. et al. (2019c). Postglacial reactivation of the Suasselkä PGF complex in SW Finnish Lapland. International Journal of Earth Sciences, 108, 10491065, doi.org/10.1007/s00531-019-01695-w.CrossRefGoogle Scholar
Palmu, J.-P., Ojala, A. E. K., Ruskeeniemi, T., Sutinen, R. and Mattila, J. (2015). LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. GFF, 137, 344352, doi.org/10.1080/11035897.2015.1068370.Google Scholar
Smith, M. J. and Clark, C. D. (2005). Methods for the visualization of digital elevation models for landform mapping. Earth Surface Processes and Landforms, 30, 885900, doi.org/10.1002/esp.1210.Google Scholar
Smith, C. A., Sundh, M. and Mikko, H. (2014). Surficial geology indicates early Holocene faulting and seismicity, central Sweden. International Journal of Earth Sciences, 103(6), 17111724, doi.org/10.1007/s00531-014-1025-6.CrossRefGoogle Scholar
Sutinen, R. (2005). Timing of early Holocene landslides in Kittilä, Finnish Lapland. Geological Survey of Finland, Special Paper, 40, 5358.Google Scholar
Sutinen, R., Piekkari, M. and Liwata, P. (2007). Time-transgressive evolution of landslides possibly induced by seismotectonic events in Lapland. Applied Quaternary research in the central part of glaciated terrain. Geological Survey of Finland, Special Paper, 46, 121128.Google Scholar
Sutinen, R., Hyvönen, E. and Kukkonen, I. (2014a). LiDAR detection of paleolandslides in the vicinity of the Suasselkä postglacial fault, Finnish Lapland. International Journal of Applied Earth Observation and Geoinformation, 27, 9199, doi.org/10.1016/j.jag.2013.05.004.CrossRefGoogle Scholar
Sutinen, R., Hyvönen, E., Middleton, M. and Ruskeeniemi, T. (2014b). Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Global and Planetary Change, 115, 2432, doi.org/10.1016/j.gloplacha.2014.01.007.CrossRefGoogle Scholar
Verduzco, B., Fairhead, J. D., Green, C. M. and MacKenzie, C. (2004). New insights into magnetic derivatives for structural mapping. The Leading Edge, 23(2), 116119, doi.org/10.1190/1.1651454.Google Scholar
Wells, D. L. and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 9741002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×