Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-25T13:03:51.952Z Has data issue: false hasContentIssue false

6 - Probability helps you make a decision about your results

Published online by Cambridge University Press:  05 June 2012

Steve McKillup
Affiliation:
Central Queensland University
Melinda Darby Dyar
Affiliation:
Mount Holyoke College, Massachusetts
Get access

Summary

Introduction

Most science is comparative. Earth scientists often need to know if a particular phenomenon has had an effect, or if there are differences in a particular variable measured at several different locations. For example, what is the permeability of sandstone with and without carbonate impurities? How does turbidity vary across a glacial lake? How well does the distribution of dew point temperature predict rainfall? But when you make these sorts of comparisons, any differences among areas sampled or manipulative experimental treatments may be real or they may simply be the sort of variation that occurs by chance among samples from the same population.

Here is an example of commercial importance. Most diamonds are mined from kimberlite deposits, which are volcanoes that have risen from great depths in the Earth's mantle at high speed. Sometimes, the kimberlite brings along diamonds that have formed at high pressures and temperatures. But not all kimberlites contain diamonds, and finding them within these rocks is quite difficult.

Fortunately, many kimberlites contain large amounts of the mineral garnet. A prospector noted that the garnets present in diamond-rich kimberlites were slightly darker than those in kimberlites lacking diamonds, and subsequent research suggested that the change in color was caused by the presence of small amounts of oxidized Fe, or Fe3+. To test if oxidized garnets could be used to predict the presence of diamonds, the prospector collected 14 garnet samples: seven from diamond-bearing deposits of kimberlite, and seven from kimberlite without diamonds (Table 6.1), and measured their Fe3+ content.

Type
Chapter
Information
Geostatistics Explained
An Introductory Guide for Earth Scientists
, pp. 51 - 65
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×